Real Analysis Exam

[1] For $\varepsilon>0$ and $k>0$, denote by $A(k, \varepsilon)$ the set of $x \in \mathbb{R}$ such that

$$
\left|x-\frac{p}{q}\right| \geq \frac{1}{k|q|^{2+\varepsilon}} \quad \text { for any integers } p, q \text { with } q \neq 0
$$

Show that $\mathbb{R} \backslash \bigcup_{k=1}^{\infty} A(k, \varepsilon)$ is of Lebesgue measure zero.
[2] Fix an enumeration of all rational numbers: $r_{1}, r_{2}, r_{3}, \cdots$. For $x \in \mathbb{R}$, define

$$
f(x)=\text { the cardinal number of the set }\left\{n:\left|x-r_{n}\right| \leq \frac{1}{2^{n}}\right\}
$$

(a) Show that f is Lebesgue measurable.
(b) Evaluate $\int_{\mathbb{R}} f(x) d x$.
[3] Let X be a set and \mathcal{M} a σ-algebra of subsets of X (i.e., $\emptyset, X \in \mathcal{M}$ and \mathcal{M} is closed under taking complements and countable unions of sets in \mathcal{M}).
(a) If μ is an extended real valued function on \mathcal{M}, what conditions must μ satisfy in order to be called a measure?
(b) Take $X=\mathbb{R}^{n}$ and let \mathcal{M} be the set of all subsets of \mathbb{R}^{n}. Is \mathcal{M} a σ-algebra?
(c) With X and \mathcal{M} as in (b) above, let $d \in[0, n]$ and define d-dimensional Hausdorff measure $\mathcal{H}^{d}: \mathcal{M} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\mathcal{H}^{d}(A)=\lim _{r \searrow 0}\left(\inf \left\{\sum_{j=1}^{\infty}\left[\operatorname{diam}\left(A_{j}\right)\right]^{d}: A \subset \cup_{j=1}^{\infty} A_{j}, \operatorname{diam}\left(A_{j}\right) \leq r\right\}\right) \tag{1}
\end{equation*}
$$

Here $\operatorname{diam}\left(A_{j}\right)=\sup \left\{\|x-y\|: x, y \in A_{j}\right\}$ is the diameter of A_{j}. Show that the limit in (1), and hence \mathcal{H}^{d}, is well defined.
(d) Is \mathcal{H}^{1} a measure? Justify your answer.
[4] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be in $L^{1}(\mathbb{R})$, and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function of period 1 and $\int_{0}^{1} g(x) d x=0$. Find

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(x) g(n x) d x
$$

Hint: You may use the fact that step functions are dense in $L^{1}(\mathbb{R})$.
[5] Let $f:[0,1] \rightarrow[0,1]$ be continuously differentiable and satisfy $f(0)=0, f(1)=1$.
(a) Show that the Lebesgue measure of

$$
f\left(\left\{x \in[0,1]:\left|f^{\prime}(x)\right|<1 / m\right\}\right)
$$

is less than or equal to $1 / \mathrm{m}$.
(b) Use part (a) to show that there is at least one horizontal line $y=y_{0} \in[0,1]$ which is nowhere tangent to the graph of f. Recall that the graph of f is $\{(x, f(x)): x \in$ $[0,1]\}$.
[6] Let X, Y, and Z be metric spaces and $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps. Assume further that

- X is compact;
- f is surjective and continuous; and
- $g \circ f$ is continuous.

Show that g is continuous.
[7] Let H be a real Hilbert space with norm $\|\|$ and inner product \langle,$\rangle . Assume that$ $B: H \times H \rightarrow \mathbb{R}$ is bilinear (that is, $B(x, y)$ is linear in x for any fixed y and is linear in y for any fixed x). Assume further that there are positive constants C_{1} and C_{2} such that

$$
\begin{aligned}
|B(x, y)| & \leq C_{1}\|x\|\|y\| \quad x \in H, y \in H \\
|B(x, x)| & \geq C_{2}\|x\|^{2} \quad x \in H
\end{aligned}
$$

(a) Show that there is a bounded linear operator $A: H \rightarrow H$ such that $B(x, y)=\langle A x, y\rangle$ for all $x, y \in H$.
(b) Show that the operator A is one-to-one and onto.
[8] Let X be a complex Banach space, $I: X \rightarrow X$ denote the identity, and $S, T: X \rightarrow X$ be bounded linear operators. Denote by $\sigma(A) \subset \mathbb{C}$ the spectrum of operator A.
(a) Show that $I-S T$ has a bounded inverse if and only if $I-T S$ has a bounded inverse.
(b) Show that $\sigma(S T) \backslash\{0\}=\sigma(T S) \backslash\{0\}$.
(c) Show that $S T-T S \neq I$.

Algebra Exam

1. Let $n \geq 5$. Prove the following:
(a) The only non-trivial normal subgroups of S_{n} is A_{n}.
(b) S_{n} has no subgroup of index r, where $2<r<n$.
(c) List the normal subgroups of S_{4}.
2. (a) Let H be a proper subgroup of a finite group G. Show that G is not union of all conjugates of H.
(b) Give an example of a group G, having a subgroup H, and an element a, such that $a H a^{-1} \subset H$, but $a H a^{-1} \neq H$.
3. A commutative ring A is called a Boolean ring if $x^{2}=x$ for all $x \in A$.
(a) Prove that if a Boolean ring contains no divisors of 0 it is either $\{0\}$ or is isomorphic to $\mathbb{Z} /(2)$. Deduce that in a Boolean ring every prime ideal is maximal.
(b) Prove that in a Boolean ring every ideal $I \neq A$ is the intersection of the prime ideals containing I.
4. (a) Let R be a commutative ring with identity. Prove that every proper ideal I of R is contained in some maximal proper ideal.
(b) Let k be a field, $R=k[x, y]$ and $I=\left(x^{2}+y^{2}-1\right)$. Exhibit a maximal proper ideal containing I. Prove your claim.
5. Let f be a polynomial of degree n with coefficients in a field k of characteristic 0 .
(a) What is meant by a splitting field of f ?
(b) Let L be a splitting field of f over k. Prove that $[L: k]$ is a divisor of n !.
6. Let F_{q} denote the finite field with q elements. For a prime p, consider the field $F_{p^{n}}$ containing F_{p} as a subfield.
(a) Prove that the group of automorphisms of $F_{p^{n}}$ is cyclic of order n.
(b) What is meant by a separable field extension?
(c) What is meant by a normal field extension ?
(d) Is the field extension $F_{p^{n}}$ over F_{p} separable and/or normal ?
7. Prove that a real quadratic form $Q\left(X_{1}, \ldots, X_{n}\right)$ can always be reduced to the form, $Q\left(X_{1}, \ldots, X_{n}\right)=\lambda_{1} X_{1}^{2}+\cdots+\lambda_{n} X_{n}^{2}$, with $\lambda_{i} \in \mathbb{R}$, using a linear change in co-ordinates.
8. Recall that $S L(n, \mathbb{R})=\left\{A \in M_{n \times n}(\mathbb{R}) \mid \operatorname{det}(A)=1\right\}$ and $s l(n, \mathbb{R})=\left\{A \in M_{n \times n}(\mathbb{R}) \mid \operatorname{tr}(A)=\right.$ $0\}$. Prove that, $\exp (t A) \in S L(n, \mathbb{R})$ for all $t \in \mathbb{R}$ if and only if $A \in \operatorname{sl}(n, \mathbb{R})$.

Fall 2002 by XYC Good luck!
[1] For $\varepsilon>0$ and $k>0$, denote by $A(k, \varepsilon)$ the set of $x \in \mathbb{R}$ such that

$$
\left|x-\frac{p}{q}\right| \geq \frac{1}{k|q|^{2+\varepsilon}} \quad \text { for any integers } p, q \text { with } q \neq 0
$$

Show that $\mathbb{R} \backslash \bigcup_{k=1}^{\infty} A(k, \varepsilon)$ is of Lebesgue measure zero.

Fix an arbitrary integer $L>0$. We'll show that $[-L, L] \backslash \bigcup_{k=1}^{\infty} A(k, \varepsilon)$ is of measure zero. Let $k \geq 1$. For any $x \in[-L, L] \backslash A(k, \varepsilon)$, there are integers $p, q(q>0)$ such that

$$
\left|x-\frac{p}{q}\right|<\frac{1}{k q^{2+\varepsilon}} .
$$

We have

$$
\left|\frac{p}{q}\right| \leq|x|+\left|x-\frac{p}{q}\right| \leq L+\frac{1}{k q^{2+\varepsilon}}
$$

Hence,

$$
|p| \leq q L+\frac{1}{k q^{1+\varepsilon}}<q L+1
$$

This shows

$$
[-L, L] \backslash A(k, \varepsilon) \subset \bigcup_{q=1}^{\infty} \bigcup_{p=-q L}^{q L}\left(\frac{p}{q}-\frac{1}{k q^{2+\varepsilon}}, \frac{p}{q}+\frac{1}{k q^{2+\varepsilon}}\right)
$$

and thus

$$
\mu([-L, L] \backslash A(k, \varepsilon)) \leq \sum_{q=1}^{\infty} \sum_{p=-q L}^{q L} \frac{2}{k q^{2+\varepsilon}}=\frac{1}{k} \sum_{q=1}^{\infty} \frac{2(2 q L+1)}{q^{2+\varepsilon}}
$$

The infinite series on the right hand side is convergent for $\varepsilon>0$. It follows that

$$
\mu\left([-L, L] \backslash \bigcup_{k=1}^{\infty} A(k, \varepsilon)\right)=\mu\left(\bigcap_{k=1}^{\infty}([-L, L] \backslash A(k, \varepsilon))\right) \leq \inf _{k \geq 1}\left(\frac{1}{k} \sum_{q=1}^{\infty} \frac{2(2 q L+1)}{q^{2+\varepsilon}}\right)=0
$$

[2] Fix an enumeration of all rational numbers: $r_{1}, r_{2}, r_{3}, \cdots$. For $x \in \mathbb{R}$, define

$$
f(x)=\text { the cardinal number of the set }\left\{r_{n}| | x-r_{n} \left\lvert\, \leq \frac{1}{2^{n}}\right.\right\}
$$

(a) Show that f is Lebesgue measurable.
(b) Evaluate $\int_{\mathbb{R}} f(x) d x$.

Part (a):
Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be the characteristic function of the interval $\left[r_{n}-2^{-n}, r_{n}+2^{-n}\right]$:

$$
f(x)= \begin{cases}1 & \left|x-r_{n}\right| \leq 2^{-n} \\ 0 & \left|x-r_{n}\right|>2^{-n}\end{cases}
$$

Then, $\sum_{n=1}^{N} f_{n}$ are step functions and monotonically increases to the given function f as $N \rightarrow \infty$:

$$
f(x)=\sum_{n=1}^{\infty} f_{n}(x)=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} f_{n}(x) .
$$

Thus, the limit f is measurable.
Part (b):
Compute

$$
\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{L^{1}(\mathbb{R})}=\sum_{n=1}^{\infty} \int_{\mathbb{R}} f_{n}(x) d x=\sum_{n=1}^{\infty} \int_{r_{n}-2^{-n}}^{r_{n}+2^{-n}} 1 d x=\sum_{n=1}^{\infty} 2^{1-n}=2
$$

By Lebesgue's monotone convergence theorem (or by the completeness of $L^{1}(\mathbb{R})$), $f=\sum f_{n}$ is Lebesgue integrable and

$$
\int_{\mathbb{R}} f(x) d x=\sum_{n=1}^{\infty} \int_{\mathbb{R}} f_{n}(x) d x=2 .
$$

Solutions

John McCuan

August 27, 2002
3. Let X be a set and \mathcal{M} a σ-algebra of subsets of X (i.e., $\phi, X \in \mathcal{M}$ and \mathcal{M} is closed under taking complements and countable unions of sets in \mathcal{M}).
(a) If μ is an extended real valued function on \mathcal{M}, what conditions must μ satisfy in order to be called a measure?
Answer: One usually requires that μ be nonnegative, countably additive $\left(\mu\left(\cup A_{j}\right)=\sum \mu\left(A_{j}\right)\right.$ where the A_{j} are disjoint sets), and satisfy $\mu(\phi)=0$.

It is also acceptable to require only countable subadditivity $\left(\mu\left(\cup A_{j}\right) \leq\right.$ $\left.\sum \mu\left(A_{j}\right)\right)$. This is sometimes called an outer measure.
(b) Take $X=\mathbb{R}^{n}$ and let \mathcal{M} be the set of all subsets of \mathbb{R}^{n}. Is \mathcal{M} a σ-algebra?

Answer: Yes clearly, since all conditions required of a σ-algebra involve nothing more than having certain sets in \mathcal{M}; all possible sets are in \mathcal{M}.
(c) With X and \mathcal{M} as in (b) above, let $d \in[0, n]$ and define d-dimensional Hausdorff measure $\mathcal{H}^{d}: \mathcal{M} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\mathcal{H}^{d}(A)=\operatorname{limiminf}_{r \backslash 0}\left\{\sum_{j=1}^{\infty}\left[\operatorname{diam}\left(A_{j}\right)\right]^{d}: A \subset \cup_{j=1}^{\infty} A_{j}, \operatorname{diam}\left(A_{j}\right) \leq r\right\} \tag{1}
\end{equation*}
$$

Here, $\operatorname{diam}\left(A_{j}\right)=\sup \left\{\|x-y\|: x, y \in A_{j}\right\}$ is the diameter of A_{j}. Show that the limit in (1), and hence \mathcal{H}^{d}, is well defined.
Solution: The infemum is a nondecreasing function of r. Therefore, the limit clearly exists. Technically, one could call the sets appearing after the liminf something like $B(r)$ and observe that $B\left(r_{1}\right) \subset B\left(r_{2}\right)$ when $r_{1} \leq r_{2}$. The infemum of a subset of $B\left(r_{2}\right)$ must be at least as great as the infimum of $B\left(r_{2}\right)$.
(d) Is \mathcal{H}^{1} a measure? Justify your answer.

Answer: According to the first definition, the answer is "no" for the following reason. One of the "big theorems" of real analysis, is that given any translation invariant measure on \mathbb{R} for which the measure of an interval is its length, there exists a non-measurable set. Since we have defined \mathcal{H}^{d} on all subsets, and it's easy to check that \mathcal{H}^{d} is translation invariant, we do not have a measure, as long as the measure of an interval is its length (actually any finite nonzero number). It is easily checked that this holds for \mathcal{H}^{1}.

On the other hand, if you take the second definition (outer measure), then \mathcal{H}^{d} is one, and one has more work to do. First of all, $\mathcal{H}_{r}^{d}=\inf B(r)$ is a measure. The only thing to check, really, is subadditivity on an arbitrary sequence of sets A_{j}. Let $\left\{C_{j k}\right\}_{k}$ be any countable cover of A_{j} by sets with diameter less than r. Since the doubly indexed collection $\left\{C_{j k}\right\}_{k, j}$ covers the union, we have

$$
\mathcal{H}_{r}^{d}\left(\cup A_{j}\right) \leq \sum_{k} \sum_{j}\left[\operatorname{diam}\left(C_{j k}\right)\right]^{d}
$$

Notice that the left side doesn't depend on the $C_{j k}$. Thus, we can take infema over collections of $\left\{C_{j k}\right\}_{k}$ one j at a time to obtain

$$
\begin{equation*}
\mathcal{H}_{r}^{d}\left(\cup A_{j}\right) \leq \sum_{j} \mathcal{H}_{r}^{d}\left(A_{j}\right) \tag{2}
\end{equation*}
$$

Since \mathcal{H}_{r}^{d} satisfies (2), we can use the monotonicity of $\mathcal{H}_{r}^{d}=\inf B(r)$ in r to obtain

$$
\mathcal{H}_{r}^{d}\left(\cup A_{j}\right) \leq \sum_{j} \mathcal{H}^{d}\left(\cup A_{j}\right)
$$

Notice that the right side is independent of r. Taking the limit as $r \rightarrow 0$ gives the result.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be in $L^{1}(\mathbb{R})$, and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function of period 1 with $\int_{0}^{1} g(x) d x=0$. Find

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(x) g(n x) d x
$$

Hint: You may use the fact that step functions are dense in L^{1}.
Solution: This is a version of the Riemann-Lebesge Theorem.
Let $\epsilon>0$. Let f_{ϵ} be a step function with

$$
\int\left|f_{\epsilon}-f\right|<\epsilon
$$

and let $M>0$ such that

$$
\left|\int_{-M}^{M} f(x) d x-\int_{-\infty}^{\infty} f(x) d x\right|<\epsilon .
$$

For every ϵ,

$$
\begin{aligned}
\left|\int_{-\infty}^{\infty} f(x) g(n x) d x\right| & \leq\left|\int_{-M}^{M} f(x) g(n x) d x-\int_{-\infty}^{\infty} f_{\epsilon} g(x) g(n x) d x\right| \\
& +\left|\int_{-M}^{M} f_{\epsilon}(x) g(n x) d x\right| \\
\leq & 2 G \epsilon+\left|\int_{-M}^{M} f_{\epsilon}(x) g(n x) d x\right|
\end{aligned}
$$

where $G=\sup _{x \in \mathbb{R}}|g(x)|$.
We can write

$$
f_{\epsilon}(x)=\sum_{i=1}^{k} a_{i} \chi_{\left[x_{i-1}, x_{i}\right]}(x)
$$

on $[-M, M]$, for some constants a_{1}, \ldots, a_{k} where $x_{0}=-M<x_{1}<\cdots<$ $x_{k}=M$. Then

$$
\left|\int_{-M}^{M} f_{\epsilon}(x) g(n x) d x\right| \leq \sum_{i=1}^{k}\left|a_{i}\right|\left|\int_{x_{i-1}}^{x_{i}} g(n x) d x\right|
$$

Changing variables, we get

$$
\begin{aligned}
\left|\int_{x_{i-1}}^{x_{i}} g(n x) d x\right| & =\left|\frac{1}{n} \int_{n x_{i-1}}^{n x_{i}} g(\xi) d \xi\right| \\
& =\frac{1}{n}\left|\int_{n x_{i-1}}^{\left\lceil n x_{i-1}\right\rceil} g(\xi) d \xi+\int_{\left\lfloor n x_{i}\right\rfloor}^{n x_{i}} g(\xi) d \xi\right|
\end{aligned}
$$

where \rceil and \rfloor are the "least integer greater than" and "greatest integer less than" functions respectively. Therefore,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left|\int_{-M}^{M} f_{\epsilon}(x) g(n x) d x\right| & \leq k \max \left\{a_{i}\right\} \limsup _{n \rightarrow \infty}\left(\frac{1}{n} 2 G\right) \\
& =0
\end{aligned}
$$

Thus, for every $\epsilon>0$,

$$
\limsup _{n \rightarrow \infty}\left|\int_{-\infty}^{\infty} f(x) g(n x) d x\right| \leq 2 G \epsilon
$$

Since ϵ is arbitrary,

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(x) g(n x) d x=0
$$

5. Let $f:[0,1] \rightarrow[0,1]$ be continuously differentiable and satisfy $f(0)=0$, $f(1)=1$.
(a) Show that the Lebesgue measure of

$$
f\left(\left\{x \in[0,1]:\left|f^{\prime}(x)\right|<1 / m\right\}\right)
$$

is less than or equal to $1 / m$.
(b) Use part (a) to show that there is at least one horizontal line $y=y_{0} \in$ $[0,1]$ which is nowhere tangent to the graph of f. Recall that the graph of f is $\{(x, f(x)): x \in[0,1]\}$.
Solution: (This is a special case of Sard's Theorem.)
We will show that $B=\left\{f(x): x \in[0,1], f^{\prime}(x)=0\right\}$ has measure zero. (Note that any $y_{0} \notin B$ satisfies the requirements of the problem since whenever $x \in[0,1]$ and $f(x)=y_{0} \notin B$, we have $y_{0} \in[0,1]$ and must have $f^{\prime}(x) \neq 0$.)

We first show that $B=\cap_{m=1}^{\infty} B_{m}$ where $B_{m}=f\left(A_{m}\right)$ and $A_{m}=\{x \in$ $\left.[0,1]:\left|f^{\prime}(x)\right|<1 / m\right\}$ is the set given in the hint. On the one hand, if $y \in B$, then $y=f(x)$ for some $x \in[0,1]$ with $f^{\prime}(x)=0$. Clearly, $x \in A_{m}$ for all m, so $B \subset \cap B_{m}$. On the other hand, if $y \in \cap B_{m}$, then $y=f\left(x_{m}\right)$ for some $x_{m} \in[0,1]$ with $f^{\prime}\left(x_{m}\right)=0$. Since $[0,1]$ is compact, we can take a converging subsequence $x_{m_{j}} \rightarrow x_{0} \in[0,1]$ and by continuity $f\left(x_{0}\right)=y$ and $f^{\prime}\left(x_{0}\right)=0$. This means $y \in B$.

The estimate of the measure of $B_{m}=f\left(A_{m}\right)$ comes from the change of variables formula $\int_{f(A)} 1=\int_{A}\left|f^{\prime}\right|$. Strictly speaking, this only holds on sets where f^{\prime} does not change sign, but we can split $f\left(A_{m}\right)$ into $\{f(x): x \in$ $\left.[0,1], 0 \leq f^{\prime}(x)<1 / m\right\}$ and $\left\{f(x): x \in[0,1],-1 / m \leq f^{\prime}(x) \leq 0\right\}$, and we still get an inequality:

$$
\mathcal{L}\left(B_{m}\right)=\mathcal{L}\left(f\left(A_{m}\right)\right)=\int_{f\left(A_{m}\right)} 1 \leq \int_{A_{m}}\left|f^{\prime}\right| \leq 1 / m
$$

Since $B_{m+1} \subset B_{m}$,

$$
\mathcal{L}(B)=\lim _{m \rightarrow \infty} \mathcal{L}\left(B_{m}\right)=0 .
$$

[6] Let X, Y, and Z be metric spaces and $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps. Assume further that

- X is compact;
- f is surjective and continuous; and
- $g \circ f$ is continuous.

Show that g is continuous.

Proof 1: Supposing that g is discontinuous at $y \in Y$, we'll derive a contradiction. From the discontinuity, there is a point sequence

$$
\begin{equation*}
y_{n} \rightarrow y \text { in } Y \tag{*}
\end{equation*}
$$

but $g\left(y_{n}\right) \nrightarrow g(y)$ in Z. By taking a subsequence if necessary, we may, without loss of generality, assume that

$$
\begin{equation*}
d\left(g\left(y_{n}\right), g(y)\right) \geq \varepsilon_{0}>0 \quad \text { for all } n \tag{**}
\end{equation*}
$$

where ε_{0} is a positive constant.
Since f is surjective, for every y_{n} there is a point $x_{n} \in X$ such that $f\left(x_{n}\right)=y_{n}$. Since X is compact, we can subtract a convergent subsequence $\left\{x_{k_{n}}\right\}: x_{k_{n}} \rightarrow x$ in X. By the continuity of f and $g \circ f$, we have

$$
\begin{array}{ll}
(* * *) & y_{k_{n}}=f\left(x_{k_{n}}\right) \rightarrow f(x), \\
(* * * *) & g\left(y_{k_{n}}\right)=g \circ f\left(x_{k_{n}}\right) \rightarrow g \circ f(x) .
\end{array}
$$

By $\left({ }^{*}\right)$ and $\left({ }^{* * *}\right)$, we get $y=f(x)$. Combined with $\left({ }^{* * * *)}\right.$, it follows that $g\left(y_{k_{n}}\right) \rightarrow g(y)$, contradicting the supposition $\left({ }^{* *}\right)$.

Proof 2: Only need to show that for any closed subset $C \subset Z, g^{-1}(C)$ is closed in Y.
By the continuity of $g \circ f,(g \circ f)^{-1}(C)$ is a closed subset of X.
Since any closed subset of a compact space is compact, $(g \circ f)^{-1}(C)$ is compact.
Since the continuous image of a compact set is compact, $f\left((g \circ f)^{-1}(C)\right)$ is compact.
Since any compact subset of a Hausdorff space is closed, $f\left((g \circ f)^{-1}(C)\right)$ is closed in Y.
The surjectivity of f implies $f\left((g \circ f)^{-1}(C)\right)=g^{-1}(C)$.
Therefore, $g^{-1}(C)$ is a closed subset of Y.
[7] Let H be a real Hilbert space with norm $\|\|$ and inner product \langle,$\rangle . Assume that$ $B: H \times H \rightarrow \mathbb{R}$ is bilinear (that is, $B(x, y)$ is linear in x for any fixed y and is linear in y for any fixed x). Assume further that there are positive constants C_{1} and C_{2} such that

$$
\begin{aligned}
& |B(x, y)| \leq C_{1}\|x\|\|y\| \quad x \in H, y \in H \\
& |B(x, x)| \geq C_{2}\|x\|^{2} \quad x \in H
\end{aligned}
$$

(a) Show that there is a bounded linear operator $A: H \rightarrow H$ such that $B(x, y)=\langle A x, y\rangle$ for all $x, y \in H$.
(b) Show that the operator A is one-to-one and onto.

Part (a): For any fixed $x \in H$, the correspondence $H \rightarrow \mathbb{R}, y \mapsto B(x, y)$ is a bounded linear functional with norm bound $\|B(x, \cdot)\| \leq C_{1}\|x\|$. By Riesz's representation theorem, there exists a unique $A(x) \in H$ such that

$$
\begin{equation*}
B(x, y)=\langle A(x), y\rangle \quad \text { for all } y \in H \tag{}
\end{equation*}
$$

This defines an operator $A: H \rightarrow H$.
Let's first show that A is linear. For any $x_{1}, x_{2} \in H, c_{1}, c_{2} \in \mathbb{R}$, and any $y \in H$, we have

$$
\begin{aligned}
\left\langle A\left(c_{1} x_{1}+c_{2} x_{2}\right), y\right\rangle & =B\left(c_{1} x_{1}+c_{2} x_{2}, y\right) & & \left(\text { by }\left(^{*}\right)\right) \\
& =c_{1} B\left(x_{1}, y\right)+c_{2} B\left(x_{2}, y\right) & & \text { (since } B \text { is bilinear) } \\
& =c_{1}\left\langle A\left(x_{1}\right), y\right\rangle+c_{2}\left\langle A\left(x_{2}\right), y\right\rangle & & \text { (by } \left.\left(^{*}\right)\right) \\
& =\left\langle c_{1} A\left(x_{1}\right)+c_{2} A\left(x_{2}\right), y\right\rangle & & \text { (since the inner product is bilinear). }
\end{aligned}
$$

Since $y \in H$ is arbitrary, it follows that $A\left(c_{1} x_{1}+c_{2} x_{2}\right)=c_{1} A\left(x_{1}\right)+c_{2} A\left(x_{2}\right)$.
Next we prove the boundedness of A. For any $x \in H$, we have

$$
\|A x\|^{2}=|\langle A x, A x\rangle|=|B(x, A x)| \leq C_{1}\|x\|\|A x\|,
$$

or, equivalently, $\|A x\| \leq C_{1}\|x\|$. Thus, A is a bounded operator and $\|A\| \leq C_{1}$.
Part (b): Injectivity: We shall show $\operatorname{Kernel}(A)=0$. Let $A x=0$. We have

$$
0=|\langle A x, x\rangle|=|B(x, x)| \geq C_{2}\|x\|^{2} .
$$

Thus, $x=0$.
Surjectivity: We need to show Range $(A)=H$. Since A is continuous, Range (A) is a closed subspace of the Hilbert space H. It suffices to prove that the orthogonal complement of Range (A) is 0 . Let x be in the orthogonal complement. Then

$$
0=|\langle A x, x\rangle|=|B(x, x)| \geq C_{2}\|x\|^{2}
$$

Thus, $x=0$.
[8] Let X be a complex Banach space, $I: X \rightarrow X$ denote the identity, and $S, T: X \rightarrow X$ be bounded linear operators. Denote by $\sigma(A) \subset \mathbb{C}$ the spectrum of operator A.
(a) Show that $I-S T$ has a bounded inverse if and only if $I-T S$ has a bounded inverse.
(b) Show that $\sigma(S T) \backslash\{0\}=\sigma(T S) \backslash\{0\}$.
(c) Show that $S T-T S \neq I$.

Part (a): By summetry, it suffices to consider the "if" part. Assuming that $I-T S$ has a bounded inverse, we shall prove that $I-S T$ has a bounded inverse too.

We show that the bounded operator $I+S(I-T S)^{-1} T$ gives the inverse of $I-S T$:

$$
\begin{aligned}
{[I+} & \left.S(I-T S)^{-1} T\right](I-S T) \\
& =I-S T+S(I-T S)^{-1} T-S(I-T S)^{-1} T S T \\
& =I-S T+S(I-T S)^{-1} T+S(I-T S)^{-1}[-I+(I-T S)] T \\
& =I-S T+S(I-T S)^{-1} T-S(I-T S)^{-1} T+S(I-T S)^{-1}(I-T S) T \\
& =I, \quad(\text { the 2nd term }+ \text { the last term }=0, \text { and the 3rd term }+ \text { 4th term }=0) \\
(I- & S T)\left[I+S(I-T S)^{-1} T\right] \\
& =I-S T+S(I-T S)^{-1} T-S T S(I-T S)^{-1} T \\
& =I-S T+S(I-T S)^{-1} T+S[-I+(I-T S)](I-T S)^{-1} T \\
& =I-S T+S(I-T S)^{-1} T-S(I-T S)^{-1} T+S T \\
& =I .
\end{aligned}
$$

Part (b): For $c \in \mathbb{C} \backslash 0$, we have the following equivalence:

$$
\begin{aligned}
c \in \sigma(T S) & \Longleftrightarrow c I-T S=c\left(I-c^{-1} T S\right) \text { has no bounded inverse } \\
& \Longleftrightarrow I-c^{-1} T S \text { has no bounded inverse } \\
& \Longleftrightarrow I-S\left(c^{-1} T\right)=I-c^{-1} S T \text { has no bounded inverse } \quad \text { (by Part (a)) } \\
& \Longleftrightarrow c I-S T \text { has no bounded inverse } \\
& \Longleftrightarrow c \in \sigma(S T) .
\end{aligned}
$$

Part (c): Suppose that $S T-T S=I$. Since $S T$ and $T S$ are bounded operators in a complex Banach space $X, \sigma(S T)$ and $\sigma(T S)$ are nonempty compact sets.

If $0 \in \sigma(T S)$, then $1 \in \sigma(S T)$ since $S T=I+T S$. By part (b), we have $1 \in \sigma(T S)$. Using $S T=I+T S$ again, we see $2 \in \sigma(S T)$. Repeating this argument, we infer that all positive integers are in $\sigma(S T)$, contradicting the boundedness of $S T$.

If $0 \in \sigma(S T)$, a similar argument shows that all negative integers are in $\sigma(T S)$, a contradiction.
It remains to consider the case where $0 \notin \sigma(T S)$ and $0 \notin \sigma(S T)$. In this case, Part (b) implies $\sigma(T S)=\sigma(S T)$. Combined with the asssumption $S T=I+T S$, it follows that the nonempty set $\sigma(S T)$ has a translational invariance:

$$
\sigma(S T)=1+\sigma(T S)=1+\sigma(S T)
$$

In particular, $\sigma(S T)$ has to be unbounded. This contradicts the boundedness of $S T$.

