
Probability Comprehensive Exam Questions

1. Assume that (Ω,F ,P) is a probability space and G1,G2,G3 are subfields of F such that
G1∨G2 is independent from G3. Assume that X is a G1-measurable and integrable random
variable. Show that E[X|G2 ∨ G3] = E[X|G2]. Here G1 ∨ G2 is the smallest sigma algebra
containing both G1 and G2.

Solution: From the definition of conditional expectation, for some G-measurable r.v.
Y we have

E[X1A] = E[Y 1A] ∀A ∈ G

then Y = E[X|G].

Let Y = E[X|G2]. To prove the claim we need to show

E[X1A] = E[Y 1A] ∀A ∈ G2 ∨ G3.

Define Λ = {A ∈ G2 ∨ G3 : E[X1A] = E[Y 1A]}. From this definition it follows that Λ
is a λ-system (this follows from linearity of expectation). Now consider the set Π =
{G ∩ H : G ∈ G2, H ∈ G3}. Clearly Π ⊂ Λ and σ(Π) = G2 ∨ G3. Then by the π − λ
theorem, to prove the claim it is sufficient to show that E[X1A] = E[Y 1A] ∀A ∈ Π.

Clearly for any G ∈ G2, H ∈ G3 we have 1H is independent of X1G and Y 1G therefore

E[X1A] = E[X1G∩H ] = E[X1G1H ] = E[X1G]E[1H ]

and
E[Y 1A] = E[Y 1G∩H ] = E[Y 1G1H ] = E[Y 1G]E[1H ]

Also, E[X1G] = E[Y 1G], because Y = E[X|G2] and G ∈ G2. therefore

E[X1A] = E[Y 1A]

Since this holds for an arbitraryA ∈ Π, it holds for all Π, and we are done. We conclude

E[X|G2 ∨ G3] = Y = E[X|G2].

2. Assume (Ω,F ,P) is a probability space, (Fn)n≥0 is a filtration, and (An)n≥0 is a non-
decreasing sequence of random variables such that

a) A0 = 0

b) An is Fn measurable

c) E[A2
n] is finite.

Also assume that (Bn)n≥0 is a sequence random variables such that

i) 0 < E[B2
n] <∞ and E[Bn] = 0 for any n ≥ 0



ii) Bn is Fn measurable
iii) Bn is independent of Fn−1 for each n ≥ 1.

(a) Show that if (Mn)n≥0 is a square integrable martingale such that M0 = 0 and (M2
n +

An)n≥0 is a supermartingale, then Mn = An = 0 almost surely for any n ≥ 0.
(b) If An is Fn−1 measurable for each n ≥ 1, find a martingale (Mn)n≥0 such that (M2

n −
An)n≥0 is a martingale.

Solution:

(a) Since (Mn)n≥0 is a martingale, we know have

E[M2
n+1|Fn] = E[(Mn+1 −Mn)2|Fn] + 2MnE[(Mn+1 −Mn)|Fn] + E[M2

n|Fn]

= M2
n + E[(Mn+1 −Mn)2|Fn]

Since, M2
n + an is a supermartingale, we get that

E[M2
n+1 + An+1|Fn] ≤M2

n + An

and thus combining this with the above we obtain that

E[An+1 − An|Fn] + E[(Mn+1 −Mn)2|Fn] ≤ 0.

Integrating this yields that

E[An+1 − An] + E[(Mn+1 −Mn)2] ≤ 0.

Since An+1 ≥ An we conclude that almost surely, Mn+1 = Mn and An+1 = An.
Induction finishes the proof.

(b) For the second part, we can construct the martingale in the following form:

Mn =
n∑
k=1

BkCk

where Ck we choose to be Fk−1 measurable. The martingale condition is then
automatically satisfied because Bk is independent of Fk−1 and has mean 0. In
order to satisfy the second property, notice that

E[M2
n − An|Fn−1] = M2

n−1 − An + E[(Mn −Mn−1)
2|Fn−1] = M2

n−1 − An + E[B2
nC

2
n|Fn−1]

= M2
n−1 − An + C2

nE[B2
n].

Thus, if we want this to be equal toM2
n−1−An−1, then we need to choose Cn such

that
C2
nE[B2

n] = An − An−1
which is possible with

Cn =

√
An − An−1

E[B2
n]

.
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3. Assume that X(t) is a simple Poisson process. Find the joint distribution of (X(t1), X(t2))
and then the conditional expectation E[X(t1)|X(t2)].

Solution: We have to distinguish two cases, one is t1 ≥ t2 and t2 > t1.

In the case t1 ≥ t2, it si easy to see from independence of increments that

E[X(t1)|Xt2 ] = E[Xt1 −Xt2|Xt2 ] +Xt2 = Xt2 + (t1 − t2).

For the case of t1 < t2 we need the joint distribution, which we can find using the fact
that

P(X(t2) = k + n,X(t1) = n) =
e−(t2−t1)((t2 − t1))k

k!

e−t1(t1)
n

n!
k, n ∈ N

Therefore the conditional distribution of (X(t1)|X(t2)) is

P(X(t1) = n|X(t2) = k + n) =
e−(t2−t1)((t2−t1))k

k!
e−t1 (t1)n

n!

e−t2 (t2)(k+n)

(k+n)!

k, n ∈ N

=

(
k + n

n

)(
t1
t2

)n(
1− t1

t2

)k
k, n ∈ N

So the distribution of X(t1) conditioned on X(t2) is a Binomial distribution with pa-
rameters (X(t2),

t1
t2

), which then implies

E[X(t1)|X(t2)] =
t1
t2
X(t2).

4. (a) LetX be a real-valued r.v. on a probability space Ω,F ,P with density f(x) = 1
3
1I[0,3](x).

Find the correct assertions.

i. P(X ∈ (0, 3)) = 1.
ii. For all ω ∈ Ω, X(ω) ∈ (0, 3).

iii. For all ω ∈ Ω, X(ω) ∈ [0, 3].

(b) Let (Xn)n be a sequence of real-valued random variables. Find and justify the correct
assertions.

i. {supn≥1Xn <∞} is an asymptotic event.
ii. {supn≥1Xn < c} for some c ∈ R is an asymptotic event.

Solution: (a) P(X ∈ (0, 3)) = 1; (b) {supn≥1Xn <∞} is an asymptotic event.

5. Let X be a r.v. with Cauchy distribution C(1) (that means with density f(x) = 1
π(1+x2)

w.r.t.
the Lebesgue measure on R).
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a) Determine the density of Z = X−1.

b) Determine the density f of log |X|.

Solution: (a) Z also follows Cauchy distribution C(1). (b) Z = log|X| admits p.d.f.
f(z) = 1

πcosh(z)
.

6. Let (Xn)n be a sequence of real-valued random variables with respective densities fn(x) =
n2

2
e−n

2|x|.

(a) Compute for all n ∈ N∗ P(|Xn| > n−3/2)

(b) Compute P(lim sup{|Xn| > n−3/2})
(c) What is the probability that

∑
nXn converges absolutely?

Solution: (a) We have P
(
{|Xn| > n−3/2}

)
=
∫
|x|>n−3/2 fn(x)dx = e−

√
n. (b) Since∑

n≥1

e−
√
n < +∞,

Borel-Cantelli’s Lemma gives P
(
limsup{|Xn| > n−3/2}

)
= 0. (c) Set A = limsup{|Xn| >

n−3/2}. Thus, we have Ac = liminf{|Xn| ≤ n−3/2}. For any w ∈ Ac, there exists
an integer nw such that, for all n ≥ nw, w ∈ {|Xn| ≤ n−3/2}. Therefore the series∑

n≥1Xn(w) converges absolutely for any w ∈ Ac and Ac is of probability 1.

7. Let (Xn)n be a sequence of independent and identically distributed real-valued random
variables. Show that Xn

n
converges almost surely to 0 if and only if X1 is integrable.

Solution: Recall that Xn/n converges a.s. to 0 if and only if for any ε > 0, we have
P (limsup{|Xn|/n > ε}) = 0. Since the Xn are independent, this is equivalent to∑

n≥1

P (|Xn|/n > ε) <∞

for any ε > 0. Next, since the Xn are identically distributed, we have P (|Xn|/n > ε) =
P (|X1|/n > ε) for any n ≥ 1 and ε > 0. The previous condition is equivalent to∑

n≥1 P (|X1|/n > ε) < ∞ for any ε > 0, which is equivalent in turn to E[|X1|/ε] < ∞
for any ε > 0 since E[|X1|/ε] =

∫∞
0

P (|X1|/ε > t) dt.

8. Let (Xn)n≥1 be a sequence of i.i.d random variables with standard Gaussian distribution
N(0, 1). We recall that E[eX1 ] = e

1
2 . For all n ≥ 1, set Sn =

∑n
i=1Xi and Mn = eSn−n

2 .
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(a) Justify the a.s. convergence of Sn

n
and determine the limit.

(b) Show that Mn → 0 a.s. as n→ +∞.

(c) For any n ≥ 1, compute E[Mn].

(d) Do we have Mn → 0 in L1? Justify your answer.

(e) Let (an)n≥1 be a sequence of real numbers such that
∑

n a
2
n <∞. Show that

∑
n≥1 anXn

converges to a random variable a.s. and in L2.

Solution: (a) (Xn)n is an i.i.d. sequence of integrable random variables. Thus the
strong law of large numbers gives Sn

n
→ E[X1] = 0 a.s. (b) This is a straightforward

consequence of (a) sinceMn = en(
Sn
n
−1/2). (c) Since the sequence (Xn)n is i.i.d., we have

E[Mn] =
(
E[eX1 ]

)n
e−

n
2 = 1. (d) We proceed by contradiction. Assume that Mn con-

verges in L1 to a random variableM . On the one hand, this implies that E[Mn]→ E[M ]
as n→∞. In view of (c), we then have E[M ] = 1. On the other hand, there exists a sub-
sequence of Mn that converges almost surely to M . Since Mn converges almost surely
to 0, this implies thatM = 0 a.s. This contradicts that E[M ] = 1. ThereforeMn does not
converge in L1 (e) We have for any integer N ≥ 1 that

∑N
n=1 anXn ∼ N(0,

∑N
k=1 a

2
n). By

assumption the series
∑

n a
2
n converges to σ2 =

∑
n≥1 a

2
n. Thus,

∑N
n=1 anXn converges

in distribution to a random variable Z ∼ N(0, σ2). Levy’s theorem guarantees that∑N
n=1 anXn also converges to Z a.s. and in L2.
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