Numerical Analysis Comprehensive Exam Questions

1. Let f(z) = (z — a)™g(x) where m > 2 is an integer and g(z) € C*(R), g(a) # 0.
Write down the Newton’s method for finding the root « of f(z), and study the order
of convergence for the method. Can you propose a method that converges faster?

Solution: Newton’s method is

f(xn) L

n

h(xy)

For the fixed-point iteration x,1; = h(x,), we can investigate h'(«).

If 0 < |W(«)| < 1, the iteration converges linearly with the rate of conv. tending
to |W/(a)|; if A/ (a) = 0, then if converges at least quadratically.

In fact,
/ f f” —1
B (z) = [(;’)(x)](f)_)mm , as T — a.
.'.0<m_1<1 if m>2.

m
The Newton’s method only converges linearly if z, is chosen close enough to a.

To improve the order of convergence, once could use

f(xn) L

Tt = T )

H(z,).

It’s easy to show that H'(z) — 0 as x — «. Therefore, the new method converges
at least quadratically.

2. Let g, x1,...,2, be distinct real numbers and [;(z) be the Lagrange’s basis function.
Let U,,(z) = II}_,(z — ). Prove that

(1) For any polynomial p(z) of degree n + 1,

n

p(x) = > plep)l(z) =

k=0

mp(nH) ()W, ().

(2) If further z, ..., z, are Gauss-Legendre points in the interval [—1, 1], then

/1 Li(x)lj(x)dr =0 for i#j.
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Solution: (1) Note that p(z) — > 7 _, p(xk)lk(x) has zeros at © = x, ..., Ty,
therefore, p(z) — > ;_,p(zk)lk(xz) = C¥,(x) for some constant C'.
Since Y p_o p(@k)lk(z) is of degree n and p(x) is of degree n + 1,

C must be the highest degree coeff. of p(z), thus C' = (n}rl)!p(”“)(x). O

(2) Since zy, . .., z, are Gauss-Legendre points,

[ ptadde =3 wiptn)

for any polynomial p of degree < 2n + 1. Therefore,

1

/ @ @)de =3 wdw)l () =0, i 4. O
- k=0

3. For the initial value problem /(¢) = f(t,y), y(0) = yo, t > 0, consider the #-method

Yn+1 = Yn + h[ef(tmyn) + (1 - e)f(tn—&-lvyn—i-l)]?

where time has been discretized such that ¢, = nh, and y, is the numerical approxi-
mation of y(t,).

(a) Is this method consistent? What is the order? Is this method zero-stable? How
does the result differ for different 67

(b) What is the region of absolute stability? What is the region when 6 = 0, %, or 1?7
For what 6 values is this method A—stable?

(¢) Does this method have stiff decay? Show why or why not.

Solution: (a) Consider the local truncation error around t,,

y+hy Ly + o —y—h(0y + (1= 0)(y + by + By + )
Sy - (1) + (-4 hop 4 -

The local truncation error is at least 2nd order, i.e. globally at least first order
method, so this method is consistent. The order of the method becomes 2nd order
if 0 = %, otherwise, it is a first order method. The first characteristic polynomial
is p(z) =z — 1, i.e. z =1, so this method is zero-stable for any 6. O]

(b) Consider y' = Ay, then y,11 =y, + h[0Ay, + (1 — ) Aypni1],

1+ hoA 1+ hoA
U |R(hO)] := 'm

Yni1 = m ‘ <1 gives the stability region.
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When 6 = 0, the region is outside of the unit circle centered at z = 1 in the complex
plane, when 0 = %, the negative half plane of the complex plane, and when 6 = 1,
inside of the unit circle centered at z = —1 in the complex plane. Therefore, this
method is A-stable for 0 < 4§ < 1 3, since the stability region includes the negative
half plane. [J

(c) To have stiff decay, one must show limpg_, o, R(h0) — 0

, 14 hoA 6
h611>n—loo R(h6) = 1l> ol —h(1-0A 1-0

i.e. goes to 0 only when # = 0. Only when # = 0 (which is the backward Euler
method), this method has stiff decay. O

4. Consider the initial boundary values problem

w(0,8) = g1ty (1, 1) = 0a(8)s 1
u(z,0) = f(2). ;

Let (z;,t,) be a grid point in a uniform rectangular grid, s.t. z; = iAx,t, = nAt
forv =0,1,...,] and n = 0,1,..., N where J[Az = 1 and NAt = T, and let U}
be a numerical approximation of u(z;,t,). Assuming the exact solution is sufficiently
smooth, show that the scheme

Ut U UL - 20t 4 U
At - Ax?

is unconditionally stable and |U" — u(z;,t,)| = O(At + Ax?) as At, Az — 0.

Solution: Given some perturbation of f(x), g1(t), and go(t), the difference between
the perturbed Solution and U]*, say p} will also satisfy

ZLJrl _ 101 p?—ill 2pn+1 + pn+1
At Ax?
Let A = 25, then pf*' = 1+2/\pff11 + mpl + 1+2Ap§‘+1 Therefore, p* is a strict

convex combination of p;" +1 ,p and p1}' and satisfy the maximum principle, which
proves the stability.

Note that the exact Solution u satisfies

n+1 n n+1 n+1 n+1
Uy — U Uiy — 2wy Uy 2
L = + O(At + Az*).
Al Az ( )

Page 3



et + el + O(A + AtAz?).

n_,n__Jin n+l _ A n+1

1+2)\

et < ﬁlle”“llm + lmllenlloo + 1+2A||e”“||oo + O(AL + AtAz?)
Lle e < 1+2AA”en+1Hfo + 1+2,\H€nHOO + 1+2AH€":HOO + O(At? + AtAx?)
- 1+2)\Hen+ HOO = 1+2)\H€nHoo + C(At +AtAZ‘ )

This implies

e loo < [1€%00 + C(nAL? + nAtAZ?) < C(At + Az?)

since ||€°(|oc — 0. O

5. Consider the boundary-value problem
—Uze +u = f(z), x€(0,1)
u(0) =a
uz (1) =b

Given a partition 0 = g < 1 < --- < x, = 1, please formulate a piecewise linear
continuous finite element method to solve the problem. Show that your method has a

unique solution.

Solution:

Let ¢;(x), i =0,...,n be continuous piecewise linear functions defined on [0, 1] s.t.
¢i(x;) =5 for j =0,...,n. Let

Vi, = span{¢;(x) : i = 1,2,...,n} and W), = a¢g + V.
For any ¢ € V,,,
1 1 1 1
/ (—Ugy + u)pdx = —(u$q5)|(1)—|—/ uxgbxdx%—/ updz :/ fodx
0 0 0 0

here —(ug¢)]o = —uz(1)(1) = —bd(1).
The FEM is to find U € W}, s.t.

/01 Updoda + /01 Uddr = /01 fodx + bo(1),

for any ¢ € V.

This system has a unique solution if and only if the associated homogeneous system

1 1
/ Uy prdx +/ Updr =0
0 0
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has a unique 0 Solution, assuming a,b = 0.

In fact, let ¢ = U,then

1 1
/\@Rm+/ﬂU&mzo — U=0 0O
0 0

6. Consider the following matrix A and solving the linear system Ax = b by iterative
methods,

1 a f
A=| —a 1 —v
gy 1

(a) What are the conditions on the variables «, 3, and ~ for Jacobi’s method and
Gauss-Seidel method to converge?

(b) Describe the Jacobi’s method and Gauss-Seidel method.

(c) Find a set of values (if any exist) of «, 3, and ~ for which the Jacobi method
converges but Gauss-Seidel does not, and vice versa.

Solution: (a) The matrix A should be strictly diagonally dominant:

laf + 8] < Lol +[y] <1, and B+ 7] < 1. O

(b) A= D — L—U, where D is the diagonal matrix, L lower triangular matrix and
U upper triangular matrix.

S

(D-L-U)Z=b
DZ=(L+U)Z+b
Tpyr = D HL+U)Z, + D7

This is Jacobi iteration, and for Gauss-Seidel,

(D—L)Z=UZ+b
Tp1 = (D — L)y 'UE, + (D — L)%

Algorithm: With any initial condition Z,, iterate Zy1 = D~Y(L + U)Z, + D~'b
(Jacobi) or Z,11 = (D — L)'UZ, + (D — L)~'b (Gauss-Seidel) until it converges.
0

(c) (Outline of solution) The standard convergence condition is when the spectral
radius of the iteration matrix is less than 1. Compute the eigenvalues of D' (L+U),
let’s call them Ays, and the eigenvalues of (D — L)7'U to be Ags, then find the
condition on «, 3, and  which corresponds to |A;| < 1 and |[Ag| > 1 and vice versa.

O
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7. Describe an algorithm to compute least squares solution by singular value decomposi-
tion. Prove the solution obtained is the least squares solution and estimate the leading
computation cost for your algorithm. Assume the least squares system is

AZ=b, A€ R™" beR™, and ¥ € R".

Solution: Algorithm:

a) Compute the reduced SVD: A = UX V™.

(a)
(b) Compute the vector § = U*b.

(c) Solve the diagonal system Y = /.
(d) Set & = V.

Proof: Least squares solution

A*AZ = A*b
& VS U USVAE = VU

& YXRVEE=XU%b

Leading cost: dominated by SVD ~ 2mn? + 11n? flops. [

8. Describe the Conjugate Gradient Iteration method for solving a linear system
AZ = b.

Prove that the residuals are orthogonal.

Solution: Algorithm:

—

(a) o =0,0="0,p, =7,
(b) forn=1,2,3,...

i o = (M_17n-1)/ (Prn1 APn-1)
11 Tp — Tp-1 + anﬁn—l-

iii. 7, =71 — @ Aph_1.
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. B, = (ﬁfn)/(ﬁ—lfn—l)
V. ﬁn - Fn + 671]771—1-

end.

Proof for 71'7; = 0 for j < n.

By induction on n,

If 7 <n—1, it is true by induction,

Ifj=n-1,
T

O
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