New Algebra Comprehensive Exam Questions

1. Let F be an algebraicaly closed field, V a finite-dimensional vector space over F, and $T: V \rightarrow V$ a linear transformation. Make V into a module over the polynomial ring $F[x]$ by requiring that $x \cdot v=T(v)$. Prove that if T has distinct eigenvalues, then V is a cyclic $F[x]$-module. Is the converse true? Give a proof or counterexample.

Solution: Since T has distinct eigenvlaues, there is a basis v_{1}, \ldots, v_{n} of V consisting of eigenvectors of T, say $T\left(v_{i}\right)=\lambda_{i} v_{i}$ where $\lambda_{i} \in F$ and the λ_{i} are distinct. Let

$$
v=\sum_{i=1}^{n} v_{i}
$$

I claim that the $F[x]$-submodule of V generated by v is all of V, so V is cyclic. To see this, let $f_{i}=\prod_{k \neq i}\left(x-\lambda_{k}\right)$. Then we have

$$
f_{i} v_{j}= \begin{cases}0 & \text { if } i \neq j \\ \prod_{k \neq i}\left(\lambda_{i}-\lambda_{k}\right) v_{i} & \text { if } i=j\end{cases}
$$

Thus $f_{i} v$ is a non-zero multiple of v_{i}. This shows that for all i, v_{i} is in the submodule of V generated by v. Since the v_{i} form a basis of V, this submodule is all of V.
To see the converse is false, take $V=F^{2}$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Then V is cyclic (generated by $\binom{0}{1}$) but T does not have distinct eigenvalues.
2. Let R be a commutative ring and let $I \subset R$ and $J \subset R$ be ideals. Consider the map $\phi: I \otimes_{R} J \rightarrow I J$ which sends $a \otimes b$ to $a b$. Prove or give a counterexample to the statements: " ϕ is onto" and " ϕ is one-to-one."

Solution: By definition, $I J$ is the set of finite sums of products $\sum_{i=1}^{n} a_{i} b_{i}$ where the $a_{i} \in I$ and the $b_{i} \in J$. Such a sum is $\phi\left(\sum_{i=1}^{n} a_{i} \otimes b_{i}\right)$, so ϕ is onto.
On the other hand, ϕ is not one-to-one in general. For example, take R to be the polynomial ring $k[x, y]$ over a field k and let $I=J=(x, y)$. Then $x \otimes y-$ $y \otimes x$ obviously maps to zero in I^{2}, but it is not zero in $I \otimes_{R} I$. (To see this, we need to produce an R-module M and a bilinear map $\psi: I \times I \rightarrow M$ such that $\psi(x, y) \neq \psi(y, x)$. Let $M=k$ with x and y acting as multiplication by 0 and note that to specifiy an R-module homomorphism $I \rightarrow M$ we may assign arbitrary values to x and y. Define two such homomorphisms by $\psi_{1}(x)=\psi_{2}(y)=1$ and $\psi_{2}(y)=\psi_{1}(x)=$. Then $\psi(f, g)=\psi_{1}(f) \psi_{2}(g)$ defines a bilinear map $I \times I \rightarrow M$, and we have $\psi(x, y)=1$ and $\psi(y, x)=0$ as desired.)
3. Let P be the \mathbb{Z}-module $\mathbb{Z} / 2 \mathbb{Z}$. Exhibit an exact sequence of \mathbb{Z}-modules

$$
0 \rightarrow M \rightarrow N \rightarrow N / M \rightarrow 0
$$

such that

$$
0 \rightarrow \operatorname{Hom}(N / M, P) \rightarrow \operatorname{Hom}(N, P) \rightarrow \operatorname{Hom}(M, P) \rightarrow 0
$$

is not exact.

Solution: Let $M=N=\mathbb{Z}$ and let $M \rightarrow N$ be multiplication by 2 , so that our sequence is

$$
0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0
$$

We have $\operatorname{Hom}(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z})=\operatorname{Hom}(\mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z})=\mathbb{Z} / 2 \mathbb{Z}$ and

$$
\operatorname{Hom}(\mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z}) \xrightarrow{2} \operatorname{Hom}(\mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z})
$$

is the zero map, so the Hom-sequence fails to be exact on the right.
4. Find the Galois group of the splitting field for $f(x)=x^{3}-7$ over $K=\mathbf{Q}(\sqrt{-3})$.

Solution: First of all, note that f is irreducible over \mathbf{Q}, for example by Eisenstein's criterion. Next, since $[K: \mathbf{Q}]=2$ and $[\mathbf{Q}(\sqrt[3]{7}): \mathbf{Q}]=3$ are relatively prime, we know that $[\mathbf{Q}(\sqrt[3]{7}, \sqrt{-3}): \mathbf{Q}]=6$ and thus $[\mathbf{Q}(\sqrt[3]{7}, \sqrt{-3}): K]=3$. As K contains a primitive cube root of unity $\omega=\frac{1+\sqrt{-3}}{2}, f$ splits into distinct linear factors over K :

$$
f(x)=(x-\sqrt[3]{7})(x-\omega \sqrt[3]{7})\left(x-\omega^{2} \sqrt[3]{7}\right)
$$

It follows that $\mathbf{Q}(\sqrt[3]{7})$ is a splitting field for f over K with Galois group isomorphic to $\mathbf{Z} / 3 \mathbf{Z}$.
5. Let ζ be a primitive 37th root of unity, and let $\eta=\zeta+\zeta^{10}+\zeta^{26}$. Determine the Galois group of $\mathbf{Q}(\eta)$ over \mathbf{Q}.

Solution: It is a standard fact from Galois theory that $L=\mathbf{Q}(\zeta)$ is Galois over \mathbf{Q} with Galois group G isomorphic to the cyclic group $(\mathbf{Z} / 37 \mathbf{Z})^{*}$ of order 36. Since $K=\mathbf{Q}(\eta)$ is a subfield of L, its Galois group H over \mathbf{Q} is a quotient of G and hence is cyclic of degree $[K: \mathbf{Q}]$. It remains to determine this degree. The subset $\{1,10,26\} \subset(\mathbf{Z} / 37 \mathbf{Z})^{*}$ is in fact a subgroup. It follows that if $\sigma \in G$ is the map taking ζ to ζ^{10}, then η is fixed by the action of $H=\langle\sigma\rangle$, which has order 3 . This implies that $K=\mathbf{Q}(\eta)$ is the fixed field of H in L. By Galois theory, we have $[L: K]=3$ and therefore $[K: \mathbf{Q}]=12$.

