1. Prove that for every integer $k \geq 1$ there exists an integer N such that if the subsets of $\{1,2, \ldots, N\}$ are colored using k colors, then there exist disjoint non-empty sets $X, Y \subseteq\{1,2, \ldots, N\}$ such that X, Y and $X \cup Y$ receive the same color.
Hint. You may want to consider intervals.

Solution: By Ramsey's theorem there exists an integer N such that for every k-coloring of 2 -element subsets of $\{1,2, \ldots, N+1\}$ there exists a 3 -element set $A \subseteq\{1,2, \ldots, N+1\}$ such that all 2 -element subsets of A receive the same color. We claim that N satisfies the requirements of the problem. For $i, j \in\{1,2, \ldots, N+1\}$ with $i<j$ we color the set $\{i, j\}$ using the color of the set $\{i, i+1, \ldots, j-1\}$. By the choice of N there exist $i, j, k \in\{1,2, \ldots, N+1\}$ such that $i<j<k$ and the sets $\{i, j\},\{j, k\}$ and $\{i, k\}$ receive the same color. Then the sets $X:=\{i, i+1, \ldots, j-1\}$ and $Y:=\{j, j+1, \ldots, k-1\}$ are as desired.
2. A proper list-coloring of a graph $G=(V, E)$ from lists $\left\{L_{v} \subset \mathbb{N} \mid v \in V\right\}$ is a function $c: V \rightarrow \mathbb{N}$ such that $c(v) \in L_{v}$ for all $v \in V$ and $c(u) \neq c(v)$ for all $\{u, v\} \in E$.
Let r be a natural number. Prove that if for all $v \in V$ we have $\left|L_{v}\right|=10 r$ and for all $j \in L_{v}$ there are at most r neighbors $u \in V$ of v such that $j \in L_{u}$, then G admits a proper list-coloring from these lists.

Solution: Consider a random list-coloring c of G, where each $c(v)$ is selected from L_{v} independently and equiprobably. For an edge $e=\{u, v\} \in E$ and a color $j \in L_{u} \cap L_{v}$, let E_{e}^{j} be the event that $c(u)=c(v)=j$. The event E_{e}^{j} is independent of E_{f}^{i} when e and f are disjoint or when $j \notin L_{e \cap f}$, so E_{e}^{j} is only dependent of at most $d=2 \cdot(r-1) \cdot 10 r$ other events. Since

$$
e(d+1) \operatorname{Pr}\left[E_{e}^{j}\right]=\frac{e(20 r(r-1)+1)}{100 r^{2}}<\frac{e}{5}<1
$$

by the local lemma, $\operatorname{Pr}\left[\bigcap_{e, j} \overline{E_{e}^{j}}\right]>0$, implying that there is a proper list-coloring of G from the given lists.
3. Let $k \geq 1$ be an integer, let G be a 2 -connected graph, let x, y be distinct vertices of G, and assume that every vertex of G other than x or y has degree at least k. Prove that G has a path with ends x and y of length at least k.

Solution: We proceed by induction on k. The statement clearly holds for $k=1$; thus we assume that $k \geq 2$ and that the statement holds for $k-1$. Let $G^{\prime}:=G \backslash x$. If G^{\prime} is 2 -connected, then let $x^{\prime} \in V\left(G^{\prime}\right)-\{y\}$ be a neighbor of x. It exists, because G is 2 -connected. Notice that every vertex of G^{\prime} other than y has degree at least $k-1$. By induction there exists a path P^{\prime} in G^{\prime} from x^{\prime} to y of length at least $k-1$; then $P^{\prime}+x$ is as desired. Thus we may assume that G^{\prime} is not 2-connected, and hence $G^{\prime}=A \cup B$, where A and B are subgraphs of G^{\prime} such that $|V(A) \cap V(B)|=1$ and $V(A)-V(B) \neq \emptyset \neq V(B)-V(A)$. We may assume that $y \in V(B)$, and that A is minimal. It follows that A is 2-connected or isomorphic to K_{2}. Let y^{\prime} be the unique vertex in $V(A) \cap V(B)$. Since G is 2 -connected, x has a neighbor $x^{\prime \prime} \in V(A)-\left\{y^{\prime}\right\}$. By induction the graph A has a path P from $x^{\prime \prime}$ to y^{\prime} of length at least $k-1$. Let Q be a path in B from y^{\prime} to y. Then $P \cup Q+x$ is as desired.
4. Let $v_{1}, v_{2}, \ldots v_{n}$ be n vectors from $\{ \pm 1\}^{n}$ chosen uniformly and independently. Let M_{n} be the largest pairwise dot product in absolute value: i.e

$$
M_{n}=\max _{i \neq j}\left|v_{i} \cdot v_{j}\right|
$$

Prove that

$$
\frac{M_{n}}{2 \sqrt{n \ln n}} \rightarrow 1
$$

in probability as $n \rightarrow \infty$.
Hint. Consider the first and second moment methods applied to the number of pairs of vectors whose dot product exceeds (and falls below, respectively) $2 \sqrt{n \ln n}$.

Solution: To show $\frac{M_{n}}{2 \sqrt{n \ln n}}$ converges to 1 in probability we must show that for every $\epsilon>0$,

$$
\operatorname{Pr}\left[\left|\frac{M_{n}}{2 \sqrt{n \ln n}}-1\right|>\epsilon\right] \rightarrow 0 \text { as } n \rightarrow \infty
$$

Therefore it is enough to show the following two facts:
(a) $\operatorname{Pr}\left[M_{n} \geq(1+\epsilon) 2 \sqrt{n \ln n}\right] \rightarrow 0$
(b) $\operatorname{Pr}\left[M_{n} \geq(1-\epsilon) 2 \sqrt{n \ln n}\right] \rightarrow 0$

To prove 1. we use the first-moment method. Let X be the number of pairs of vectors with dot product $\geq(1+\epsilon) 2 \sqrt{n \ln n}$. If $M_{n} \geq(1+\epsilon) 2 \sqrt{n \ln n}$, then $X \geq 1$. We will use Markov's Inequality, $\operatorname{Pr}[X \geq 1] \leq \mathbb{E} X$. We write

$$
X=X_{1,2}+\cdots+X_{i, j}+\ldots
$$

where $X_{i, j}=1$ if $\left|v_{i} \cdot v_{j}\right| \geq(1+\epsilon) 2 \sqrt{n \ln n}$ and 0 otherwise.

$$
\mathbb{E} X_{i, j}=\operatorname{Pr}\left[\left|v_{i} \cdot v_{j}\right| \geq(1+\epsilon) 2 \sqrt{n \ln n}\right]=\exp \left(-2(1+\epsilon)^{2} \ln n(1+o(1))\right)
$$

using a Chernoff bound, since $v_{i} \cdot v_{j}$ is distributed as a simple symmetric random walk of n steps, and so

$$
\begin{aligned}
\mathbb{E} X & =\binom{n}{2} \mathbb{E} X_{i, j} \\
& \leq \frac{n^{2}}{2} \frac{1}{n^{2(1+\epsilon)^{2}}}=o(1)
\end{aligned}
$$

which proves 1 .
To prove 2. we use the second-moment method. Let Y be the number of pairs of vectors with dot product $\geq(1-\epsilon) 2 \sqrt{n \ln n}$. Similar to the above, we let $Y_{i, j}=1$ if $\left|v_{i} \cdot v_{j}\right| \geq(1-\epsilon) 2 \sqrt{n \ln n}$ and 0 otherwise. Then we have

$$
\begin{aligned}
\mathbb{E} Y & =\binom{n}{2} \mathbb{E} Y_{i, j} \\
& \geq \frac{n^{2}}{2} \frac{1}{n^{2(1-\epsilon)^{2}}}=\omega(1)
\end{aligned}
$$

To bound the variance, we write

$$
\begin{aligned}
\operatorname{var}(Y) & =\sum_{i \neq j} \operatorname{var}\left(Y_{i, j}\right)+\sum_{(i, j) \neq(k, l)} \operatorname{cov}\left(Y_{i, j}, Y_{k, l}\right) \\
& \leq \mathbb{E} Y+\sum_{(i, j) \neq(k, l)} \operatorname{cov}\left(Y_{i, j}, Y_{k, l}\right)
\end{aligned}
$$

Now if (i, j) and (k, l) are disjoint pairs of pairs of vectors, then $Y_{i, j}$ and $Y_{k, l}$ are independent and so have covariance 0 . If they overlap, say $Y_{i, j}$ and $Y_{i, k}$, the covariance is still 0 : conditioned on $v_{i} \cdot v_{j}, v_{i} \cdot v_{k}$ still has the distribution of a SSRW of n steps. And so all the covariances are 0 , giving $\operatorname{var}(Y) \leq \mathbb{E}(Y)$. Then we apply Chebyshev:

$$
\operatorname{Pr}[Y=0] \leq \frac{\operatorname{var}(Y)}{(\mathbb{E} Y)^{2}} \leq \frac{1}{\mathbb{E} Y}=o(1)
$$

which completes the proof of 2 .
5. Let G be a simple 3-regular graph, and let k be its edge-chromatic number. Prove that if every two k-edge-colorings of G differ by a permutation of colors, then $k=3$ and G has three distinct Hamiltonian cycles.

Solution: By Vizing's theorem $k=3$ or $k=4$. Suppose for a contradiction that $k=4$, and let $f: E(G) \rightarrow\{1,2,3,4\}$ be a proper edge-coloring. Let H_{12} be the subgraph of G induced by edges e such that $f(e) \in\{1,2\}$. Then H_{12} has maximum degree at most two, and it is a spanning subgraph, because every vertex is incident with an edge colored 1 or 2 . Furthermore, H_{12} is connected, because otherwise swapping the colors 1 and 2 on one component of H_{12} would produce a k-edge-coloring that cannot be obtained from f by permuting colors. Thus H_{12} is a Hamilton path or Hamilton cycle. The same applies to the analogously defined graph H_{34}. However, H_{12} and H_{34} are edge-disjoint, and hence G has at most four vertices, contrary to the fact that $k=4$.

Thus $k=3$. Let us consider an arbitrary 3 -edge-coloring of G. The union of every two color classes is a Hamiltonian cycle by the same argument as above. Thus G has three distinct Hamiltonian cycles, as required.
6. Show that there exists an absolute constant c so that if $\left\{S_{i}: 1 \leq i \leq n\right\}$ is any sequence of sets with $\left|S_{i}\right| \geq c$, for all $i=1,2, \ldots, n$, then there exists a sequence $\left\{x_{i}: 1 \leq i \leq n\right\}$ with $x_{i} \in S_{i}$, for all $i=1,2, \ldots, n$, which is square-free, i.e., there is no pair i, j with $1 \leq i<j \leq 2 j-i-1 \leq n$ so that $x_{i+k}=x_{j+k}$ for all $k=0,1, \ldots, j-i-1$. Hint: This is an application of the asymmetric version of the Lovasz Local Lemma.

Solution: Clearly, we may assume n is very large. To see, this simply expand the list of sets by adding arbitrary c elements sets. Any initial portion of a square-free string is square-free.
Now suppose that each set S_{i} has c elements (as usual c will be specified later). Then we form a word $x_{1} x_{2} x_{3} \ldots x_{n}$ by making a random choice from each S_{i} with all elements of S_{i} being equally likely. For each pair (i, k) with $1 \leq i<i+2 k-1 \leq n$, let $A(i, k)$ be the event that the length k substring $x_{i} x_{i+1} \ldots x_{i+k-1}$ is the first half of a square and is repeated in positions $x_{i+k} x_{i+k+1} \ldots x_{i+2 k-1}$.
Since the characters in the string are chosen at random, we note that $\operatorname{Pr}[A(i, k)] \leq$ $1 / c^{k}$.
Clearly, the dependency neighborhood of $A(i, k)$ consists on those events $A(j, m)$ where $[i, i+2 k-1] \cap[j, j+2 m-1] \neq \emptyset$. So we group them according to the value of m. For each value of m, there are (at most) $2 k+2 m-1$ such events.
To apply the Local Lemma, we will set $x(i, k)=1 / d^{k}$ where d will be a constant
depending on c and just a bit smaller. Now the inequality we need is:

$$
\frac{1}{c^{k}} \leq \frac{1}{d^{k}} \prod_{m=1}^{n / 2}\left(1-\frac{1}{d^{m}}\right)^{2 k+2 m-1}
$$

Multiplying both sides by d^{k} and taking logarithms, the preceding inequality becomes

$$
k \ln (d / c) \leq \sum_{m=1}^{n / 2}(2 k+2 m-1) \ln \left(1-\frac{1}{d^{m}}\right) .
$$

Recall that when $|x|<1$,

$$
\frac{1}{1-x}=\sum_{m=0}^{\infty} x^{m}
$$

Taking derivatives we have

$$
\frac{1}{(1-x)^{2}}=\sum_{m=1}^{\infty} m x^{m-1}
$$

We use these two formulas, the approximation $\ln \left(1-1 / d^{m}\right)$ by $-1 / d^{m}$ and multiply both sides by -1 , to obtain:

$$
\begin{aligned}
k \ln (c / d) & \geq \sum_{m=1}^{n / 2}(2 k+2 m-1) \frac{1}{d^{m}} \\
& \sim \frac{2 k-1}{d} \sum_{m=0}^{\infty} \frac{1}{d^{m}}+\frac{2}{d} \sum_{m=1}^{\infty} m \frac{1}{d^{m-1}} \\
& =\frac{2 k-1}{d} \frac{d}{d-1}+\frac{2}{d} \frac{d^{2}}{(d-1)^{2}}
\end{aligned}
$$

Now it is easy to see that suitable choices for c and d can be found.

