
Solutions for the Analysis Qualifying Exam, Fall 2003.

Solve 5 of the following seven problems.

(1) Let f be a continuous function on [0, 1] such that f(0) = f(1). Show that for each
positive integers N , there exists a number c so that f(c + 1/N) = f(c).

SOLUTION Extend f periodically, and define g(x) = f(x)− f(x− 1/N). If we can find
x1 and x2 such that g(x1) is positive and g(x2) is negative, then by the Intermediate Value
Theorem, g(c) = 0 for some c between 1/j and 1/k. But this means that f(c+1/N) = f(c).

This is good progress – all that remains is to find x1 and x2. We haven’t yet used the
fact that f(0) = f(1), so lets use that.

Telescoping the sum,

N−1∑
j=1

g(j/N) =
N−1∑
j=1

(f(j/N)− f((j − 1)/N))

= f(1) = f(0) = 0 .

If each g(1/j) is zero, we are done – take c = 0. Otherwise, since the sum is zero, there
must be both positive and negative terms. Hence there exist j and k with 1 ≤ j < k ≤ N
and g(1/j)g(1/k) < 0. This gives us our x1 and x2.

(2) (a) Let X be the Banach space C([0, 1]), and let B be the closed unit ball in X. Does
every bounded linear function on X assume a maximum on B? If so, prove that this is
the case. If not, give an example of a bounded linear function that does not assume its
maximum on B.

(b) Let X be the Banach space L2([0, 1]), with respect to Lebesgue measure, and let B be
the closed unit ball in X. Does every bounded linear function on X assume a maximum on
B? If so, prove that this is the case. If not, give an example of a bounded linear function
that does not assume its maximum on B.

SOLUTION For this problem, think of the Banach–Alaoglu Theorem. This says that if
X∗ is the dual to some Banach space X, then the unit ball in X∗ is compact in the weak–∗
topology.

In the case that X is L2([0, 1]), we can identify X and X∗ in the usual way (Riesz
representation), and so the unit ball is weakly compact. Since bounded linear functionals
are continuous, and since continuous functions assume their maxima on compact sets,
every bounded linear functional on L2([0, 1]) assumes its maximum.

Alternate proofs for the L2 case could be based on the projection lemma.
Now for part (a), C([0, 1]) is not the dual of a Banach space, and so we should look for

a counter example. Linear functionals on C([0, 1]) are signed Borel measures, and we can
look for a counter example of the form dµ = f(x)dx where dx denotes Lebesgue measure.
That is, let

Λf (φ) =
∫ 1

0

φ(x)f(x)dx .
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We want to choose f so that ‖Λf‖ =
∫ 1

0
|f(x)|dx = 1, but∫ 1

0

φ(x)f(x)dx < max
0≤x≤1

|φ(x)|

for all φ ∈ C([0, 1]). Take

f(x) =
{

1, 0 ≤ x ≤ 1/2
−1, 1/2 < x ≤ 1 .

(3) SOLUTION A great many “wierd function” constructions are done with a “moving
rescaled blip”. This strategy, which is natural to try, works here.

Let µ be Lebesgue measure on R. A measurable function f on R is said to be
unbounded near every point if for every n,

µ({x : f(x) > n} ∩ U) > 0

for every open set U . Is there a function f that is unbounded near every point and such
that f ∈ Lp(R) for each p with 1 ≤ p < ∞? If not, prove that there is no such function.
If so, give a construction, and prove that the function you construct has the required
properties.

Let g(x) be any non negative continuous function such that g(0) = 1, g(x) ≤ 1 for
all x, and

∫
R

g(x)dx = 1. Let {qn} be some enumeration of the rationals, and for each
positive integer n, define

gn(x) = ng(en(x− qn)) .

Then ∫
R

|gn(x)|pdx ≤
∫

R

np|g(enx)|pndx

= npe−n

∫
R

|g(y)|pdy

≤ npe−n

∫
R

|g(y)|dy

≤ npe−n

Therefore, ‖gn‖p ≤ ne−n/p.
Finally, let

f(x) =
∞∑

n=1

gn(x) .

Notice that f is an increasing limit of continuous functions, so that it is measurable. By
Minkowski’s inequality and the fact that

∑∞
n=1 ne−n/p < ∞, f belongs to Lp for each p.

Finally, given any N there are only finite many rationals q at which f(q) ≤ N – namely,
the first N in our enumeration. Therefore, f > N/2 on an open interval about infinitely
many rationals near each x and hence f is unbounded near every point.
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(4) Let µ denote Lebesgue measure on the σ–algebra M of Lebesgue measurable subsets
of [0, 1]. Let A be a sub σ–algebra of M. Show that for any f ∈ L1([0, 1],M, µ), there
exists a unique g ∈ L1([0, 1],A, µ) such that∫

A

gdµ =
∫

A

fdµ

for all A ∈ A.

SOLUTION This is a standard application of the Radon–Nikodymn Theorem. Define a
measure ν on ([0, 1],A) by

ν(A) =
∫

A

f(x)dx .

It is clearly absolutely continuous with respect to Lebesgue measure, and hence there is a
function g ∈ L1([0, 1],A, µ) – the Radon–Nikodymn derivative – so that∫

A

gdµ =
∫

A

fdµ

for all A ∈ A.

(5) (a) Show that the real valued function f on [0,∞) defined by f(t) = t ln t is convex.
(b) Prove that for all summable infinite sequences {ai} and {bi} of non negative numbers,

∞∑
i=1

ai ln
(

ai

bi

)
≥

( ∞∑
i=1

ai

)
ln
(∑∞

i=1 ai∑∞
i=1 bi

)
.

(c) Let µ denote Lebesgue measure on the σ–algebra M of Lebesgue measurable subsets
of [0, 1]. Show that

f 7→
∫

[0,1]

f(x) ln f(x)dµ

defines a function on L1([0, 1],M, µ) for f with values in [0,∞] that is convex and lower
semicontinuous.

Note: In part (c) as posed, the “for f” preceding “with values in [0,∞]” was omitted,
which led to questions. However, f must be non negative for the logarithm to be defined,
so hopefully it was clear that the reference was to f .

To show that the functional is lower semicontinuous, we must show that for every C,
the subset BC of L1 consisting of non negative functions f such that∫

[0,1]

f(x) ln f(x)dµ ≤ C

is closed. Consider a sequence {fn} in BC with limn→∞ fn = f in L1. Pass to a subse-
quence that converges almost everywhere. Notice that for all n, x,

f(x) ln f(x) +
1
e
≥ 0 ,
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so By Fatou’s Lemma,∫
[0,1]

f(x) ln f(x)dµ ≤ lim inf
n→∞

∫
[0,1]

fn(x) ln fn(x)dµ ≤ C .

The convexity is clear from part (a).
SOLUTION For (a), we compute f ′(t) = 1 + ln(t) and f ′′(t) = 1/t. So f is convex.

For (b) Let µ be the probability measure on the positive integers N defined by

µ(j) =
bj∑∞

k=1 bk
.

Let φ be the function on N defined by φ(j) = aj/bj . Then by Jensen’s inequality, and
the convexity of f from part (a),∫

N

f(φ)dµ ≥ f

(∫
N

φdµ

)
.

This reduces to the desired inequality.

(6) Let B be the subset of L2(R) such that∫
R

x2|f(x)|2dx ≤ 1 and
∫

R

k2|f̂(k)|2dk ≤ 1 .

Here, f̂ denotes the Fourier transform of f . Show that B is a bounded, closed convex set
in L2(R).

SOLUTION Note first of all that∫ −1

−∞
f2dx +

∫ ∞

1

f2dx ≤
∫ ∞

−∞
x2f2(x)dx ,

so all we need to do is to show that ∫ 1

−1

f2(x)dx ≤ C

for some C and all f ∈ B. The main idea here is that the second condition implies that f
is differentiable, and therefore bounded on [−1, 1]. Here are the details

Since
∫

R
k2|f̂(k)|2dk ≤ 1, f is differentiable with a square integrable derivative, and∫

R

|f ′(x)|2dx =
1

4π2

with one popular normalization of the Fourier transform. (The proof does not depend on
which one you choose; the statement to be proved is qualitative, not quantitative).
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Now let g be a smooth function such that g(x) = 0 for x < −3, g(x) = 1 for −1 ≤
x ≤ 1 and g(x) = 0forx ≥ 3. Suppose also that 0 ≤ g(x), |g′(x)| ≤ 1 for all x. Then
(fg)′ = f ′g + gf ′ so that∫ ∞

−∞
|(fg)′|2dx ≤ 2

∫ ∞

−∞
g2|f ′|2dx + 2

∫ ∞

−∞
f2|g′|2dx

≤ 2
∫ ∞

−∞
|f ′|2dx + 2

∫ −1

−∞
f2dx + 2

∫ ∞

1

f2dx

≤ 2
∫ ∞

−∞
|f ′|2dx + 2

∫ ∞

−∞
x2f2dx

But for any x with −1 ≤ x ≤ 1, we have from the Schwarz inequality that

|f(x)g(x)| =
∣∣∣∣∫ x

−3

(fg)′(x)dx

∣∣∣∣ ≤ √
x + 3‖(fg)′‖2 ≤ 2‖(fg)′‖2

Combining the last results, we see that f(x) is bounded on [0, 1] with a bound that holds
uniformly in B. This of course implies a bound on

∫ 1

−1
f2(x)dx.

To show that B is closed, let {fn} be a sequence in B with limn→∞ fn = f in L2. Pass
to a subsequence such that limn→∞ fn = f almost everywhere. Then by Fatou’s Lemma,∫

R

x2f2(x)dx ≤ lim inf
n→∞

∫
R

x2f2
n(x)dx ≤ 1 .

By the Plancheral Theorem, limn→∞ f̂n = f̂ in L2, so we can also pass to a subse-
quence such that limn→∞ f̂n = f̂ almost everywhere. Again by Fatou’s Lemma,∫

R

k2f̂2(k)dk ≤ lim inf
n→∞

∫
R

k2f̂2
n(k)dk ≤ 1 .

To show that B is convex, just use the Schwarz inequality: Let f and g belong to B,
and let 0 ≤ t ≤ 1. Then∫

R

x2((1− t)f(x) + tg(x))2 =∫
R

((1− t)xf(x) + txg(x))2 ≤

(1− t)2‖xf‖22 + 2t(1− t)〈xf, xg〉L2 + t2‖xg‖22 ≤
(1− t)2‖xf‖22 + 2t(1− t)‖xf‖1‖xg‖2 + t2‖xg‖22 ≤
(1− t)2 + 2(1− t)t + t2 = 1

(7) Let f be a function on the closed unit square 0 ≤ x, y ≤ 1 that is separately continuous.
That is, for each x, y 7→ f(x, y) is continuous, and for each y, x 7→ f(x, y) is continuous. Is
f necessarily bounded? If so, prove that this is the case. Otherwise, give a counterexample.
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SOLUTION No, it is not. Separate continuity is much weaker than continuity in the
two variables jointly. To give a counter example, use (what else?) a “moving scaled blip
construction”.

Let g(t) be any continuous function on the line such that g(t) = 0 for t ≤ 1/3,
g(1/2) = 1 and g(t) = 0 for t ≥ 2/3. Define f(x, y) for all x and y in the unit square by

f(x, y) =
{

0, y = 0
(1/y)g(x/y), 0 < y1 .

Clearly, because g is continuous, for each fixed y, x 7→ f(x, y) is continuous. If we fix
any x then y 7→ f(x, y) is clearly continuos away from y = 0. But

lim
y→0

f(x, y) = lim
y→0

(1/y)g(x/y) = 0

because g(x/y) = 0 for all y so small that x/y > 2/3. Hence we have continuity in y also
at y = 0.

Now take (xn, yn) = (1/n, 1/(2n)). Then for all n,

f(xn, yn) = 2n .

Hence f is separately continuous and unbounded.
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