
Numerical Analysis Comprehensive Exam Questions

1. Let f(x) = (x − α)mg(x) where m ≥ 2 is an integer and g(x) ∈ C2(R), g(α) 6= 0.
Write down the Newton’s method for finding the root α of f(x), and study the order
of convergence for the method. Can you propose a method that converges faster?

Solution: Newton’s method is

xn+1 = xn −
f(xn)

f ′(xn)
:= h(xn)

For the fixed-point iteration xn+1 = h(xn), we can investigate h′(α).

If 0 < |h′(α)| < 1, the iteration converges linearly with the rate of conv. tending
to |h′(α)|; if h′(α) = 0, then if converges at least quadratically.

In fact,

h′(x) =
f(x)f ′′(x)

[f ′(x)]2
→ m− 1

m
, as x→ α.

∴ 0 <
m− 1

m
< 1 if m ≥ 2.

The Newton’s method only converges linearly if xo is chosen close enough to α.

To improve the order of convergence, once could use

xn+1 = xn −m
f(xn)

f ′(xn)
:= H(xn).

It’s easy to show that H ′(x)→ 0 as x→ α. Therefore, the new method converges
at least quadratically.

2. Let x0, x1, . . . , xn be distinct real numbers and lk(x) be the Lagrange’s basis function.
Let Ψn(x) = Πn

k=0(x− xk). Prove that

(1) For any polynomial p(x) of degree n+ 1,

p(x)−
n∑
k=0

p(xk)lk(x) =
1

(n+ 1)!
p(n+1)(x)Ψn(x).

(2) If further x0, . . . , xn are Gauss-Legendre points in the interval [−1, 1], then∫ 1

−1

li(x)lj(x)dx = 0 for i 6= j.



Solution: (1) Note that p(x)−
∑n

k=0 p(xk)lk(x) has zeros at x = x0, . . . , xn,

therefore, p(x)−
∑n

k=0 p(xk)lk(x) = CΨn(x) for some constant C.

Since
∑n

k=0 p(xk)lk(x) is of degree n and p(x) is of degree n+ 1,

C must be the highest degree coeff. of p(x), thus C = 1
(n+1)!

p(n+1)(x). �

(2) Since x0, . . . , xn are Gauss-Legendre points,∫ 1

−1

p(x)dx =
n∑
k=0

wkp(xk)

for any polynomial p of degree ≤ 2n+ 1. Therefore,∫ 1

−1

li(x)lj(x)dx =
n∑
k=0

wkli(xk)lj(xk) = 0, if i 6= j. �

3. For the initial value problem y′(t) = f(t, y), y(0) = y0, t ≥ 0, consider the θ-method

yn+1 = yn + h[θf(tn, yn) + (1− θ)f(tn+1, yn+1)],

where time has been discretized such that tn = nh, and yn is the numerical approxi-
mation of y(tn).

(a) Is this method consistent? What is the order? Is this method zero-stable? How
does the result differ for different θ?

(b) What is the region of absolute stability? What is the region when θ = 0, 1
2
, or 1?

For what θ values is this method A−stable?

(c) Does this method have stiff decay? Show why or why not.

Solution: (a) Consider the local truncation error around tn,

y + hy′ + h2

2!
y′′ + · · · − y − h(θy′ + (1− θ)(y′ + hy′′ + h2

2!
y′′′ + · · · )

= h2y′′(1
2
− (1− θ)) + h3(−1

3
+ 1

2
θ)y′′′ + · · ·

The local truncation error is at least 2nd order, i.e. globally at least first order
method, so this method is consistent. The order of the method becomes 2nd order
if θ = 1

2
, otherwise, it is a first order method. The first characteristic polynomial

is ρ(z) = z − 1, i.e. z = 1, so this method is zero-stable for any θ. �

(b) Consider y′ = λy, then yn+1 = yn + h[θλyn + (1− θ)λyn+1],

yn+1 =
1 + hθλ

1− h(1− θ)λ
yn, |R(hθ)| :=

∣∣∣∣ 1 + hθλ

1− h(1− θ)λ

∣∣∣∣ ≤ 1 gives the stability region.
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When θ = 0, the region is outside of the unit circle centered at z = 1 in the complex
plane, when θ = 1

2
, the negative half plane of the complex plane, and when θ = 1,

inside of the unit circle centered at z = −1 in the complex plane. Therefore, this
method is A-stable for 0 ≤ θ ≤ 1

2
, since the stability region includes the negative

half plane. �

(c) To have stiff decay, one must show limhθ→−∞R(hθ)→ 0.

lim
hθ→−∞

R(hθ) = lim
hθ→−∞

1 + hθλ

1− h(1− θ)λ
=

θ

1− θ

i.e. goes to 0 only when θ = 0. Only when θ = 0 (which is the backward Euler
method), this method has stiff decay. �

4. Consider the initial boundary values problem
ut = uxx, (x, t) ∈ (0, 1)× (0, T ] = D
u(0, t) = g1(t), u(1, t) = g2(t), t ∈ [0, T ]
u(x, 0) = f(x), x ∈ [0, 1]

Let (xi, tn) be a grid point in a uniform rectangular grid, s.t. xi = i∆x, tn = n∆t
for i = 0, 1, . . . , I and n = 0, 1, . . . , N where I∆x = 1 and N∆t = T , and let Un

i

be a numerical approximation of u(xi, tn). Assuming the exact solution is sufficiently
smooth, show that the scheme

Un+1
i − Un

i

∆t
=
Un+1
i+1 − 2Un+1

i + Un+1
i−1

∆x2

is unconditionally stable and |Un
i − u(xi, tn)| = O(∆t+ ∆x2) as ∆t,∆x→ 0.

Solution: Given some perturbation of f(x), g1(t), and g2(t), the difference between
the perturbed Solution and Un

i , say ρni will also satisfy

ρn+1
i − ρni

∆t
=
ρn+1
i+1 − 2ρn+1

i + ρn+1
i−1

∆x2
.

Let λ = ∆t
∆x2

, then ρn+1
i = λ

1+2λ
ρn+1
i+1 + 1

1+2λ
ρni + λ

1+2λ
ρn+1
i−1 . Therefore, ρn+1

i is a strict

convex combination of ρn+1
i+1 , ρ

n
i and ρn+1

i−1 and satisfy the maximum principle, which
proves the stability.

Note that the exact Solution u satisfies

un+1
i − uni

∆t
=
un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
+O(∆t+ ∆x2).
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Let eni = uni − Un
i , then en+1

i = λ
1+2λ

en+1
i+1 + 1

1+2λ
eni + λ

1+2λ
en+1
i−1 +O(∆t2 + ∆t∆x2).

∴ |en+1
i | ≤ λ

1+2λ
‖en+1‖∞ + 1

1+2λ
‖en‖∞ + λ

1+2λ
‖en+1‖∞ +O(∆t2 + ∆t∆x2)

∴ ‖en+1‖∞ ≤ λ
1+2λ
‖en+1‖∞ + 1

1+2λ
‖en‖∞ + λ

1+2λ
‖en+1‖∞ +O(∆t2 + ∆t∆x2)

∴ λ
1+2λ
‖en+1‖∞ ≤ 1

1+2λ
‖en‖∞ + C(∆t2 + ∆t∆x2)

This implies

‖en‖∞ ≤ ‖e0‖∞ + C(n∆t2 + n∆t∆x2) ≤ C(∆t+ ∆x2)

since ‖e0‖∞ → 0. �

5. Consider the boundary-value problem
−uxx + u = f(x), x ∈ (0, 1)
u(0) = a
ux(1) = b

Given a partition 0 = x0 < x1 < · · · < xn = 1, please formulate a piecewise linear
continuous finite element method to solve the problem. Show that your method has a
unique solution.

Solution:

Let φi(x), i = 0, . . . , n be continuous piecewise linear functions defined on [0, 1] s.t.
φi(xj) = γij for j = 0, . . . , n. Let

Vh = span{φi(x) : i = 1, 2, . . . , n} and Wh = aφ0 + Vh.

For any φ ∈ Vh,∫ 1

0

(−uxx + u)φdx = −(uxφ)|10 +

∫ 1

0

uxφxdx+

∫ 1

0

uφdx =

∫ 1

0

fφdx

here −(uxφ)|10 = −ux(1)φ(1) = −bφ(1).

The FEM is to find U ∈ Wh s.t.∫ 1

0

Uxφxdx+

∫ 1

0

Uφdx =

∫ 1

0

fφdx+ bφ(1),

for any φ ∈ Vh.
This system has a unique solution if and only if the associated homogeneous system∫ 1

0

Uxφxdx+

∫ 1

0

Uφdx = 0
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has a unique 0 Solution, assuming a, b = 0.

In fact, let φ = U ,then∫ 1

0

|Ux|2dx+

∫ 1

0

|U |2dx = 0 =⇒ U ≡ 0. �

6. Consider the following matrix A and solving the linear system A~x = ~b by iterative
methods,

A =

 1 α β
−α 1 −γ
β γ 1

 .

(a) What are the conditions on the variables α, β, and γ for Jacobi’s method and
Gauss-Seidel method to converge?

(b) Describe the Jacobi’s method and Gauss-Seidel method.

(c) Find a set of values (if any exist) of α, β, and γ for which the Jacobi method
converges but Gauss-Seidel does not, and vice versa.

Solution: (a) The matrix A should be strictly diagonally dominant:

|α|+ |β| < 1, |α|+ |γ| < 1, and |β|+ |γ| < 1. �

(b) A = D−L−U , where D is the diagonal matrix, L lower triangular matrix and
U upper triangular matrix.

(D − L− U)~x = ~b

D~x = (L+ U)~x+~b

~xn+1 = D−1(L+ U)~xn +D−1~b

This is Jacobi iteration, and for Gauss-Seidel,

(D − L)~x = U~x+~b

~xn+1 = (D − L)−1U~xn + (D − L)−1~b

Algorithm: With any initial condition ~x0, iterate ~xn+1 = D−1(L + U)~xn + D−1~b

(Jacobi) or ~xn+1 = (D − L)−1U~xn + (D − L)−1~b (Gauss-Seidel) until it converges.
�

(c) (Outline of solution) The standard convergence condition is when the spectral
radius of the iteration matrix is less than 1. Compute the eigenvalues of D−1(L+U),
let’s call them λJs, and the eigenvalues of (D − L)−1U to be λGs, then find the
condition on α, β, and γ which corresponds to |λJ | < 1 and |λG| > 1 and vice versa.
�
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7. Describe an algorithm to compute least squares solution by singular value decomposi-
tion. Prove the solution obtained is the least squares solution and estimate the leading
computation cost for your algorithm. Assume the least squares system is

A~x = ~b, A ∈ Rm×n,~b ∈ Rm, and ~x ∈ Rn.

Solution: Algorithm:

(a) Compute the reduced SVD: A = UΣV ∗.

(b) Compute the vector ~y = U∗~b.

(c) Solve the diagonal system Σ~w = ~y.

(d) Set ~x = V ~w.

Proof: Least squares solution

A∗A~x = A∗~b

⇔ V Σ∗U∗UΣV ∗~x = V Σ∗U∗~b

⇔ Σ∗ΣV ∗~x = Σ∗U∗~b
⇔ ΣV ∗~x = ~y
⇔ Σ~w = ~y.

Leading cost: dominated by SVD ∼ 2mn2 + 11n3 flops. �

8. Describe the Conjugate Gradient Iteration method for solving a linear system

A~x = ~b.

Prove that the residuals are orthogonal.

Solution: Algorithm:

(a) ~xo = 0,~ro = ~b, ~po = ~ro

(b) for n = 1, 2, 3, . . .

i. αn = (~rTn−1~rn−1)/(~pTn−1A~pn−1)

ii. ~xn = ~xn−1 + αn~pn−1.

iii. ~rn = ~rn−1 − αnA~pn−1.
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iv. βn = (~rTn~rn)/(~rTn−1~rn−1)

v. ~pn = ~rn + βn~pn−1.

end.

Proof for ~rTn~rj = 0 for j < n.

By induction on n,
~rTn~rj = ~rTn−1~rj − αn~pTn−1A~rj.

If j < n− 1, it is true by induction,

If j = n− 1,
~rTn~rn−1 = 0 ⇔ αn = (~rTn~rn−1)/~pTnA~rn−1.

�
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