1. Assume that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}$ are subfields of \mathcal{F} such that $\mathcal{G}_{1} \vee \mathcal{G}_{2}$ is independent from \mathcal{G}_{3}. Assume that X is a \mathcal{G}_{1}-measurable and integrable random variable. Show that $\mathbb{E}\left[X \mid \mathcal{G}_{2} \vee \mathcal{G}_{3}\right]=\mathbb{E}\left[X \mid \mathcal{G}_{2}\right]$. Here $\mathcal{G}_{1} \vee \mathcal{G}_{2}$ is the smallest sigma algebra containing both \mathcal{G}_{1} and \mathcal{G}_{2}.

Solution: From the definition of conditional expectation, for some \mathcal{G}-measurable r.v. Y we have

$$
\mathbb{E}\left[X \mathbf{1}_{A}\right]=\mathbb{E}\left[Y \mathbf{1}_{A}\right] \forall A \in \mathcal{G}
$$

then $Y=E[X \mid \mathcal{G}]$.
Let $Y=\mathbb{E}\left[X \mid \mathcal{G}_{2}\right]$. To prove the claim we need to show

$$
\mathbb{E}\left[X \mathbf{1}_{A}\right]=\mathbb{E}\left[Y \mathbf{1}_{A}\right] \quad \forall A \in \mathcal{G}_{2} \vee \mathcal{G}_{3} .
$$

Define $\Lambda=\left\{A \in \mathcal{G}_{2} \vee \mathcal{G}_{3}: \mathbb{E}\left[X 1_{A}\right]=\mathbb{E}\left[Y 1_{A}\right]\right\}$. From this definition it follows that Λ is a λ-system (this follows from linearity of expectation). Now consider the set $\Pi=$ $\left\{G \cap H: G \in \mathcal{G}_{2}, H \in \mathcal{G}_{3}\right\}$. Clearly $\Pi \subset \Lambda$ and $\sigma(\Pi)=\mathcal{G}_{2} \vee \mathcal{G}_{3}$. Then by the $\pi-\lambda$ theorem, to prove the claim it is sufficient to show that $\mathbb{E}\left[X \mathbf{1}_{A}\right]=\mathbb{E}\left[Y \mathbf{1}_{A}\right] \forall A \in \Pi$.
Clearly for any $G \in \mathcal{G}_{2}, H \in \mathcal{G}_{3}$ we have $\mathbf{1}_{H}$ is independent of $X \mathbf{1}_{G}$ and $Y \mathbf{1}_{G}$ therefore

$$
\mathbb{E}\left[X \mathbf{1}_{A}\right]=\mathbb{E}\left[X \mathbf{1}_{G \cap H}\right]=\mathbb{E}\left[X \mathbf{1}_{G} \mathbf{1}_{H}\right]=\mathbb{E}\left[X \mathbf{1}_{G}\right] \mathbb{E}\left[\mathbf{1}_{H}\right]
$$

and

$$
\mathbb{E}\left[Y \mathbf{1}_{A}\right]=\mathbb{E}\left[Y \mathbf{1}_{G \cap H}\right]=\mathbb{E}\left[Y \mathbf{1}_{G} \mathbf{1}_{H}\right]=\mathbb{E}\left[Y \mathbf{1}_{G}\right] \mathbb{E}\left[\mathbf{1}_{H}\right]
$$

Also, $\mathbb{E}\left[X \mathbf{1}_{G}\right]=\mathbb{E}\left[Y \mathbf{1}_{G}\right]$, because $Y=\mathbb{E}\left[X \mid \mathcal{G}_{2}\right]$ and $G \in \mathcal{G}_{2}$. therefore

$$
\mathbb{E}\left[X \mathbf{1}_{A}\right]=\mathbb{E}\left[Y \mathbf{1}_{A}\right]
$$

Since this holds for an arbitrary $A \in \Pi$, it holds for all Π, and we are done. We conclude

$$
\mathbb{E}\left[X \mid \mathcal{G}_{2} \vee \mathcal{G}_{3}\right]=Y=\mathbb{E}\left[X \mid \mathcal{G}_{2}\right]
$$

2. Assume $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space, $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ is a filtration, and $\left(A_{n}\right)_{n \geq 0}$ is a nondecreasing sequence of random variables such that
a) $A_{0}=0$
b) A_{n} is \mathcal{F}_{n} measurable
c) $\mathbb{E}\left[A_{n}^{2}\right]$ is finite.

Also assume that $\left(B_{n}\right)_{n \geq 0}$ is a sequence random variables such that
i) $0<\mathbb{E}\left[B_{n}^{2}\right]<\infty$ and $\mathbb{E}\left[B_{n}\right]=0$ for any $n \geq 0$
ii) B_{n} is \mathcal{F}_{n} measurable
iii) B_{n} is independent of \mathcal{F}_{n-1} for each $n \geq 1$.
(a) Show that if $\left(M_{n}\right)_{n \geq 0}$ is a square integrable martingale such that $M_{0}=0$ and ($M_{n}^{2}+$ $\left.A_{n}\right)_{n \geq 0}$ is a supermartingale, then $M_{n}=A_{n}=0$ almost surely for any $n \geq 0$.
(b) If A_{n} is \mathcal{F}_{n-1} measurable for each $n \geq 1$, find a martingale $\left(M_{n}\right)_{n \geq 0}$ such that ($M_{n}^{2}-$ $\left.A_{n}\right)_{n \geq 0}$ is a martingale.

Solution:

(a) Since $\left(M_{n}\right)_{n \geq 0}$ is a martingale, we know have

$$
\begin{aligned}
\mathbb{E}\left[M_{n+1}^{2} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[\left(M_{n+1}-M_{n}\right)^{2} \mid \mathcal{F}_{n}\right]+2 M_{n} \mathbb{E}\left[\left(M_{n+1}-M_{n}\right) \mid \mathcal{F}_{n}\right]+\mathbb{E}\left[M_{n}^{2} \mid \mathcal{F}_{n}\right] \\
& =M_{n}^{2}+\mathbb{E}\left[\left(M_{n+1}-M_{n}\right)^{2} \mid \mathcal{F}_{n}\right]
\end{aligned}
$$

Since, $M_{n}^{2}+a_{n}$ is a supermartingale, we get that

$$
\mathbb{E}\left[M_{n+1}^{2}+A_{n+1} \mid \mathcal{F}_{n}\right] \leq M_{n}^{2}+A_{n}
$$

and thus combining this with the above we obtain that

$$
\mathbb{E}\left[A_{n+1}-A_{n} \mid \mathcal{F}_{n}\right]+\mathbb{E}\left[\left(M_{n+1}-M_{n}\right)^{2} \mid \mathcal{F}_{n}\right] \leq 0
$$

Integrating this yields that

$$
\mathbb{E}\left[A_{n+1}-A_{n}\right]+\mathbb{E}\left[\left(M_{n+1}-M_{n}\right)^{2}\right] \leq 0
$$

Since $A_{n+1} \geq A_{n}$ we conclude that almost surely, $M_{n+1}=M_{n}$ and $A_{n+1}=A_{n}$. Induction finishes the proof.
(b) For the second part, we can construct the martingale in the following form:

$$
M_{n}=\sum_{k=1}^{n} B_{k} C_{k}
$$

where C_{k} we choose to be \mathcal{F}_{k-1} measurable. The martingale condition is then automatically satisfied because B_{k} is independent of \mathcal{F}_{k-1} and has mean 0 . In order to satisfy the second property, notice that

$$
\begin{aligned}
\mathbb{E}\left[M_{n}^{2}-A_{n} \mid \mathcal{F}_{n-1}\right] & =M_{n-1}^{2}-A_{n}+\mathbb{E}\left[\left(M_{n}-M_{n-1}\right)^{2} \mid \mathcal{F}_{n-1}\right]=M_{n-1}^{2}-A_{n}+\mathbb{E}\left[B_{n}^{2} C_{n}^{2} \mid \mathcal{F}_{n-1}\right] \\
& =M_{n-1}^{2}-A_{n}+C_{n}^{2} \mathbb{E}\left[B_{n}^{2}\right] .
\end{aligned}
$$

Thus, if we want this to be equal to $M_{n-1}^{2}-A_{n-1}$, then we need to choose C_{n} such that

$$
C_{n}^{2} \mathbb{E}\left[B_{n}^{2}\right]=A_{n}-A_{n-1}
$$

which is possible with

$$
C_{n}=\sqrt{\frac{A_{n}-A_{n-1}}{\mathbb{E}\left[B_{n}^{2}\right]}}
$$

3. Assume that $X(t)$ is a simple Poisson process. Find the joint distribution of $\left(X\left(t_{1}\right), X\left(t_{2}\right)\right)$ and then the conditional expectation $\mathbb{E}\left[X\left(t_{1}\right) \mid X\left(t_{2}\right)\right]$.

Solution: We have to distinguish two cases, one is $t_{1} \geq t_{2}$ and $t_{2}>t_{1}$.
In the case $t_{1} \geq t_{2}$, it si easy to see from independence of increments that

$$
\mathbb{E}\left[X\left(t_{1}\right) \mid X_{t_{2}}\right]=\mathbb{E}\left[X_{t_{1}}-X_{t_{2}} \mid X_{t_{2}}\right]+X_{t_{2}}=X_{t_{2}}+\left(t_{1}-t_{2}\right)
$$

For the case of $t_{1}<t_{2}$ we need the joint distribution, which we can find using the fact that

$$
\mathbb{P}\left(X\left(t_{2}\right)=k+n, X\left(t_{1}\right)=n\right)=\frac{e^{-\left(t_{2}-t_{1}\right)}\left(\left(t_{2}-t_{1}\right)\right)^{k}}{k!} \frac{e^{-t_{1}}\left(t_{1}\right)^{n}}{n!} k, n \in \mathcal{N}
$$

Therefore the conditional distribution of $\left(X\left(t_{1}\right) \mid X\left(t_{2}\right)\right)$ is

$$
\begin{aligned}
\mathbb{P}\left(X\left(t_{1}\right)=n \mid X\left(t_{2}\right)=k+n\right) & =\frac{\frac{e^{-\left(t_{2}-t_{1}\right)}\left(\left(t_{2}-t_{1}\right)\right)^{k}}{k!} \frac{e^{-t_{1}\left(t_{1}\right)^{n}}}{n!}}{\frac{e^{\left.-t_{2}\left(t_{2}\right)\right)^{(k+n)}}}{(k+n)!}} k, n \in \mathcal{N} \\
& =\binom{k+n}{n}\left(\frac{t_{1}}{t_{2}}\right)^{n}\left(1-\frac{t_{1}}{t_{2}}\right)^{k} \quad k, n \in \mathcal{N}
\end{aligned}
$$

So the distribution of $X\left(t_{1}\right)$ conditioned on $X\left(t_{2}\right)$ is a Binomial distribution with parameters $\left(X\left(t_{2}\right), \frac{t_{1}}{t_{2}}\right)$, which then implies

$$
\mathbb{E}\left[X\left(t_{1}\right) \mid X\left(t_{2}\right)\right]=\frac{t_{1}}{t_{2}} X\left(t_{2}\right)
$$

4. (a) Let X be a real-valued r.v. on a probability space $\Omega, \mathcal{F}, \mathbb{P}$ with density $f(x)=\frac{1}{3} \mathbb{I}_{[0,3]}(x)$. Find the correct assertions.
i. $\mathbb{P}(X \in(0,3))=1$.
ii. For all $\omega \in \Omega, X(\omega) \in(0,3)$.
iii. For all $\omega \in \Omega, X(\omega) \in[0,3]$.
(b) Let $\left(X_{n}\right)_{n}$ be a sequence of real-valued random variables. Find and justify the correct assertions.
i. $\left\{\sup _{n \geq 1} X_{n}<\infty\right\}$ is an asymptotic event.
ii. $\left\{\sup _{n \geq 1} X_{n}<c\right\}$ for some $c \in \mathbb{R}$ is an asymptotic event.

Solution: (a) $\mathbb{P}(X \in(0,3))=1$; (b) $\left\{\sup _{n \geq 1} X_{n}<\infty\right\}$ is an asymptotic event.
5. Let X be a r.v. with Cauchy distribution $\mathcal{C}(1)$ (that means with density $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ w.r.t. the Lebesgue measure on \mathbb{R}).
a) Determine the density of $Z=X^{-1}$.
b) Determine the density f of $\log |X|$.

Solution: (a) Z also follows Cauchy distribution $\mathcal{C}(1)$. (b) $Z=\log |X|$ admits p.d.f. $f(z)=\frac{1}{\pi \cosh (z)}$.
6. Let $\left(X_{n}\right)_{n}$ be a sequence of real-valued random variables with respective densities $f_{n}(x)=$ $\frac{n^{2}}{2} e^{-n^{2}|x|}$.
(a) Compute for all $n \in \mathbb{N}^{*} \mathbb{P}\left(\left|X_{n}\right|>n^{-3 / 2}\right)$
(b) Compute $\mathbb{P}\left(\lim \sup \left\{\left|X_{n}\right|>n^{-3 / 2}\right\}\right)$
(c) What is the probability that $\sum_{n} X_{n}$ converges absolutely?

Solution: (a) We have $\mathbb{P}\left(\left\{\left|X_{n}\right|>n^{-3 / 2}\right\}\right)=\int_{|x|>n^{-3 / 2}} f_{n}(x) d x=e^{-\sqrt{n}}$. (b) Since

$$
\sum_{n \geq 1} e^{-\sqrt{n}}<+\infty
$$

Borel-Cantelli's Lemma gives $\mathbb{P}\left(\limsup \left\{\left|X_{n}\right|>n^{-3 / 2}\right\}\right)=0$. (c) Set $A=\limsup \left\{\left|X_{n}\right|>\right.$ $\left.n^{-3 / 2}\right\}$. Thus, we have $A^{c}=\liminf \left\{\left|X_{n}\right| \leq n^{-3 / 2}\right\}$. For any $w \in A^{c}$, there exists an integer n_{w} such that, for all $n \geq n_{w}, w \in\left\{\left|X_{n}\right| \leq n^{-3 / 2}\right\}$. Therefore the series $\sum_{n \geq 1} X_{n}(w)$ converges absolutely for any $w \in A^{c}$ and A^{c} is of probability 1.
7. Let $\left(X_{n}\right)_{n}$ be a sequence of independent and identically distributed real-valued random variables. Show that $\frac{X_{n}}{n}$ converges almost surely to 0 if and only if X_{1} is integrable.

Solution: Recall that X_{n} / n converges a.s. to 0 if and only if for any $\epsilon>0$, we have $\mathbb{P}\left(\limsup \left\{\left|X_{n}\right| / n>\epsilon\right\}\right)=0$. Since the X_{n} are independent, this is equivalent to

$$
\sum_{n \geq 1} \mathbb{P}\left(\left|X_{n}\right| / n>\epsilon\right)<\infty
$$

for any $\epsilon>0$. Next, since the X_{n} are identically distributed, we have $\mathbb{P}\left(\left|X_{n}\right| / n>\epsilon\right)=$ $\mathbb{P}\left(\left|X_{1}\right| / n>\epsilon\right)$ for any $n \geq 1$ and $\epsilon>0$. The previous condition is equivalent to $\sum_{n \geq 1} \mathbb{P}\left(\left|X_{1}\right| / n>\epsilon\right)<\infty$ for any $\epsilon>0$, which is equivalent in turn to $\mathbb{E}\left[\left|X_{1}\right| / \epsilon\right]<\infty$ for any $\epsilon>0$ since $\mathbb{E}\left[\left|X_{1}\right| / \epsilon\right]=\int_{0}^{\infty} \mathbb{P}\left(\left|X_{1}\right| / \epsilon>t\right) d t$.
8. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d random variables with standard Gaussian distribution $N(0,1)$. We recall that $\mathbb{E}\left[e^{X_{1}}\right]=e^{\frac{1}{2}}$. For all $n \geq 1$, set $S_{n}=\sum_{i=1}^{n} X_{i}$ and $M_{n}=e^{S_{n}-\frac{n}{2}}$.
(a) Justify the a.s. convergence of $\frac{S_{n}}{n}$ and determine the limit.
(b) Show that $M_{n} \rightarrow 0$ a.s. as $n \rightarrow+\infty$.
(c) For any $n \geq 1$, compute $\mathbb{E}\left[M_{n}\right]$.
(d) Do we have $M_{n} \rightarrow 0$ in L_{1} ? Justify your answer.
(e) Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of real numbers such that $\sum_{n} a_{n}^{2}<\infty$. Show that $\sum_{n \geq 1} a_{n} X_{n}$ converges to a random variable a.s. and in L^{2}.

Solution: (a) $\left(X_{n}\right)_{n}$ is an i.i.d. sequence of integrable random variables. Thus the strong law of large numbers gives $\frac{S_{n}}{n} \rightarrow \mathbb{E}\left[X_{1}\right]=0$ a.s. (b) This is a straightforward consequence of (a) since $M_{n}=e^{n\left(\frac{S_{n}}{n}-1 / 2\right)}$. (c) Since the sequence $\left(X_{n}\right)_{n}$ is i.i.d., we have $\mathbb{E}\left[M_{n}\right]=\left(\mathbb{E}\left[e^{X_{1}}\right]\right)^{n} e^{-\frac{n}{2}}=1$. (d) We proceed by contradiction. Assume that M_{n} converges in L_{1} to a random variable M. On the one hand, this implies that $\mathbb{E}\left[M_{n}\right] \rightarrow \mathbb{E}[M]$ as $n \rightarrow \infty$. In view of (c), we then have $\mathbb{E}[M]=1$. On the other hand, there exists a subsequence of M_{n} that converges almost surely to M. Since M_{n} converges almost surely to 0 , this implies that $M=0$ a.s. This contradicts that $\mathbb{E}[M]=1$. Therefore M_{n} does not converge in L_{1} (e) We have for any integer $N \geq 1$ that $\sum_{n=1}^{N} a_{n} X_{n} \sim N\left(0, \sum_{k=1}^{N} a_{n}^{2}\right)$. By assumption the series $\sum_{n} a_{n}^{2}$ converges to $\sigma^{2}=\sum_{n \geq 1} a_{n}^{2}$. Thus, $\sum_{n=1}^{N} a_{n} X_{n}$ converges in distribution to a random variable $Z \sim N\left(0, \sigma^{2}\right)$. Levy's theorem guarantees that $\sum_{n=1}^{N} a_{n} X_{n}$ also converges to Z a.s. and in L^{2}.

