1. Let S be a knot in \mathbb{R}^3 , i.e. an embedded submanifold diffeomorphic to circle. Let $C = \mathbb{R}^3 \setminus S$, the complement of S in \mathbb{R}^3 . Show that there is a 1-form on C that is not exact.

Solution: If B be a small ball centered at a point of the knot, then there is a diffeomorphism $\phi: B \to \mathbb{R}^3$ taking $S \cap B$ to the z-axis. Consider the standard angle form $d\theta$ on the complement of the z-axis given by

$$d\theta = \frac{xdy - ydx}{x^2 + y^2},$$

Consider a smooth function $f: \mathbb{R}^3 \to \mathbb{R}$ that is identically 1 on the unit ball of radius 2 about the origin, and that vanishes outside the ball of radius 3. Then $fd\theta$ is not exact on the complement of the z-axis because its integral over the unit circle in the xy-plane is 1, while exact forms integrate to 0 along closed smooth loops. The form $\phi^*(fd\theta)$ extends to a 1-form on C by setting it equal to 0 outside B. It is still not exact, because it restricts to a non-exact form on B.

Remark It is possible but considerably harder to arrange the form to be closed but not exact.

2. Let M be a smooth manifold, and $f: M \to \mathbb{R}$ is a continuous positive function. Find a smooth positive function $f_0: M \to \mathbb{R}$ such that $f_0 < f$.

Solution: We know there is a locally finite open cover $\{W_i\}$ by precompact open sets and let ϕ_i be the partition of unity subordinate to this cover. Let m_i be the minumum of f on \overline{W}_i ; note that $m_i > 0$ because f > 0 and \overline{W}_i is compact. Thus $\phi_i f \ge \phi_i m_i$ for each i. Set $f_0 := \frac{1}{2} \sum_i \phi_i m_i$. Then $f_0 < f = \sum_i \phi_i f$, and f_0 is a smooth positive function because any $x \in M$ has a neighborhood U that lies intersects only finitely many W_i 's, say W_1, \ldots, W_k , so $f_0|_U = \sum_{j=1}^k \phi_j m_j$, so locally f_0 is a sum of positive smooth functions.

Remark. Replacing minimum by maximum we get smooth $f_1 > f$. Choosing the cover fine enough, we can actually show that f_0, f_1 are close to f.

3. Suppose $q: M \to N$ is a submersion, and X is a vector fields on N. Show that there is a vector field \hat{X} on M such that \hat{X} and X are q-related (that is $dq(\hat{X}(p)) = X(q(p))$ for all $p \in M$).

Solution: Submersions are open maps, so for any open U in M we have that q(U) is an open subset of N. By definition of a submersion and by Rank Theorem there is an open cover $\{U_{\alpha}\}$ of M and there are diffeomorphisms $\psi_{\alpha} \colon \mathbb{R}^m \to U_{\alpha}$ and $\phi_{\alpha} \colon q(U_{\alpha}) \to \mathbb{R}^n$ such that $\phi_{\alpha} \circ q \circ \psi_{\alpha} \colon \mathbb{R}^m \to \mathbb{R}^n$ is the standard projection forgetting the last k coordinates, where k = m - n. Use $\psi_{\alpha*}$ and $(\phi_{\alpha})_*^{-1}$ to push the standard coordinate vector fields from the Euclidean space to U_{α} and $q(U_{\alpha})$, and denote the resulting coordinate vector fields by $\frac{\hat{\partial}}{\partial y_i}$ and $\frac{\partial}{\partial y_i}$, respectively. Note that π_* maps first n coordinate vector fields to themselves, and the other k coordinate vector fields to themselves, and the other k coordinate vector fields to $q_*(\frac{\hat{\partial}}{\partial y_i}) = 0$ for i > n. Write $X|_{q(U_{\alpha})} = \sum_{i=1}^n x_i^{\alpha} \frac{\partial}{\partial y_i}$, for (uniquely determined and necessarily smooth) functions $x_i^{\alpha} \colon q(U_{\alpha}) \to \mathbb{R}$. Define a vector field \hat{X}_{α} on U_{α} by $\hat{X}_{\alpha} = \sum_{i=1}^n (x_i^{\alpha} \circ q) \frac{\hat{\partial}}{\partial y_i}$. Then $q_*\hat{X}_{\alpha} = X|_{q(U_{\alpha})}$.

Let $\{U_j\}$ be a locally finite countable subcover of $\{U_\alpha\}$ and let f_j be the corresponding partition of unity. So $f_j \hat{X}_j$ is a (smooth) vector field on M. Define $\hat{X} = \sum_j f_j \hat{X}_j$; this is a smooth vector field on M, and for any $p \in M$ we check that \hat{X} and X are q-related:

$$(q_{*p}(\hat{X}(p)) = q_{*p}(\sum_{j} f_{j}(p)\hat{X}_{j}(p)) = \sum_{j} f_{j}(p)q_{*p}(\hat{X}_{j}(p)) =$$
$$= \sum_{j} f_{j}(p)X(q(p)) = 1 \cdot X(q(p)) = X(q(p)).$$

4. Suppose $f: M \to N$ is a map, and S is an embedded submanifold of N such that for each $x \in f^{-1}(S)$ the subspaces $T_{f(x)}S$ and $f_*(T_xM)$ span $T_{f(x)}N$. (In this case we say that f is *transverse to* S). Denote dimensions of M, N, S by m, n, s, respectively. Show that $f^{-1}(S)$ is an embedded submanifold of M of dimension m + s - n.

Solution: Fix $x_0 \in f^{-1}(S)$. The notion of a submanifold is local, so we need to find an open neighborhood U of x_0 such that $f^{-1}(S) \cap U$ is an embedded submanifold of U. Since S is a submanifold, there is a neighborhood V of $f(x_0)$ that is mapped by a diffeomorphism ψ to \mathbb{R}^n such that $\psi(V \cap S) = \mathbb{R}^s$. Let π be the projection of \mathbb{R}^n onto the orthogonal complement of \mathbb{R}^s , which will be denoted \mathbb{R}^{n-s} . Since $T_{f(x)}S$ and $f_*(T_xM)$ span $T_{f(x)}N$ for any $x \in f^{-1}(S)$, and in particular, for any $x \in f^{-1}(S \cap V)$, their ψ_* -images span \mathbb{R}^n , and hence, the $\pi_*\psi_*$ image of $f_*(T_xM)$ spans the tangent space of \mathbb{R}^{n-s} at 0. Hence 0 is a regular value for the map $\pi \circ \psi \circ f \colon f^{-1}(V) \to \mathbb{R}^{n-s}$. As $f^{-1}(V \cap S)$ is the preimage of 0 under the map, we conclude that $f^{-1}(V \cap S)$ is an embedded submanifold of $f^{-1}(V)$, which is a neighborhhod of x_0 in M. Finally, $f^{-1}(V \cap S) = f^{-1}(V) \cap f^{-1}(S)$, so $U := f^{-1}(V)$ is the desired neighborhood.

5. Let M be the quotient of S² × S¹ by the Z₂-action given by ι(v, z) = (-v, z̄).
(a) Prove that the fundamental group of M is the infinite diheadral group (the group of self-maps of ℝ generated by two reflections, such as a(t) = -t and b(t) = 2 - t).
(b) Prove that any continuous map from M to S¹ is null-homotopic (you may use the Lifting Criterion as stated e.g. in Proposition 1.33 in Chapter 1 of Hatcher).

Solution: (a) Define two involutions on $S^2 \times \mathbb{R}$ by A(v,t) = (-v, -t) and B(v,t) = (-v, 2-t). Let G be the group of homeomorphisms generated by A, B. Since $A^2 = 1 = B^2$, there are only four kinds of elements of G, namely $(AB)^k$, $(BA)^k$, $(AB)^kA$, $(BA)^kB$ where $k \in \mathbb{Z}$. Now (AB)(v,t) = (v,t-2), and BA(v,t) = (v,t+2), so $(AB)^kA(v,t) = (-v, -t-2k)$ and $(BA)^kB(v,t) = (-v, -t+2k+2)$. The induced G-action on the \mathbb{R} -coordinate is effective, i.e. no nontrivial element acts as identity on the \mathbb{R} -coordinate. Moreover, this G-action on \mathbb{R} is that of an infinite diheadral group. Thus G is isomorphic to the infinite diheadral group.

Given (v_0, t_0) let U be the product of an open hemisphere centered at v_0 with $(t_0 - 1, t_0 + 1)$. Then checking all for types of elements we see that g(U) is disjoint from U for all $g \in G$, so the G-action is wandering, so $S^2 \times \mathbb{R} \to (S^2 \times \mathbb{R})/G$ is a covering map.

Note that $S^2 \times \mathbb{R}$ is simply-connected because it is homotopy equivalent to S^2 , which is simply-connected. Thus the fundamental group of $(S^2 \times \mathbb{R})/G$ is isomorphic to G.

It remains to show that $(S^2 \times \mathbb{R})/G$ is M. Let G_0 by the cyclic subgroup of G generated by AB. Then $(S^2 \times \mathbb{R})/G_0$ is $S^2 \times \mathbb{R}/2\mathbb{Z}$, where the quotient maps $q: S^2 \times \mathbb{R} \to S^2 \times S^1$ takes (v, t) to $(v, e^{\pi i t})$. Note that $q \circ A = \iota \circ q = q \circ B$ as

$$q(A(v,t)) = (-v, e^{-\pi i t}) = (-v, \overline{e^{\pi i t}}) = i(v, e^{\pi i t}) = (-v, \overline{e^{\pi i (2-t)}}) = q(B(v,t))$$

so $(S^2 \times \mathbb{R})/G$ is precisely the quotient of $S^2 \times S^1 = (S^2 \times \mathbb{R})/G_0$ by the \mathbb{Z}_2 -action given by ι , which is M.

(b) Since $\pi_1(M) = G$ is generated by elements of finite order and $\pi_1(S^1) = \mathbb{Z}$ has no elements of finite order, any homomorphism $\pi_1(M) \to \pi_1(S^1)$ is trivial, so by the lifting criterion any continuous map can be lifted to the cover $\mathbb{R} \to S^1$. Since \mathbb{R} is contractible, any map $M \to \mathbb{R}$ is null-homotopic and composing it with $\mathbb{R} \to S^1$ we get a null-homotopy for the original map.

- 6. Show that homeomorphic topological manifolds have the same dimension.
 - (a) Show that any homeomorphism of a topological *n*-manifold onto a topological

m-manifold gives rise to a self-map of S^{n-1} that is homotopic to identity and is a composition of maps $S^{n-1} \to S^{m-1}$ and $S^{m-1} \to S^{n-1}$ (Hint: consider small neighborhoods).

(b) Show that the existence of a map as in (a) implies m = n.

Solution: (a) Let f be a homeomorphism of the *m*-manifold M onto the *n*manifold N. Fix $x \in M$, let y := f(x), and consider a neighborhood V of y in N such that there is a homeomorphism $\psi: V \to \mathbb{R}^n$ taking y to 0. Since $f^{-1}(V)$ is a neighborhood of $x \in M$ there is a neighborhood $U \subset f^{-1}(V)$ of x and a homeomorphism ϕ of U onto \mathbb{R}^m with $\phi(x) = 0$; we may also choose U to have compact closure in $f^{-1}(V)$. Also f(U) is open in N, so there is a neighborhood $W \subset f(U)$ of y, and we may assume that $\psi(W)$ is a round ball $B_{\epsilon}(0)$ around $0 \in \mathbb{R}^n$. Thus $\psi(f(U))$ is a neighbrhood of 0 which contains $B_{\epsilon}(0)$, and $\psi(f(U))$ has compact closure. Consider concentric round spheres $S_R(0)$, $S_r(0)$ with $r < \epsilon$. The inclusion $\iota: S_r(0) \to \mathbb{R}^n \setminus \{0\}$ is homotopic to the map $v \to v \frac{\hat{R}}{r}$ which is a homeomorphism between the two spheres (the most obvious is the straight line homotopy given by $F(t,v) := (1-t)v + tv \frac{R}{r}$ where $F: [0,1] \times S_r(0) \to \mathbb{R}^n \setminus \{0\}$; it does not vanish because no segment $[v, v_{\overline{r}}^{R}]$ passes through 0. On the other hand, ι factors through $\psi(f(U)) \setminus \{0\}$ which is homeomorphic to $U \setminus \{x\}$, which in turn is homeomorphic to $\mathbb{R}^m \setminus \{0\} = S^{m-1} \times (0, 1)$. Thus $\psi(f(U)) \setminus \{0\}$ is homotopy equivalent to S^{m-1} , and pre/post composing the inclusions $S_r(0) \to \psi(f(U)) \setminus \{0\}, \psi(f(U)) \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}$ with these homotopy equivalences we get continuous maps $S_r(0) = S^{n-1} \to S^{m-1}$ and $S^{m-1} \to S^{n-1} = S_R(0)$ whose composition is homotopic to a homeomorphism. (b) Any continuous map $S^l \to S^k$ with l < k is null-homotopic. This can be seen because such a map is homotopic to a smooth map that cannot be onto by Sard's theorem. Finally any non-sujective map between spheres are null-homotopic since once they miss a point one can assume (using stereographic coordinates) that the image of the map is in Euclidean space which is contractible. Thus if $n \neq m$, then one of the two maps above is null-homotopic, and hence so is their composition, but homeomorphisms are homotopy-equivalences so they are not null-homotopic.

- 7. Let T be the torus $S^1 \times S^1$ and $f : S^1 \to T : \theta \mapsto = (\theta, p)$ for some point $p \in S^1$. Finally let X be the space obtained by attaching a 2-cell D^2 to T with the map f.
 - (a) Compute the fundamental group of X.
 - (b) Describe the universal cover of X. You may do this by drawing a picture but make sure the covering map is clear.

Solution: (a) To use Van Kampen's theorem let A' be an open annular neighborhood of the image of f in T and A be the union of A' and the 2-cell D^2 in X. Also

let B' be the annular neighborhood of ∂D^2 in D^2 and B be the union of T and B' in X. Notice that $X = A \cup B$ and $A \cap B$ retracts onto the circle C = image(f). Similarly A retracts to D^2 and B retracts to T. Picking a base point x_0 on C we know $\pi_1(A, x_0) \cong \pi_1(D^2, x_0) = 0$ and $\pi_1(A \cap B, x_0) = \pi_1(C, x_0) = \mathbb{Z}$. Let $i : (A \cap B) \to B$ be the inclusion map. We know $\pi_1(B, x_0) \cong \pi_1(T, x_0) \cong \mathbb{Z} \otimes \mathbb{Z}$ and the isomorphism can be choses so that $i_*(g)$ is a generator of the second factor of $\pi_1(B, x_0)$ where g is a generator of $\pi_1(A \cap B, x_0) \cong \mathbb{Z}$. Now Van Kampen says

$$\pi_1(X, x_0) \cong \frac{\pi_1(A, x_0) * \pi_1(B, x_0)}{\langle i_*(g)(j_*(g))^{-1} = e \rangle}$$

where $j: (A \cap B) \to A$ is the inclusion map. So clearly $i_*(g) = e$ in the free product. Thus we have

$$\pi_1(X, x_0) \cong \frac{(\mathbb{Z} \oplus \mathbb{Z}) * \{e\}}{\mathbb{Z}} = \mathbb{Z}.$$

(b) Let $R = S^1 \times \mathbb{R}$ and $f_i : S^1 \to R$ be given by $f_i(\theta) = (\theta, i)$ for $i \in \mathbb{Z}$. Now let Y = R with a 2-cell D_i^2 glued to R by f_i for each i. We claim that Y is the universal cover of X. To see this we first define the covering map $q : Y \to X$. We map $R \to T$ by $q(\theta, t) = (\theta, (\cos(2\pi t), \sin(2\pi t)))$ (here we are thinking of the second S^1 factor in T as the unit circle in \mathbb{R}^2). Notice that $q \circ f_i = f$ if we choose p = (1, 0). Thus thinking of the map q as a map from R to X and defining q on each D_i^2 to be the identify map $D_i^2 \to D^2$ we have a map form the disjoint union of R and the D_i^2 to X that descends to the quotient space Y. It is clear from construction the each point in X is regularly covered in Y so Y is a covering space of X.

Moreover it is clear that Y is simply connected by an argument similar to that given above. In particular attaching just one of the D_i^2 to R will result in a space with trivial fundamental group. Then attaching further 2-cells will not add to the fundamental group. Thus $q: Y \to X$ is the universal cover of X.