
Topology Comprehensive Exam Questions

1. Let S be a knot in R3, i.e. an embedded submanifold diffeomorphic to circle. Let
C = R3 \ S, the complement of S in R3. Show that there is a 1-form on C that is not
exact.

Solution: If B be a small ball centered at a point of the knot, then there is a
diffeomorphism φ : B → R3 taking S ∩ B to the z-axis. Consider the standard
angle form dθ on the complement of the z-axis given by

dθ =
xdy − ydx
x2 + y2

,

Consider a smooth function f : R3 → R that is identically 1 on the unit ball of
radius 2 about the origin, and that vanishes outside the ball of radius 3. Then fdθ
is not exact on the complement of the z-axis because its integral over the unit circle
in the xy-plane is 1, while exact forms integrate to 0 along closed smooth loops.
The form φ∗(fdθ) extends to a 1-form on C by setting it equal to 0 outside B. It
is still not exact, because it restricts to a non-exact form on B.

Remark It is possible but considerably harder to arrange the form to be closed
but not exact.

2. Let M be a smooth manifold, and f : M → R is a continuous positive finction. Find
a smooth positive function f0 : M → R such that f0 < f .

Solution: We know there is a locally finite open cover {Wi} by precompact open
sets and let φi be the partition of unity subordinate to this cover. Let mi be the
minumum of f on W̄i; note that mi > 0 because f > 0 and W̄i is compact. Thus
φif ≥ φimi for each i. Set f0 := 1

2

∑
i φimi. Then f0 < f =

∑
i φif , and f0 is

a smooth positive function because any x ∈ M has a neighborhood U that lies
intersects only finitely many Wi’s, say W1, . . .Wk, so f0|U =

∑k
j=1 φjmj, so locally

f0 is a sum of positive smooth functions.

Remark. Replacing minimum by maximum we get smooth f1 > f . Choosing the
cover fine enough, we can actually show that f0, f1 are close to f .

3. Suppose q : M → N is a submersion, and X is a vector fields on N . Show that there
is a vector field X̂ on M such that X̂ and X are q-related (that is dq(X̂(p)) = X(q(p))
for all p ∈M).



Solution: Submersions are open maps, so for any open U in M we have that
q(U) is an open subset of N . By definition of a submersion and by Rank Theorem
there is an open cover {Uα} of M and there are diffeomorphisms ψα : Rm → Uα
and φα : q(Uα) → Rn such that φα ◦ q ◦ ψα : Rm → Rn is the standard projection
forgetting the last k coordinates, where k = m−n. Use ψα∗ and (φα)−1∗ to push the
standard coordinate vector fields from the Euclidean space to Uα and q(Uα), and

denote the resulting coordinate vector fields by ∂̂
∂yi

and ∂
∂yi

, respectively. Note that
π∗ maps first n coordinate vector fields to themselves, and the other k coordinate

vector fields to zero. Hence the same holds for q, i.e. q∗(
∂̂
∂yi

) = ∂
∂yi

for i ≤ n and

q∗(
∂̂
∂yi

) = 0 for i > n. Write X|q(Uα) =
∑n

i=1 x
α
i
∂
∂yi

, for (uniquely determined and

necessarily smooth) functions xαi : q(Uα) → R. Define a vector field X̂α on Uα by

X̂α =
∑n

i=1(x
α
i ◦ q) ∂̂

∂yi
. Then q∗X̂α = X|q(Uα).

Let {Uj} be a locally finite countable subcover of {Uα} and let fj be the corre-

sponding partition of unity. So fjX̂j is a (smooth) vector field on M . Define

X̂ =
∑

j fjX̂j; this is a smooth vector field on M , and for any p ∈ M we check

that X̂ and X are q-related:

(q∗p(X̂(p)) = q∗p(
∑
j

fj(p)X̂j(p)) =
∑
j

fj(p)q∗p(X̂j(p)) =

=
∑
j

fj(p)X(q(p)) = 1 ·X(q(p)) = X(q(p)).

4. Suppose f : M → N is a map, and S is an embedded submanifold of N such that
for each x ∈ f−1(S) the subspaces Tf(x)S and f∗(TxM) span Tf(x)N . (In this case we
say that f is transverse to S). Denote dimensions of M , N , S by m,n, s, respectively.
Show that f−1(S) is an embedded submanifold of M of dimension m+ s− n.

Solution: Fix x0 ∈ f−1(S). The notion of a submanifold is local, so we need to find
an open neighborhood U of x0 such that f−1(S) ∩ U is an embedded submanifold
of U . Since S is a submanifold, there is a neighborhood V of f(x0) that is mapped
by a diffeomorphism ψ to Rn such that ψ(V ∩ S) = Rs. Let π be the projection
of Rn onto the orthogonal complement of Rs, which will be denoted Rn−s. Since
Tf(x)S and f∗(TxM) span Tf(x)N for any x ∈ f−1(S), and in particular, for any
x ∈ f−1(S ∩ V ), their ψ∗-images span Rn, and hence, the π∗ψ∗ image of f∗(TxM)
spans the tangent space of Rn−s at 0. Hence 0 is a regular value for the map
π ◦ ψ ◦ f : f−1(V ) → Rn−s. As f−1(V ∩ S) is the preimage of 0 under the map,
we conclude that f−1(V ∩ S) is an embedded submanifold of f−1(V ), which is a
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neighborhhod of x0 in M . Finally, f−1(V ∩S) = f−1(V )∩ f−1(S), so U := f−1(V )
is the desired neighborhood.

5. Let M be the quotient of S2 × S1 by the Z2-action given by ι(v, z) = (−v, z̄).
(a) Prove that the fundamental group of M is the infinite diheadral group (the group
of self-maps of R generated by two reflections, such as a(t) = −t and b(t) = 2− t).
(b) Prove that any continuous map from M to S1 is null-homotopic (you may use the
Lifting Criterion as stated e.g. in Proposition 1.33 in Chapter 1 of Hatcher).

Solution: (a) Define two involutions on S2×R by A(v, t) = (−v,−t) and B(v, t) =
(−v, 2−t). Let G be the group of homeomorphisms generated by A, B. Since A2 =
1 = B2, there are only four kinds of elements of G, namely (AB)k, (BA)k, (AB)kA,
(BA)kB where k ∈ Z. Now (AB)(v, t) = (v, t − 2), and BA(v, t) = (v, t + 2), so
(AB)kA(v, t) = (−v,−t− 2k) and (BA)kB(v, t) = (−v,−t+ 2k+ 2). The induced
G-action on the R-coordinate is effective, i.e. no nontrivial element acts as identity
on the R-coordinate. Moreover, this G-action on R is that of an infinite diheadral
group. Thus G is isomorphic to the infinite diheadral group.

Given (v0, t0) let U be the product of an open hemisphere centered at v0 with
(t0− 1, t0 + 1). Then checking all for types of elements we see that g(U) is disjoint
from U for all g ∈ G, so the G-action is wandering, so S2 × R→ (S2 × R)/G is a
covering map.

Note that S2×R is simply-connected because it is homotopy equivalent to S2, which
is simply-connected. Thus the fundamental group of (S2 × R)/G is isomorphic to
G.

It remains to show that (S2 × R)/G is M . Let G0 by the cyclic subgroup of G
generated by AB. Then (S2 × R)/G0 is S2 × R/2Z, where the quotient maps
q : S2 × R→ S2 × S1 takes (v, t) to (v, eπit). Note that q ◦ A = ι ◦ q = q ◦B as

q(A(v, t)) = (−v, e−πit) = (−v, eπit) = i(v, eπit) = (−v, eπi(2−t)) = q(B(v, t))

so (S2×R)/G is precisely the quotient of S2×S1 = (S2×R)/G0 by the Z2-action
given by ι, which is M .

(b) Since π1(M) = G is generated by elements of finite order and π1(S
1) = Z has

no elements of finite order, any homomorphism π1(M) → π1(S
1) is trivial, so by

the lifting criterion any continuous map can be lifted to the cover R→ S1. Since R
is contractible, any map M → R is null-homotopic and composing it with R→ S1

we get a null-homotopy for the original map.

6. Show that homeomorphic topological manifolds have the same dimension.
(a) Show that any homeomorphism of a topological n-manifold onto a topological
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m-manifold gives rise to a self-map of Sn−1 that is homotopic to identity and is a
composition of maps Sn−1 → Sm−1 and Sm−1 → Sn−1 (Hint: consider small neighbor-
hoods).
(b) Show that the existence of a map as in (a) implies m = n.

Solution: (a) Let f be a homeomorphism of the m-manifold M onto the n-
manifold N . Fix x ∈ M , let y := f(x), and consider a neighborhood V of y
in N such that there is a homeomorphism ψ : V → Rn taking y to 0. Since f−1(V )
is a neigborhood of x ∈M there is a neighborhood U ⊂ f−1(V ) of x and a homeo-
morphism φ of U onto Rm with φ(x) = 0; we may also choose U to have compact
closure in f−1(V ). Also f(U) is open in N , so there is a neighborhood W ⊂ f(U)
of y, and we may assume that ψ(W ) is a round ball Bε(0) around 0 ∈ Rn. Thus
ψ(f(U)) is a neighorhood of 0 which contains Bε(0), and ψ(f(U)) has compact
closure. Consider concentric round spheres SR(0), Sr(0) with r < ε. The inclusion
ι : Sr(0)→ Rn \ {0} is homotopic to the map v → vR

r
which is a homeomorphism

between the two spheres (the most obvious is the straight line homotopy given by
F (t, v) := (1 − t)v + tvR

r
where F : [0, 1] × Sr(0) → Rn \ {0}; it does not vanish

because no segment [v, vR
r
] passes through 0. On the other hand, ι factors through

ψ(f(U))\{0} which is homeomorphic to U \{x}, which in turn is homeomorphic to
Rm \{0} = Sm−1× (0, 1). Thus ψ(f(U))\{0} is homotopy equivalent to Sm−1, and
pre/post composing the inclusions Sr(0)→ ψ(f(U))\{0}, ψ(f(U))\{0} → Rn\{0}
with these homotopy equivalences we get continuous maps Sr(0) = Sn−1 → Sm−1

and Sm−1 → Sn−1 = SR(0) whose composition is homotopic to a homeomorphism.

(b) Any continuous map Sl → Sk with l < k is null-homotopic. This can be seen
because such a map is homotopic to a smooth map that cannot be onto by Sard’s
theorem. Finally any non-sujective map between spheres are null-homotopic since
once they miss a point one can assume (using stereographic coordinates) that the
image of the map is in Euclidean space which is contractible. Thus if n 6= m, then
one of the two maps above is null-homotopic, and hence so is their composition,
but homeomorphisms are homotopy-equivalences so they are not null-homotopic.

7. Let T be the torus S1 × S1 and f : S1 → T : θ 7→= (θ, p) for some point p ∈ S1.
Finally let X be the space obtained by attaching a 2-cell D2 to T with the map f .

(a) Compute the fundamental group of X.

(b) Describe the universal cover of X. You may do this by drawing a picture but
make sure the covering map is clear.

Solution: (a) To use Van Kampen’s theorem let A′ be an open annular neighbor-
hood of the image of f in T and A be the union of A′ and the 2-cell D2 in X. Also
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let B′ be the annular neighborhood of ∂D2 in D2 and B be the union of T and B′

in X. Notice that X = A ∪ B and A ∩ B retracts onto the circle C = image(f).
Similarly A retracts to D2 and B retracts to T . Picking a base point x0 on C
we know π1(A, x0) ∼= π1(D

2, x0) = 0 and π1(A ∩ B, x0) = π1(C, x0) = Z. Let
i : (A ∩ B) → B be the inclusion map. We know π1(B, x0) ∼= π1(T, x0) ∼= Z ⊗ Z
and the isomorphism can be choses so that i∗(g) is a generator of the second factor
of π1(B, x0) where g is a generator of π1(A ∩B, x0) ∼= Z. Now Van Kampen says

π1(X, x0) ∼=
π1(A, x0) ∗ π1(B, x0)
〈i∗(g)(j∗(g))−1 = e〉

where j : (A ∩ B) → A is the inclusion map. So clearly i∗(g) = e in the free
product. Thus we have

π1(X, x0) ∼=
(Z⊕ Z) ∗ {e}

Z
= Z.

(b) Let R = S1 × R and fi : S1 → R be given by fi(θ) = (θ, i) for i ∈ Z. Now
let Y = R with a 2-cell D2

i glued to R by fi for each i. We claim that Y is the
universal cover of X. To see this we first define the covering map q : Y → X.
We map R → T by q(θ, t) = (θ, (cos(2πt), sin(2πt))) (here we are thinking of the
second S1 factor in T as the unit circle in R2). Notice that q ◦ fi = f if we choose
p = (1, 0). Thus thinking of the map q as a map from R to X and defining q on
each D2

i to be the identify map D2
i → D2 we have a map form the disjoint union

of R and the D2
i to X that descends to the quotient space Y . It is clear from

construction the each point in X is regularly covered in Y so Y is a covering space
of X.

Moreover it is clear that Y is simply connected by an argument similar to that
given above. In particular attaching just one of the D2

i to R will result in a space
with trivial fundamental group. Then attaching further 2-cells will not add to the
fundamental group. Thus q : Y → X is the universal cover of X.
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