
Discrete Mathematics Comprehensive Exam Questions

1. Prove that for every integer k ≥ 1 there exists an integer N such that if the subsets
of {1, 2, . . . , N} are colored using k colors, then there exist disjoint non-empty sets
X, Y ⊆ {1, 2, . . . , N} such that X, Y and X ∪ Y receive the same color.
Hint. You may want to consider intervals.

Solution: By Ramsey’s theorem there exists an integer N such that for every
k-coloring of 2-element subsets of {1, 2, . . . , N + 1} there exists a 3-element set
A ⊆ {1, 2, . . . , N+1} such that all 2-element subsets of A receive the same color. We
claim that N satisfies the requirements of the problem. For i, j ∈ {1, 2, . . . , N + 1}
with i < j we color the set {i, j} using the color of the set {i, i+ 1, . . . , j − 1}. By
the choice of N there exist i, j, k ∈ {1, 2, . . . , N+1} such that i < j < k and the sets
{i, j}, {j, k} and {i, k} receive the same color. Then the setsX := {i, i+1, . . . , j−1}
and Y := {j, j + 1, . . . , k − 1} are as desired.

2. A proper list-coloring of a graph G = (V,E) from lists {Lv ⊂ N | v ∈ V } is a function
c : V → N such that c (v) ∈ Lv for all v ∈ V and c (u) 6= c (v) for all {u, v} ∈ E.

Let r be a natural number. Prove that if for all v ∈ V we have |Lv| = 10r and for all
j ∈ Lv there are at most r neighbors u ∈ V of v such that j ∈ Lu, then G admits a
proper list-coloring from these lists.

Solution: Consider a random list-coloring c of G, where each c (v) is selected
from Lv independently and equiprobably. For an edge e = {u, v} ∈ E and a color
j ∈ Lu∩Lv, let Ej

e be the event that c (u) = c (v) = j. The event Ej
e is independent

of Ei
f when e and f are disjoint or when j /∈ Le∩f , so Ej

e is only dependent of at
most d = 2 · (r − 1) · 10r other events. Since

e (d+ 1) Pr
[
Ej
e

]
=
e (20r (r − 1) + 1)

100r2
<
e

5
< 1,

by the local lemma, Pr
[⋂

e,j E
j
e

]
> 0, implying that there is a proper list-coloring

of G from the given lists.

3. Let k ≥ 1 be an integer, let G be a 2-connected graph, let x, y be distinct vertices of
G, and assume that every vertex of G other than x or y has degree at least k. Prove
that G has a path with ends x and y of length at least k.



Solution: We proceed by induction on k. The statement clearly holds for k = 1;
thus we assume that k ≥ 2 and that the statement holds for k− 1. Let G′ := G\x.
If G′ is 2-connected, then let x′ ∈ V (G′) − {y} be a neighbor of x. It exists,
because G is 2-connected. Notice that every vertex of G′ other than y has degree
at least k − 1. By induction there exists a path P ′ in G′ from x′ to y of length
at least k − 1; then P ′ + x is as desired. Thus we may assume that G′ is not
2-connected, and hence G′ = A∪B, where A and B are subgraphs of G′ such that
|V (A) ∩ V (B)| = 1 and V (A)− V (B) 6= ∅ 6= V (B)− V (A). We may assume that
y ∈ V (B), and that A is minimal. It follows that A is 2-connected or isomorphic
to K2. Let y′ be the unique vertex in V (A) ∩ V (B). Since G is 2-connected, x has
a neighbor x′′ ∈ V (A)− {y′}. By induction the graph A has a path P from x′′ to
y′ of length at least k − 1. Let Q be a path in B from y′ to y. Then P ∪Q+ x is
as desired.

4. Let v1, v2, . . . vn be n vectors from {±1}n chosen uniformly and independently. Let Mn

be the largest pairwise dot product in absolute value: i.e

Mn = max
i 6=j
|vi · vj|

Prove that
Mn

2
√
n lnn

→ 1

in probability as n→∞.

Hint. Consider the first and second moment methods applied to the number of pairs
of vectors whose dot product exceeds (and falls below, respectively) 2

√
n lnn.

Solution: To show Mn

2
√
n lnn

converges to 1 in probability we must show that for
every ε > 0,

Pr[

∣∣∣∣ Mn

2
√
n lnn

− 1

∣∣∣∣ > ε]→ 0 as n→∞

Therefore it is enough to show the following two facts:

(a) Pr[Mn ≥ (1 + ε)2
√
n lnn]→ 0

(b) Pr[Mn ≥ (1− ε)2
√
n lnn]→ 0

To prove 1. we use the first-moment method. Let X be the number of pairs of
vectors with dot product ≥ (1 + ε)2

√
n lnn. If Mn ≥ (1 + ε)2

√
n lnn, then X ≥ 1.

We will use Markov’s Inequality, Pr[X ≥ 1] ≤ EX. We write

X = X1,2 + · · ·+Xi,j + . . .
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where Xi,j = 1 if |vi · vj| ≥ (1 + ε)2
√
n lnn and 0 otherwise.

EXi,j = Pr[|vi · vj| ≥ (1 + ε)2
√
n lnn] = exp

(
−2(1 + ε)2 lnn(1 + o(1))

)
using a Chernoff bound, since vi · vj is distributed as a simple symmetric random
walk of n steps, and so

EX =

(
n

2

)
EXi,j

≤ n2

2

1

n2(1+ε)2
= o(1)

which proves 1.

To prove 2. we use the second-moment method. Let Y be the number of pairs of
vectors with dot product ≥ (1− ε)2

√
n lnn. Similar to the above, we let Yi,j = 1 if

|vi · vj| ≥ (1− ε)2
√
n lnn and 0 otherwise. Then we have

EY =

(
n

2

)
EYi,j

≥ n2

2

1

n2(1−ε)2 = ω(1)

To bound the variance, we write

var(Y ) =
∑
i 6=j

var(Yi,j) +
∑

(i,j)6=(k,l)

cov(Yi,j, Yk,l)

≤ EY +
∑

(i,j)6=(k,l)

cov(Yi,j, Yk,l)

Now if (i, j) and (k, l) are disjoint pairs of pairs of vectors, then Yi,j and Yk,l
are independent and so have covariance 0. If they overlap, say Yi,j and Yi,k, the
covariance is still 0: conditioned on vi ·vj, vi ·vk still has the distribution of a SSRW
of n steps. And so all the covariances are 0, giving var(Y ) ≤ E(Y ). Then we apply
Chebyshev:

Pr[Y = 0] ≤ var(Y )

(EY )2
≤ 1

EY
= o(1)

which completes the proof of 2.
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5. Let G be a simple 3-regular graph, and let k be its edge-chromatic number. Prove that
if every two k-edge-colorings of G differ by a permutation of colors, then k = 3 and G
has three distinct Hamiltonian cycles.

Solution: By Vizing’s theorem k = 3 or k = 4. Suppose for a contradiction that
k = 4, and let f : E(G) → {1, 2, 3, 4} be a proper edge-coloring. Let H12 be
the subgraph of G induced by edges e such that f(e) ∈ {1, 2}. Then H12 has
maximum degree at most two, and it is a spanning subgraph, because every vertex
is incident with an edge colored 1 or 2. Furthermore, H12 is connected, because
otherwise swapping the colors 1 and 2 on one component of H12 would produce a
k-edge-coloring that cannot be obtained from f by permuting colors. Thus H12 is
a Hamilton path or Hamilton cycle. The same applies to the analogously defined
graph H34. However, H12 and H34 are edge-disjoint, and hence G has at most four
vertices, contrary to the fact that k = 4.

Thus k = 3. Let us consider an arbitrary 3-edge-coloring of G. The union of every
two color classes is a Hamiltonian cycle by the same argument as above. Thus G
has three distinct Hamiltonian cycles, as required.

6. Show that there exists an absolute constant c so that if {Si : 1 ≤ i ≤ n} is any sequence
of sets with |Si| ≥ c, for all i = 1, 2, . . . , n, then there exists a sequence {xi : 1 ≤ i ≤ n}
with xi ∈ Si, for all i = 1, 2, . . . , n, which is square-free, i.e., there is no pair i, j with
1 ≤ i < j ≤ 2j − i − 1 ≤ n so that xi+k = xj+k for all k = 0, 1, . . . , j − i − 1. Hint:
This is an application of the asymmetric version of the Lovasz Local Lemma.

Solution: Clearly, we may assume n is very large. To see, this simply expand the
list of sets by adding arbitrary c elements sets. Any initial portion of a square-free
string is square-free.

Now suppose that each set Si has c elements (as usual c will be specified later).
Then we form a word x1x2x3 . . . xn by making a random choice from each Si with all
elements of Si being equally likely. For each pair (i, k) with 1 ≤ i < i+ 2k− 1 ≤ n,
let A(i, k) be the event that the length k substring xixi+1 . . . xi+k−1 is the first half
of a square and is repeated in positions xi+kxi+k+1 . . . xi+2k−1.

Since the characters in the string are chosen at random, we note that Pr[A(i, k)] ≤
1/ck.

Clearly, the dependency neighborhood of A(i, k) consists on those events A(j,m)
where [i, i+ 2k− 1]∩ [j, j + 2m− 1] 6= ∅. So we group them according to the value
of m. For each value of m, there are (at most) 2k + 2m− 1 such events.

To apply the Local Lemma, we will set x(i, k) = 1/dk where d will be a constant
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depending on c and just a bit smaller. Now the inequality we need is:

1

ck
≤ 1

dk

n/2∏
m=1

(1− 1

dm
)2k+2m−1.

Multiplying both sides by dk and taking logarithms, the preceding inequality be-
comes

k ln(d/c) ≤
n/2∑
m=1

(2k + 2m− 1) ln(1− 1

dm
).

Recall that when |x| < 1,

1

1− x
=

∞∑
m=0

xm.

Taking derivatives we have

1

(1− x)2
=

∞∑
m=1

mxm−1.

We use these two formulas, the approximation ln(1−1/dm) by −1/dm and multiply
both sides by −1, to obtain:

k ln(c/d) ≥
n/2∑
m=1

(2k + 2m− 1)
1

dm

∼ 2k − 1

d

∞∑
m=0

1

dm
+

2

d

∞∑
m=1

m
1

dm−1

=
2k − 1

d

d

d− 1
+

2

d

d2

(d− 1)2

Now it is easy to see that suitable choices for c and d can be found.
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