Probability Comprehensive Exam Questions

1. Assume that (2, F,P) is a probability space and G, G,, G5 are subfields of F such that
G1V Gy is independent from Gs. Assume that X is a G;-measurable and integrable random
variable. Show that E[X |G, V G;] = E[X|G,]. Here G; V G, is the smallest sigma algebra
containing both G, and G.

Solution: From the definition of conditional expectation, for some G-measurable r.v.
Y we have

then Y = F[X|G].
Let Y = E[X|G,]. To prove the claim we need to show

]E[X].A] = E[Y]_A] VA € Gy V Gs.

Define A = {A € Gy V G5 : E[X1,4] = E[Y14]}. From this definition it follows that A
is a A-system (this follows from linearity of expectation). Now consider the set I =
{GNH :G € Gy,H € G3}. Clearly II C A and o(Il) = G, V G3. Then by the 7 — A
theorem, to prove the claim it is sufficient to show that E[X1,4] = E[Y1,4] VA € IL

Clearly for any G € G,, H € G3 we have 1y is independent of X1, and Y1 therefore
E[X14] = E[X16nn] = E[X1c1y] = E[X1¢]E[14]

and
E[Y14] = E[Y1gnn]| = E[Y161ly] = E[Y16]E[14]

Also, E[X14] = E[Y1(], because Y = E[X|G,] and G € G,. therefore

E[X14] = E[Y14]

Since this holds for an arbitrary A € II, it holds for all I, and we are done. We conclude

E[X|GyV G3] =Y = E[X|Gs].

2. Assume (2, F,P) is a probability space, (F,),>o is a filtration, and (4,),>0 is a non-
decreasing sequence of random variables such that

a) A(] =0
b) A, is F, measurable
c) E[A?] is finite.
Also assume that (B,,),>¢ is a sequence random variables such that

i) 0 < E[B?] < coand E[B,] =0 forany n >0



ii) B, is F, measurable

iii) B, is independent of F,,_; for each n > 1.

(a) Show that if (M,,),>¢ is a square integrable martingale such that M, = 0 and (M? +
A, )n>0 is a supermartingale, then M,, = A,, = 0 almost surely for any n > 0.

(b) If A, is F,,_1 measurable for each n > 1, find a martingale (},,),>o such that (M? —
A,)n>0 is a martingale.

Solution:

(a) Since (M,,),>0 is a martingale, we know have

E[Ms+1|]:n] - E[(Mn—H - Mn)2|]:n] + 2MnE[(Mn+1 - Mn)|]:n] + ]E[Mﬂfn}
= M + E[(Mpy1 — M,)?| F,]

Since, MTQL + a, is a supermartingale, we get that
(M1 + Ania[Fa] < My + A,
and thus combining this with the above we obtain that
E[Ani1 — AnlFo] + E[(Mps1 — M,)?|F,] < 0.
Integrating this yields that
E[A, 1 — A, + E[(Myy1 — M,)?] < 0.

Since A,4+1 > A, we conclude that almost surely, M, ; = M, and A4, = A,.
Induction finishes the proof.

(b) For the second part, we can construct the martingale in the following form:

M, = z": BCy,

k=1

where C}, we choose to be Fj,_; measurable. The martingale condition is then
automatically satisfied because Bj, is independent of F;,_; and has mean 0. In
order to satisfy the second property, notice that

E[M? — A,|Fpi] = M2 | — A, +E[(M,, — My, _1)*|Fp1] = M2 | — A, +E[B2C?| A
= M}, — A, + CIE[B3].

Thus, if we want this to be equal to M? | — A,,_;, then we need to choose C,, such
that
C?’E[B} = A, — A,

An_An—l
=\ TEB

which is possible with
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3. Assume that X (t) is a simple Poisson process. Find the joint distribution of (X (¢1), X (¢2))
and then the conditional expectation E[X (¢;)| X (t2)].

Solution: We have to distinguish two cases, one is t; > t; and t5 > ;.

In the case t; > 15, it si easy to see from independence of increments that

E[X(t1)|Xt2] = E[th - Xt2‘Xt2] + th = th + (tl - t2)'

For the case of t; < ¢, we need the joint distribution, which we can find using the fact

that _— o
—\t2—tl1 J— t —l1 n
P(X(12) = k4, X (1) =m) = 2RO

Therefore the conditional distribution of (X (¢1)| X (2)) is

e (271 ((tp—t1))* e~ f1 (1)
! n!
P(X(t) = nlX(t) = k4 m) = — B ke
(k4+n)!

k H\" )"
(0 @) (-5 wew
n tg t2
So the distribution of X (¢;) conditioned on X (¢;) is a Binomial distribution with pa-
rameters (X (t2), ), which then implies

Ewuman=%X@>

4. (a) Let X beareal-valued r.v. on a probability space Q, F, P with density f(z) = $ o 3(x).
Find the correct assertions.

i. P(X €(0,3)) = 1.

ii. Forallw € Q, X (w)
iii. Forallw € €2, X (w)

€ (0,3).
€ [0, 3].

(b) Let (X,), be a sequence of real-valued random variables. Find and justify the correct
assertions.
i. {sup,>; X, < oo} is an asymptotic event.
ii. {sup,>; X, < c} for some c € R is an asymptotic event.

Solution: (a) P(X € (0,3)) = 1; (b) {sup,>; X,, < oo} is an asymptotic event.

5. Let X be ar.v. with Cauchy distribution C(1) (that means with density f(z) = m w.r.t.
the Lebesgue measure on R).
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a) Determine the density of Z = X 1.

b) Determine the density f of log|X].

Solution: (a) Z also follows Cauchy distribution C(1). (b) Z = log|X| admits p.d.f.
f(z) = m

6. Let (X,,), be a sequence of real-valued random variables with respective densities f,,(x) =

n_Qe_n2‘$|'

(a) Compute for all n € N* P(|.X,,| > n~3/?)
(b) Compute P(lim sup{|X,| > n=3/2})
(c) What is the probability that > X, converges absolutely?

Solution: (a) We have P ({|X,,| > n™?}) = [ 5 fu(z)dz = e~ V", (b) Since

Z eV < +00,

n>1

Borel-Cantelli’s Lemma gives P (limsup{|X,,| > n=%?}) = 0. (c) Set A = limsup{|X,,| >
n=3/2}. Thus, we have A¢ = liminf{|X,| < n~*2}. For any w € A°, there exists
an integer n,, such that, for all n > n,, w € {|X,| < n=%2}. Therefore the series
> ns1 Xn(w) converges absolutely for any w € A° and A¢ is of probability 1.

7. Let (X,,), be a sequence of independent and identically distributed real-valued random
variables. Show that 2= converges almost surely to 0 if and only if X is integrable.

Solution: Recall that X,,/n converges a.s. to 0 if and only if for any ¢ > 0, we have
P (limsup{|X,|/n > €}) = 0. Since the X,, are independent, this is equivalent to

> P (IXul/n>€) < o0

n>1

for any € > 0. Next, since the X, are identically distributed, we have P (|.X,,|/n > €) =
P(|Xi|/n > ¢€) for any n > 1 and ¢ > 0. The previous condition is equivalent to
> ns1 P(|Xi[/n > €) < oo for any € > 0, which is equivalent in turn to E[|.X}|/e] < oo
for any e > 0 since E[|X1|/e] = [[°P (| X1|/e > t)dt.

8. Let (X,,),>1 be a sequence of i.i.d random variables with standard Gaussian distribution
N(0,1). We recall that E[¢*] = ¢z. Foralln > 1, set S, = S Xiand M, = 573,
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(a) Justify the a.s. convergence of % and determine the limit.
(b) Show that M,, — 0 a.s. as n — +4o0.

(c) For any n > 1, compute E[M,,].

(d) Do we have M,, — 0in L,? Justify your answer.

(e) Let (an)n>1 be asequence of real numbers such that ) a? < co. Show thaty”, -, a, X,
converges to a random variable a.s. and in L.

Solution: (a) (X,), is an ii.d. sequence of integrable random variables. Thus the
strong law of large numbers gives 22 — E[X;] = 0 a.s. (b) This is a straightforward

consequence of (a) since M,, = en(F-1/2), (c) Since the sequence (X,,), isi.i.d., we have
E[M,] = (E[e¥*])"e % = 1. (d) We proceed by contradiction. Assume that M, con-
verges in L, to arandom variable M. On the one hand, this implies that E[M,,] — E[M]
asn — oo. In view of (c), we then have E[M] = 1. On the other hand, there exists a sub-
sequence of M, that converges almost surely to M. Since M,, converges almost surely
to 0, this implies that M/ = 0 a.s. This contradicts that E[A/] = 1. Therefore M,, does not
converge in L, (¢) We have for any integer N > 1 that 2", 4, X,, ~ N(0, Y, a2). By
assumption the series > a? converges to 02 = 3. _, a2. Thus, 3V 4, X, converges
in distribution to a random variable Z ~ N(0,0?). Levy’s theorem guarantees that
ZN a, X, also converges to Z a.s. and in L.

n=1
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