Discrete Mathematics Comprehensive Exam Questions

1. Prove that for every integer k£ > 1 there exists an integer N such that if the subsets
of {1,2,..., N} are colored using k colors, then there exist disjoint non-empty sets
X,Y C{1,2,...,N} such that X, Y and X UY receive the same color.

Hint. You may want to consider intervals.

Solution: By Ramsey’s theorem there exists an integer N such that for every
k-coloring of 2-element subsets of {1,2,..., N + 1} there exists a 3-element set
A CH{1,2,..., N+1} such that all 2-element subsets of A receive the same color. We
claim that N satisfies the requirements of the problem. For i,j € {1,2,..., N +1}
with i < j we color the set {7, j} using the color of the set {i,i+1,...,5 —1}. By
the choice of N there exist 7,7,k € {1,2,..., N+1} such that i < j < k and the sets
{i,7}, {4, k} and {i, k} receive the same color. Then the sets X := {i,i+1,...,j—1}
and Y :={j,j+1,...,k— 1} are as desired.

2. A proper list-coloring of a graph G = (V, E) from lists {L, C N | v € V} is a function
¢:V — Nsuch that ¢(v) € L, for all v € V and ¢ (u) # ¢ (v) for all {u,v} € E.
Let r be a natural number. Prove that if for all v € V' we have |L,| = 10r and for all
j € L, there are at most r neighbors v € V' of v such that j € L,, then G admits a
proper list-coloring from these lists.

Solution: Consider a random list-coloring ¢ of G, where each ¢ (v) is selected
from L, independently and equiprobably. For an edge e = {u,v} € E and a color
J € L,NL,, let EI be the event that ¢ (u) = ¢(v) = j. The event E? is independent
of E} when e and [ are disjoint or when j & Leny, so E? is only dependent of at
most d =2 - (r — 1) - 10r other events. Since

e(20r(r—1)+1) e

d+1)Pr[E/] = - <1
e(d+1)Pr[E] 10012 <5<

by the local lemma, Pr [ﬂe ]Eé} > (, implying that there is a proper list-coloring

of G from the given lists.

3. Let kK > 1 be an integer, let G be a 2-connected graph, let x,y be distinct vertices of
GG, and assume that every vertex of GG other than x or y has degree at least k. Prove
that G has a path with ends x and y of length at least k.



Solution: We proceed by induction on k. The statement clearly holds for £ = 1;
thus we assume that £ > 2 and that the statement holds for £ — 1. Let G’ := G\z.
If G’ is 2-connected, then let 2/ € V(G') — {y} be a neighbor of z. It exists,
because G is 2-connected. Notice that every vertex of G’ other than y has degree
at least £ — 1. By induction there exists a path P’ in G’ from 2’ to y of length
at least & — 1; then P’ + x is as desired. Thus we may assume that G’ is not
2-connected, and hence G’ = AU B, where A and B are subgraphs of G’ such that
V(A)NV(B)|=1and V(A) — V(B) # 0 # V(B) — V(A). We may assume that
y € V(B), and that A is minimal. It follows that A is 2-connected or isomorphic
to Ks. Let ¢’ be the unique vertex in V(A) NV (B). Since G is 2-connected, = has
a neighbor 2" € V(A) — {y’}. By induction the graph A has a path P from z” to
y' of length at least £k — 1. Let @ be a path in B from ¢’ to y. Then PUQ + x is
as desired.

4. Let vy, vq, ... v, be n vectors from {£1}" chosen uniformly and independently. Let M,
be the largest pairwise dot product in absolute value: i.e

M,, = max |v; - v;|
i#£]
Prove that
M,
2vnlnn

—1

in probability as n — oo.

Hint. Consider the first and second moment methods applied to the number of pairs
of vectors whose dot product exceeds (and falls below, respectively) 2vn Inn.

Solution: To show 5 \/AﬁTn converges to 1 in probability we must show that for
every € > 0,
Pr| M 1‘ >e —0 —
r||—— — € as n — oo
2vnlnn

Therefore it is enough to show the following two facts:

(a) Pr[M,, > (1+€)2vnlnn] =0
(b) Pr[M,, > (1 —¢€)2vnlnn] — 0

To prove 1. we use the first-moment method. Let X be the number of pairs of
vectors with dot product > (1 +€)2vnlnn. If M, > (1+ €)2v/nlnn, then X > 1.
We will use Markov’s Inequality, Pr[X > 1] <EX. We write

X:X172+"+XZJ+
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where X, ; = 1 if |v; - vj| > (1 4+ €)2v/nlnn and 0 otherwise.
EX;; = Prf|v;-vj] > (1 4+ €)2vVnlnn] = exp (—2(1 + €)*Inn(1 + o(1)))

using a Chernoff bound, since v; - v; is distributed as a simple symmetric random
walk of n steps, and so

which proves 1.

To prove 2. we use the second-moment method. Let Y be the number of pairs of
vectors with dot product > (1 —€)2v/nInn. Similar to the above, we let V; ; = 1 if
|v; - vj| > (1 —€)2v/nlnn and 0 otherwise. Then we have

EY = (")EYM
2 )

To bound the variance, we write

var(Y) = Zvar(Ym) - Z cov(Yi;, Yi1)

1#] (4,9)#(k,0)
S EY + Z COV(}/Z'J', Yk,l)

Now if (7,j) and (k,l) are disjoint pairs of pairs of vectors, then Y;; and Y},
are independent and so have covariance 0. If they overlap, say Y;; and Y, the
covariance is still 0: conditioned on v;-v;, v; - vy, still has the distribution of a SSRW
of n steps. And so all the covariances are 0, giving var(Y) < E(Y). Then we apply
Chebyshev:

var(Y) < 1 o(1)

(EY)2 — EY

=J
-

h<

I
=
IN

which completes the proof of 2.
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5. Let GG be a simple 3-regular graph, and let k£ be its edge-chromatic number. Prove that
if every two k-edge-colorings of G differ by a permutation of colors, then £ = 3 and G
has three distinct Hamiltonian cycles.

Solution: By Vizing’s theorem k = 3 or k = 4. Suppose for a contradiction that
k =4, and let f : E(G) — {1,2,3,4} be a proper edge-coloring. Let His be
the subgraph of G induced by edges e such that f(e) € {1,2}. Then His has
maximum degree at most two, and it is a spanning subgraph, because every vertex
is incident with an edge colored 1 or 2. Furthermore, H,5 is connected, because
otherwise swapping the colors 1 and 2 on one component of Hy5 would produce a
k-edge-coloring that cannot be obtained from f by permuting colors. Thus His is
a Hamilton path or Hamilton cycle. The same applies to the analogously defined
graph Hs,. However, Hy5 and Hs, are edge-disjoint, and hence G has at most four
vertices, contrary to the fact that k = 4.

Thus k£ = 3. Let us consider an arbitrary 3-edge-coloring of G. The union of every
two color classes is a Hamiltonian cycle by the same argument as above. Thus G
has three distinct Hamiltonian cycles, as required.

6. Show that there exists an absolute constant ¢ so that if {S; : 1 <14 < n} is any sequence
of sets with |S;| > ¢, foralli = 1,2,...n, then there exists a sequence {z; : 1 <i < n}
with z; € S;, for all i = 1,2,...,n, which is square-free, i.e., there is no pair 7, 7 with
1<i<j<2j—1—1<mnsothat ;4 = x4 forall £k =0,1,...,5 —¢ — 1. Hint:
This is an application of the asymmetric version of the Lovasz Local Lemma.

Solution: Clearly, we may assume n is very large. To see, this simply expand the
list of sets by adding arbitrary ¢ elements sets. Any initial portion of a square-free
string is square-free.

Now suppose that each set S; has ¢ elements (as usual ¢ will be specified later).
Then we form a word xx923 . . . x, by making a random choice from each S; with all
elements of S; being equally likely. For each pair (i, k) with 1 <7 < i42k—1 < n,
let A(i, k) be the event that the length k substring x;z;41 ... x; ;1 is the first half
of a square and is repeated in positions ; xT;ig11 ... Tirok_1-

Since the characters in the string are chosen at random, we note that Pr[A(i, k)] <
1/ck.

Clearly, the dependency neighborhood of A(i, k) consists on those events A(j, m)
where [i,i+ 2k — 1] N [j, 7+ 2m — 1] # 0. So we group them according to the value
of m. For each value of m, there are (at most) 2k + 2m — 1 such events.

To apply the Local Lemma, we will set z(i, k) = 1/d* where d will be a constant
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depending on ¢ and just a bit smaller. Now the inequality we need is:

n/2
1 1 —)Zh+2m=1
a=glla-

Multiplying both sides by d* and taking logarithms, the preceding inequality be-

comes
n/2

kln(d/c) < (2k +2m — 1)In(1 — dim).

Recall that when |z| < 1,

Taking derivatives we have

m=1

We use these two formulas, the approximation In(1—1/d™) by —1/d™ and multiply
both sides by —1, to obtain:

n/2
1
kln(c/d) > > (2k +2m — 1
m=1
k-1 1 2 1
S SR PO
d2

_2%k—1 d 2
- d d—-1 d(d—1)2

Now it is easy to see that suitable choices for ¢ and d can be found.
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