Topology Comprehensive Exam Questions

1. Let S be a knot in R3, i.e. an embedded submanifold diffeomorphic to circle. Let
C =R3\ S, the complement of S in R3. Show that there is a 1-form on C that is not
exact.

Solution: If B be a small ball centered at a point of the knot, then there is a
diffeomorphism ¢: B — R? taking S N B to the z-axis. Consider the standard
angle form df on the complement of the z-axis given by

xdy — ydx

df =
l'2+y2

)

Consider a smooth function f: R?® — R that is identically 1 on the unit ball of
radius 2 about the origin, and that vanishes outside the ball of radius 3. Then fdf
is not exact on the complement of the z-axis because its integral over the unit circle
in the xy-plane is 1, while exact forms integrate to 0 along closed smooth loops.
The form ¢*(fdf) extends to a 1-form on C' by setting it equal to 0 outside B. Tt
is still not exact, because it restricts to a non-exact form on B.

Remark It is possible but considerably harder to arrange the form to be closed
but not exact.

2. Let M be a smooth manifold, and f: M — R is a continuous positive finction. Find
a smooth positive function fy: M — R such that fy < f.

Solution: We know there is a locally finite open cover {IV;} by precompact open
sets and let ¢; be the partition of unity subordinate to this cover. Let m; be the
minumum of f on W;; note that m; > 0 because f > 0 and W, is compact. Thus
¢if > ¢imy for each i. Set fo := 3>, ¢im;. Then fo < f = >, ¢:f, and fy is
a smooth positive function because any x € M has a neighborhood U that lies
intersects only finitely many W;’s, say W1, ... Wy, so foly = Z?Zl ¢jm;, so locally
fo is a sum of positive smooth functions.

Remark. Replacing minimum by maximum we get smooth f; > f. Choosing the
cover fine enough, we can actually show that fy, fi are close to f.

3. Suppose ¢: M — N is a submersion, and X is a vector fields on V. Show that there
is a vector field X on M such that X and X are g-related (that is dg(X(p)) = X (q(p))
for all p € M).



Solution: Submersions are open maps, so for any open U in M we have that
q(U) is an open subset of N. By definition of a submersion and by Rank Theorem
there is an open cover {U,} of M and there are diffeomorphisms v,: R™ — U,
and ¢,: q(Uy) — R™ such that ¢, 0 go1,: R™ — R"™ is the standard projection
forgetting the last k coordinates, where k = m —n. Use ¥4, and (¢,); ! to push the
standard coordinate vector fields from the Euchdean space to U, and ¢(U,), and

denote the resulting coordinate vector fields by -2 —y and 5, respectively. Note that
7, maps first n coordinate vector fields to themselves, and the other k coordinate

vector fields to zero. Hence the same holds for q, ie. q*( ) = -2 for 1 < n and
q*(a%) =0 for i > n. Write Xy, = Doy 28 a - for (unlquely determmed and
necessarily smooth) functions z': ¢(Us) — R. Define a vector field X, on U, by
X, =3 (zfo q) . Then ¢, X, = X|yw.

Let {U;} be a locally finite countable subcover of {U,} and let f; be the corre-
sponding partition of unity. So f;X; is a (smooth) vector field on M. Define
X = Zj f;X;; this is a smooth vector field on M, and for any p € M we check

that X and X are g-related:

(@p(X (1)) = Gup Z fip)X;(p)) = Z Fi(0)a(X;5(p) =

- Z fitp) X (a(p)) =1~ X(q(p)) = X(a(p))-

4. Suppose f: M — N is a map, and S is an embedded submanifold of N such that
for each z € f71(S) the subspaces TS and f.(T,M) span Ty N. (In this case we
say that f is transverse to S). Denote dlmensmns of M, N, S by m,n, s, respectively.
Show that f~!(S) is an embedded submanifold of M of dimension m + s — n.

Solution: Fix zy € f~!(S). The notion of a submanifold is local, so we need to find
an open neighborhood U of zy such that f~'(S) N U is an embedded submanifold
of U. Since S is a submanifold, there is a neighborhood V' of f(xz¢) that is mapped
by a diffeomorphism v to R™ such that (V' N S) = R*. Let 7 be the projection
of R™ onto the orthogonal complement of R*, which will be denoted R"~*. Since

S and fi(T,M) span Tp)N for any x € f~1(S), and in particular, for any
x E f 1(SNV), their 1,-images span R", and hence, the m,1), image of f.(T,M)
spans the tangent space of R"™% at 0. Hence 0 is a regular value for the map
movo fi fHV) — R As f~3(V N S) is the preimage of 0 under the map,
we conclude that f~1(V' N S) is an embedded submanifold of f~!(V'), which is a
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neighborhhod of zy in M. Finally, f~*(VNS) = f~1 (V)N f~1(S), so U := f~1(V)
is the desired neighborhood.

5. Let M be the quotient of S? x S! by the Zy-action given by (v, 2) = (—v, 2).
(a) Prove that the fundamental group of M is the infinite diheadral group (the group
of self-maps of R generated by two reflections, such as a(t) = —t and b(t) = 2 — ¢).
(b) Prove that any continuous map from M to S* is null-homotopic (you may use the
Lifting Criterion as stated e.g. in Proposition 1.33 in Chapter 1 of Hatcher).

Solution: (a) Define two involutions on S? xR by A(v,t) = (—v, —t) and B(v,t) =
(—v,2—t). Let G be the group of homeomorphisms generated by A, B. Since A% =
1 = B2, there are only four kinds of elements of G, namely (AB)*, (BA)*, (AB)* A,
(BA)®B where k € Z. Now (AB)(v,t) = (v,t — 2), and BA(v,t) = (v,t + 2), so
(AB)*A(v,t) = (—v,—t — 2k) and (BA)*B(v,t) = (—v, —t + 2k +2). The induced
G-action on the R-coordinate is effective, i.e. no nontrivial element acts as identity
on the R-coordinate. Moreover, this G-action on R is that of an infinite diheadral
group. Thus G is isomorphic to the infinite diheadral group.

Given (vg,tg) let U be the product of an open hemisphere centered at vy with
(to — 1,tp+1). Then checking all for types of elements we see that g(U) is disjoint
from U for all g € G, so the G-action is wandering, so S? x R — (S? x R)/G is a
covering map.

Note that S? xR is simply-connected because it is homotopy equivalent to S?, which
is simply-connected. Thus the fundamental group of (S? x R)/G is isomorphic to
G.

It remains to show that (S? x R)/G is M. Let Gy by the cyclic subgroup of G
generated by AB. Then (S? x R)/Gy is S? x R/2Z, where the quotient maps
q: S xR — 8% x St takes (v,t) to (v,e™). Note that go A =10qg=¢qo B as

Q(A(Uv t)) = (_U’ B_Mt> = (_Uvﬂ) = i(v’ GWit) = (_U7 em(Q_t)) = Q(B(vat»

so (S? x R)/G is precisely the quotient of S? x ST = (S? x R) /Gy by the Zy-action
given by ¢, which is M.

(b) Since 7 (M) = G is generated by elements of finite order and 71(S') = Z has
no elements of finite order, any homomorphism (M) — m(S') is trivial, so by
the lifting criterion any continuous map can be lifted to the cover R — S*. Since R
is contractible, any map M — R is null-homotopic and composing it with R — S!
we get a null-homotopy for the original map.

6. Show that homeomorphic topological manifolds have the same dimension.
(a) Show that any homeomorphism of a topological n-manifold onto a topological
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m-manifold gives rise to a self-map of S"~! that is homotopic to identity and is a
composition of maps S"7t — 8™ ! and S™! — S"~! (Hint: consider small neighbor-
hoods).

(b) Show that the existence of a map as in (a) implies m = n.

Solution: (a) Let f be a homeomorphism of the m-manifold M onto the n-
manifold N. Fix x € M, let y := f(x), and consider a neighborhood V of y
in N such that there is a homeomorphism ¢: V — R" taking y to 0. Since f~1(V)
is a neigborhood of x € M there is a neighborhood U C f~1(V') of # and a homeo-
morphism ¢ of U onto R™ with ¢(x) = 0; we may also choose U to have compact
closure in f~1(V'). Also f(U) is open in N, so there is a neighborhood W C f(U)
of y, and we may assume that (W) is a round ball B.(0) around 0 € R™. Thus
¥(f(U)) is a neighorhood of 0 which contains B, ( ), and ¥ (f(U)) has compact
closure. Consider concentric round spheres Sg(0), S,(0) with » < e. The inclusion
v 5,(0) — R™\ {0} is homotopic to the map v — v which is a homeomorphism
between the two spheres (the most obvious is the Stralght line homotopy given by
F(t,v) :== (1 — t)v + tvf where F: [0,1] x S,(0) — R™\ {0}; it does not vanish
because no segment [v, v ] passes through 0. On the other hand, ¢ factors through
W(f(U))\{0} which is homeomorphlc to U\ {z}, which in turn is homeomorphic to
R™\ {0} = S™ 1 x (0,1). Thus ¥(f(U))\ {0} is homotopy equivalent to S™! and
pre/post composing the inclusions S, (0) — ¢(f(U))\{0}, ©(f(U))\{0} — R"\{0}
with these homotopy equivalences we get continuous maps S,(0) = S"~1 — §m~1
and S™~1 — S"7! = Sr(0) whose composition is homotopic to a homeomorphism.

(b) Any continuous map S' — S* with [ < k is null-homotopic. This can be seen
because such a map is homotopic to a smooth map that cannot be onto by Sard’s
theorem. Finally any non-sujective map between spheres are null-homotopic since
once they miss a point one can assume (using stereographic coordinates) that the
image of the map is in Euclidean space which is contractible. Thus if n # m, then
one of the two maps above is null-homotopic, and hence so is their composition,
but homeomorphisms are homotopy-equivalences so they are not null-homotopic.

7. Let T be the torus S' x S* and f: S' — T : § —= (0,p) for some point p € S*.
Finally let X be the space obtained by attaching a 2-cell D? to T" with the map f.
(a) Compute the fundamental group of X.

(b) Describe the universal cover of X. You may do this by drawing a picture but
make sure the covering map is clear.

Solution: (a) To use Van Kampen’s theorem let A" be an open annular neighbor-
hood of the image of f in T' and A be the union of A’ and the 2-cell D? in X. Also
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let B’ be the annular neighborhood of 9D? in D? and B be the union of 7" and B’
in X. Notice that X = AU B and AN B retracts onto the circle C' = image(f).
Similarly A retracts to D? and B retracts to T. Picking a base point zy on C
we know (A, x9) & m(D? z9) = 0 and m (AN B,xg) = m(C,z9) = Z. Let
i: (AN B) — B be the inclusion map. We know (B, x¢) = m (T, 20) = Z R Z
and the isomorphism can be choses so that i.(g) is a generator of the second factor
of m (B, xy) where g is a generator of m (AN B, zy) = Z. Now Van Kampen says

(A, xo) * (B, o)
(i:(9)(J<(9)) "t =¢)

where j : (AN B) — A is the inclusion map. So clearly 7,(g) = e in the free
product. Thus we have

I

7T1(X,$0)

(Z ®Z) * {e} _
Z

I

7T1(X7 $0) 7.

(b) Let R = S xR and f; : S* — R be given by fi(0) = (0,1) for i« € Z. Now
let Y = R with a 2-cell D? glued to R by f; for each i. We claim that Y is the
universal cover of X. To see this we first define the covering map ¢q : ¥ — X.
We map R — T by q(0,t) = (0, (cos(2nt),sin(27t))) (here we are thinking of the
second S factor in T' as the unit circle in R?). Notice that q o f; = f if we choose
p = (1,0). Thus thinking of the map ¢ as a map from R to X and defining ¢ on
each D? to be the identify map D? — D? we have a map form the disjoint union
of R and the D? to X that descends to the quotient space Y. It is clear from
construction the each point in X is regularly covered in Y so Y is a covering space

of X.

Moreover it is clear that Y is simply connected by an argument similar to that
given above. In particular attaching just one of the D? to R will result in a space
with trivial fundamental group. Then attaching further 2-cells will not add to the
fundamental group. Thus ¢ : Y — X is the universal cover of X.
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