Topology Comprehensive Exam Questions

1. Let S be a knot in \mathbb{R}^{3}, i.e. an embedded submanifold diffeomorphic to circle. Let $C=\mathbb{R}^{3} \backslash S$, the complement of S in \mathbb{R}^{3}. Show that there is a 1-form on C that is not exact.

Solution: If B be a small ball centered at a point of the knot, then there is a diffeomorphism $\phi: B \rightarrow \mathbb{R}^{3}$ taking $S \cap B$ to the z-axis. Consider the standard angle form $d \theta$ on the complement of the z-axis given by

$$
d \theta=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

Consider a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ that is identically 1 on the unit ball of radius 2 about the origin, and that vanishes outside the ball of radius 3 . Then $f d \theta$ is not exact on the complement of the z-axis because its integral over the unit circle in the $x y$-plane is 1 , while exact forms integrate to 0 along closed smooth loops. The form $\phi^{*}(f d \theta)$ extends to a 1 -form on C by setting it equal to 0 outside B. It is still not exact, because it restricts to a non-exact form on B.
Remark It is possible but considerably harder to arrange the form to be closed but not exact.
2. Let M be a smooth manifold, and $f: M \rightarrow \mathbb{R}$ is a continuous positive finction. Find a smooth positive function $f_{0}: M \rightarrow \mathbb{R}$ such that $f_{0}<f$.

Solution: We know there is a locally finite open cover $\left\{W_{i}\right\}$ by precompact open sets and let ϕ_{i} be the partition of unity subordinate to this cover. Let m_{i} be the minumum of f on \bar{W}_{i}; note that $m_{i}>0$ because $f>0$ and \bar{W}_{i} is compact. Thus $\phi_{i} f \geq \phi_{i} m_{i}$ for each i. Set $f_{0}:=\frac{1}{2} \sum_{i} \phi_{i} m_{i}$. Then $f_{0}<f=\sum_{i} \phi_{i} f$, and f_{0} is a smooth positive function because any $x \in M$ has a neighborhood U that lies intersects only finitely many W_{i} 's, say $W_{1}, \ldots W_{k}$, so $\left.f_{0}\right|_{U}=\sum_{j=1}^{k} \phi_{j} m_{j}$, so locally f_{0} is a sum of positive smooth functions.
Remark. Replacing minimum by maximum we get smooth $f_{1}>f$. Choosing the cover fine enough, we can actually show that f_{0}, f_{1} are close to f.
3. Suppose $q: M \rightarrow N$ is a submersion, and X is a vector fields on N. Show that there is a vector field \hat{X} on M such that \hat{X} and X are q-related (that is $d q(\hat{X}(p))=X(q(p))$ for all $p \in M$).

Solution: Submersions are open maps, so for any open U in M we have that $q(U)$ is an open subset of N. By definition of a submersion and by Rank Theorem there is an open cover $\left\{U_{\alpha}\right\}$ of M and there are diffeomorphisms $\psi_{\alpha}: \mathbb{R}^{m} \rightarrow U_{\alpha}$ and $\phi_{\alpha}: q\left(U_{\alpha}\right) \rightarrow \mathbb{R}^{n}$ such that $\phi_{\alpha} \circ q \circ \psi_{\alpha}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is the standard projection forgetting the last k coordinates, where $k=m-n$. Use $\psi_{\alpha *}$ and $\left(\phi_{\alpha}\right)_{*}^{-1}$ to push the standard coordinate vector fields from the Euclidean space to U_{α} and $q\left(U_{\alpha}\right)$, and denote the resulting coordinate vector fields by $\frac{\hat{\partial}}{\partial y_{i}}$ and $\frac{\partial}{\partial y_{i}}$, respectively. Note that π_{*} maps first n coordinate vector fields to themselves, and the other k coordinate vector fields to zero. Hence the same holds for q, i.e. $q_{*}\left(\frac{\hat{\partial}}{\partial y_{i}}\right)=\frac{\partial}{\partial y_{i}}$ for $i \leq n$ and $q_{*}\left(\frac{\hat{\partial}}{\partial y_{i}}\right)=0$ for $i>n$. Write $\left.X\right|_{q\left(U_{\alpha}\right)}=\sum_{i=1}^{n} x_{i}^{\alpha} \frac{\partial}{\partial y_{i}}$, for (uniquely determined and necessarily smooth) functions $x_{i}^{\alpha}: q\left(U_{\alpha}\right) \rightarrow \mathbb{R}$. Define a vector field \hat{X}_{α} on U_{α} by $\hat{X}_{\alpha}=\sum_{i=1}^{n}\left(x_{i}^{\alpha} \circ q\right) \frac{\hat{\partial}}{\partial y_{i}}$. Then $q_{*} \hat{X}_{\alpha}=\left.X\right|_{q\left(U_{\alpha}\right)}$.
Let $\left\{U_{j}\right\}$ be a locally finite countable subcover of $\left\{U_{\alpha}\right\}$ and let f_{j} be the corresponding partition of unity. So $f_{j} \hat{X}_{j}$ is a (smooth) vector field on M. Define $\hat{X}=\sum_{j} f_{j} \hat{X}_{j}$; this is a smooth vector field on M, and for any $p \in M$ we check that \hat{X} and X are q-related:

$$
\begin{gathered}
\left(q_{* p}(\hat{X}(p))=q_{* p}\left(\sum_{j} f_{j}(p) \hat{X}_{j}(p)\right)=\sum_{j} f_{j}(p) q_{* p}\left(\hat{X}_{j}(p)\right)=\right. \\
=\sum_{j} f_{j}(p) X(q(p))=1 \cdot X(q(p))=X(q(p)) .
\end{gathered}
$$

4. Suppose $f: M \rightarrow N$ is a map, and S is an embedded submanifold of N such that for each $x \in f^{-1}(S)$ the subspaces $T_{f(x)} S$ and $f_{*}\left(T_{x} M\right)$ span $T_{f(x)} N$. (In this case we say that f is transverse to S). Denote dimensions of M, N, S by m, n, s, respectively. Show that $f^{-1}(S)$ is an embedded submanifold of M of dimension $m+s-n$.

Solution: Fix $x_{0} \in f^{-1}(S)$. The notion of a submanifold is local, so we need to find an open neighborhood U of x_{0} such that $f^{-1}(S) \cap U$ is an embedded submanifold of U. Since S is a submanifold, there is a neighborhood V of $f\left(x_{0}\right)$ that is mapped by a diffeomorphism ψ to \mathbb{R}^{n} such that $\psi(V \cap S)=\mathbb{R}^{s}$. Let π be the projection of \mathbb{R}^{n} onto the orthogonal complement of \mathbb{R}^{s}, which will be denoted \mathbb{R}^{n-s}. Since $T_{f(x)} S$ and $f_{*}\left(T_{x} M\right)$ span $T_{f(x)} N$ for any $x \in f^{-1}(S)$, and in particular, for any $x \in f^{-1}(S \cap V)$, their ψ_{*}-images span \mathbb{R}^{n}, and hence, the $\pi_{*} \psi_{*}$ image of $f_{*}\left(T_{x} M\right)$ spans the tangent space of \mathbb{R}^{n-s} at 0 . Hence 0 is a regular value for the map $\pi \circ \psi \circ f: f^{-1}(V) \rightarrow \mathbb{R}^{n-s}$. As $f^{-1}(V \cap S)$ is the preimage of 0 under the map, we conclude that $f^{-1}(V \cap S)$ is an embedded submanifold of $f^{-1}(V)$, which is a
neighborhhod of x_{0} in M. Finally, $f^{-1}(V \cap S)=f^{-1}(V) \cap f^{-1}(S)$, so $U:=f^{-1}(V)$ is the desired neighborhood.
5. Let M be the quotient of $S^{2} \times S^{1}$ by the \mathbb{Z}_{2}-action given by $\iota(v, z)=(-v, \bar{z})$.
(a) Prove that the fundamental group of M is the infinite diheadral group (the group of self-maps of \mathbb{R} generated by two reflections, such as $a(t)=-t$ and $b(t)=2-t)$.
(b) Prove that any continuous map from M to S^{1} is null-homotopic (you may use the Lifting Criterion as stated e.g. in Proposition 1.33 in Chapter 1 of Hatcher).

Solution: (a) Define two involutions on $S^{2} \times \mathbb{R}$ by $A(v, t)=(-v,-t)$ and $B(v, t)=$ $(-v, 2-t)$. Let G be the group of homeomorphisms generated by A, B. Since $A^{2}=$ $1=B^{2}$, there are only four kinds of elements of G, namely $(A B)^{k},(B A)^{k},(A B)^{k} A$, $(B A)^{k} B$ where $k \in \mathbb{Z}$. Now $(A B)(v, t)=(v, t-2)$, and $B A(v, t)=(v, t+2)$, so $(A B)^{k} A(v, t)=(-v,-t-2 k)$ and $(B A)^{k} B(v, t)=(-v,-t+2 k+2)$. The induced G-action on the \mathbb{R}-coordinate is effective, i.e. no nontrivial element acts as identity on the \mathbb{R}-coordinate. Moreover, this G-action on \mathbb{R} is that of an infinite diheadral group. Thus G is isomorphic to the infinite diheadral group.

Given $\left(v_{0}, t_{0}\right)$ let U be the product of an open hemisphere centered at v_{0} with $\left(t_{0}-1, t_{0}+1\right)$. Then checking all for types of elements we see that $g(U)$ is disjoint from U for all $g \in G$, so the G-action is wandering, so $S^{2} \times \mathbb{R} \rightarrow\left(S^{2} \times \mathbb{R}\right) / G$ is a covering map.
Note that $S^{2} \times \mathbb{R}$ is simply-connected because it is homotopy equivalent to S^{2}, which is simply-connected. Thus the fundamental group of $\left(S^{2} \times \mathbb{R}\right) / G$ is isomorphic to G.

It remains to show that $\left(S^{2} \times \mathbb{R}\right) / G$ is M. Let G_{0} by the cyclic subgroup of G generated by $A B$. Then $\left(S^{2} \times \mathbb{R}\right) / G_{0}$ is $S^{2} \times \mathbb{R} / 2 \mathbb{Z}$, where the quotient maps $q: S^{2} \times \mathbb{R} \rightarrow S^{2} \times S^{1}$ takes (v, t) to $\left(v, e^{\pi i t}\right)$. Note that $q \circ A=\iota \circ q=q \circ B$ as

$$
q(A(v, t))=\left(-v, e^{-\pi i t}\right)=\left(-v, \overline{e^{\pi i t}}\right)=i\left(v, e^{\pi i t}\right)=\left(-v, \overline{e^{\pi i(2-t)}}\right)=q(B(v, t))
$$

so $\left(S^{2} \times \mathbb{R}\right) / G$ is precisely the quotient of $S^{2} \times S^{1}=\left(S^{2} \times \mathbb{R}\right) / G_{0}$ by the \mathbb{Z}_{2}-action given by ι, which is M.
(b) Since $\pi_{1}(M)=G$ is generated by elements of finite order and $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$ has no elements of finite order, any homomorphism $\pi_{1}(M) \rightarrow \pi_{1}\left(S^{1}\right)$ is trivial, so by the lifting criterion any continuous map can be lifted to the cover $\mathbb{R} \rightarrow S^{1}$. Since \mathbb{R} is contractible, any map $M \rightarrow \mathbb{R}$ is null-homotopic and composing it with $\mathbb{R} \rightarrow S^{1}$ we get a null-homotopy for the original map.
6. Show that homeomorphic topological manifolds have the same dimension.
(a) Show that any homeomorphism of a topological n-manifold onto a topological
m-manifold gives rise to a self-map of S^{n-1} that is homotopic to identity and is a composition of maps $S^{n-1} \rightarrow S^{m-1}$ and $S^{m-1} \rightarrow S^{n-1}$ (Hint: consider small neighborhoods).
(b) Show that the existence of a map as in (a) implies $m=n$.

Solution: (a) Let f be a homeomorphism of the m-manifold M onto the n manifold N. Fix $x \in M$, let $y:=f(x)$, and consider a neighborhood V of y in N such that there is a homeomorphism $\psi: V \rightarrow \mathbb{R}^{n}$ taking y to 0 . Since $f^{-1}(V)$ is a neigborhood of $x \in M$ there is a neighborhood $U \subset f^{-1}(V)$ of x and a homeomorphism ϕ of U onto \mathbb{R}^{m} with $\phi(x)=0$; we may also choose U to have compact closure in $f^{-1}(V)$. Also $f(U)$ is open in N, so there is a neighborhood $W \subset f(U)$ of y, and we may assume that $\psi(W)$ is a round ball $B_{\epsilon}(0)$ around $0 \in \mathbb{R}^{n}$. Thus $\psi(f(U))$ is a neighorhood of 0 which contains $B_{\epsilon}(0)$, and $\psi(f(U))$ has compact closure. Consider concentric round spheres $S_{R}(0), S_{r}(0)$ with $r<\epsilon$. The inclusion $\iota: S_{r}(0) \rightarrow \mathbb{R}^{n} \backslash\{0\}$ is homotopic to the map $v \rightarrow v \frac{R}{r}$ which is a homeomorphism between the two spheres (the most obvious is the straight line homotopy given by $F(t, v):=(1-t) v+t v \frac{R}{r}$ where $F:[0,1] \times S_{r}(0) \rightarrow \mathbb{R}^{n} \backslash\{0\}$; it does not vanish because no segment $\left[v, v \frac{R}{r}\right]$ passes through 0 . On the other hand, ι factors through $\psi(f(U)) \backslash\{0\}$ which is homeomorphic to $U \backslash\{x\}$, which in turn is homeomorphic to $\mathbb{R}^{m} \backslash\{0\}=S^{m-1} \times(0,1)$. Thus $\psi(f(U)) \backslash\{0\}$ is homotopy equivalent to S^{m-1}, and pre/post composing the inclusions $S_{r}(0) \rightarrow \psi(f(U)) \backslash\{0\}, \psi(f(U)) \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}$ with these homotopy equivalences we get continuous maps $S_{r}(0)=S^{n-1} \rightarrow S^{m-1}$ and $S^{m-1} \rightarrow S^{n-1}=S_{R}(0)$ whose composition is homotopic to a homeomorphism. (b) Any continuous map $S^{l} \rightarrow S^{k}$ with $l<k$ is null-homotopic. This can be seen because such a map is homotopic to a smooth map that cannot be onto by Sard's theorem. Finally any non-sujective map between spheres are null-homotopic since once they miss a point one can assume (using stereographic coordinates) that the image of the map is in Euclidean space which is contractible. Thus if $n \neq m$, then one of the two maps above is null-homotopic, and hence so is their composition, but homeomorphisms are homotopy-equivalences so they are not null-homotopic.
7. Let T be the torus $S^{1} \times S^{1}$ and $f: S^{1} \rightarrow T: \theta \mapsto=(\theta, p)$ for some point $p \in S^{1}$. Finally let X be the space obtained by attaching a 2 -cell D^{2} to T with the map f.
(a) Compute the fundamental group of X.
(b) Describe the universal cover of X. You may do this by drawing a picture but make sure the covering map is clear.

Solution: (a) To use Van Kampen's theorem let A^{\prime} be an open annular neighborhood of the image of f in T and A be the union of A^{\prime} and the 2 -cell D^{2} in X. Also
let B^{\prime} be the annular neighborhood of ∂D^{2} in D^{2} and B be the union of T and B^{\prime} in X. Notice that $X=A \cup B$ and $A \cap B$ retracts onto the circle $C=\operatorname{image}(f)$. Similarly A retracts to D^{2} and B retracts to T. Picking a base point x_{0} on C we know $\pi_{1}\left(A, x_{0}\right) \cong \pi_{1}\left(D^{2}, x_{0}\right)=0$ and $\pi_{1}\left(A \cap B, x_{0}\right)=\pi_{1}\left(C, x_{0}\right)=\mathbb{Z}$. Let $i:(A \cap B) \rightarrow B$ be the inclusion map. We know $\pi_{1}\left(B, x_{0}\right) \cong \pi_{1}\left(T, x_{0}\right) \cong \mathbb{Z} \otimes \mathbb{Z}$ and the isomorphism can be choses so that $i_{*}(g)$ is a generator of the second factor of $\pi_{1}\left(B, x_{0}\right)$ where g is a generator of $\pi_{1}\left(A \cap B, x_{0}\right) \cong \mathbb{Z}$. Now Van Kampen says

$$
\pi_{1}\left(X, x_{0}\right) \cong \frac{\pi_{1}\left(A, x_{0}\right) * \pi_{1}\left(B, x_{0}\right)}{\left\langle i_{*}(g)\left(j_{*}(g)\right)^{-1}=e\right\rangle}
$$

where $j:(A \cap B) \rightarrow A$ is the inclusion map. So clearly $i_{*}(g)=e$ in the free product. Thus we have

$$
\pi_{1}\left(X, x_{0}\right) \cong \frac{(\mathbb{Z} \oplus \mathbb{Z}) *\{e\}}{\mathbb{Z}}=\mathbb{Z}
$$

(b) Let $R=S^{1} \times \mathbb{R}$ and $f_{i}: S^{1} \rightarrow R$ be given by $f_{i}(\theta)=(\theta, i)$ for $i \in \mathbb{Z}$. Now let $Y=R$ with a 2 -cell D_{i}^{2} glued to R by f_{i} for each i. We claim that Y is the universal cover of X. To see this we first define the covering map $q: Y \rightarrow X$. We map $R \rightarrow T$ by $q(\theta, t)=(\theta,(\cos (2 \pi t), \sin (2 \pi t)))$ (here we are thinking of the second S^{1} factor in T as the unit circle in \mathbb{R}^{2}). Notice that $q \circ f_{i}=f$ if we choose $p=(1,0)$. Thus thinking of the map q as a map from R to X and defining q on each D_{i}^{2} to be the identify map $D_{i}^{2} \rightarrow D^{2}$ we have a map form the disjoint union of R and the D_{i}^{2} to X that descends to the quotient space Y. It is clear from construction the each point in X is regularly covered in Y so Y is a covering space of X.
Moreover it is clear that Y is simply connected by an argument similar to that given above. In particular attaching just one of the D_{i}^{2} to R will result in a space with trivial fundamental group. Then attaching further 2-cells will not add to the fundamental group. Thus $q: Y \rightarrow X$ is the universal cover of X.

