Instructions: Attempt any five questions, and please provide careful and complete
answers with proofs. If you attempt more questions, specify which five should be graded.
Otherwise, by default, only the first five will be graded.

1. (a) For 1 < p < oo, show that for each f € LP([0,1],dz) there is a unique g €
L1(]0,1],dx), where 1/p+1/q = 1 so that

jgl]fgdx==Hpr and gl =1. (%)

(b) Give an example of an f € L([0,1],dx) for which there are infinitely many g €
L*([0,1],dz) so that (%) holds.

(c) Give an example of an f € L*([0,1],dz) for which there is no g € L'([0,1],dz) so
that (*) holds.

SOLUTION By Holders inequality, and then the hypothesis that |/g||, = 1,

/ fgdx
[0,1]

Hence for (%) to hold, g must be such that there is equality in Holder’s inequality. For
p < oo, this is the case if and only if g is a constant multiple of |f(x)[P~2f*(x). (Those
who do not remember the exact condition for the cases of equality can easily derive them
if they remember the proof in terms of the arithmetic-geometric mean inequality.)

It is now easy to answer the questions.

< 17 llpllglla = Il £l -

(a) For 1 < p < o0, let
| (@)[P~2 f*(2)
g(x) = 5 - (%)
1f15
By what we have noted above concerning case of equality in Holder’s inequality, if there
is any such g, this must be it Let’s check that it works.
Since ¢ = p/(p — 1), [9(@)|? = [f(x)[P/ f|I} so that [,y |g(x)|?dz = |[fIE/IIfI} = 1.
That, [lg]l, = 1. Also

mm:/ P/ = | £,
[0,1] [0,1]

So this works and hence (*x*) gives the unique element of L7([0, 1], dz) for which (x) holds.
(b) Suppose that f(z) = 2 on [0,1/2] and f(z) = 0 elsewhere. For any number a with
la| <1, let g(z) =2 on [0,1/2] and g(x) = a elsewhere.

Then f[o y fodz =1 = || fll1 while ||g||cc = 1. Since there are infinitely many a with
la] <1, there are infinitely many such functions g.
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(c) Let f(x) = z. Then ||f||oc = 1. Let g be any function in L!(]0,1]) with ||g|; = 1.
Then by dominated convergence, there is some n so that

[ le@las =12,
[0,1—1/n]

But then

fgdz
(0,1]

< / folde + / folde
(0,1—1/n] [1-1/n,1]
<(1-1/n) / gldz + / lgldz
[0,1—1/n] [1-1/n,1]
1
[ lglde-2 / gldz
[0,1] " J[0,1—1/n)

1
1 oo [ gl
[0,1] n J[0,1—1/n)

<1-1/2n<1.

So there is no such g for this f.



2. Is there a function f € LP(]0,1],dz) for all 1 < p < oo such that for each x in [0, 1],

limsup f(z) = 400 and liminf f(z) = —o0 ?

z—x Z—=T

Either prove that there is no such function, or give an example.

SOLUTION There are such functions. We will first explain something quite standard.
You can skip ahead to the full solution below, which is self contained. But anyone who
did the standard thing had some key ideas and got substantial credit, so we explain that
first.

Let’s first show that there is a function f € LP([0,1],dz) for all 1 < p < oo such that
for each x in [0, 1],

limsup f(z) = —o0 .

For x € R, let ¢(z) = In(|z|) for |z| < 1, and 0 otherwise. This is in LP for each
p < 00, by comparison with a small negative power of |z|, but ¢(0) = co. Next, for any
number sequence {a, } of positive numbers a,, let ¢, (x) = ¢(a,x)). Then

160l = lan] =7l ,

and ¢,(0) = co. Now let {g,} be some enumeration of the rational numbers in [0, 1], and
specify the sequence {a,} by a,, = 2". Define

fl@) = énlz—qn)

restricted to [0, 1]. Then by Minkowskii’s inequality,

11l < Y2776l
n=1

which is finite for all p < oco. Thus, f € LP([0, 1],dx) for all p < co. Also clearly for any
given number L, at each rational number ¢,,, f(z) < —L on some interval about ¢ (with a
width depending on q), just because this is true of ¢, (z — ay,). Since each interval around
each x in [0, 1] contains rational numbers, there will be a set of positive measure on which
f < —L in every interval about x. Therefore (independently of the representative of the
L? equivalence class)

limsup f(z) = —oc0 .

Z—X
Full solution What we just did is standard, but anyone who got this got pretty substantial

credit. To go further, a natural first try would be

oo

Z(_1>n¢n(x —qn) -

n=1



But now that there are different signs, one has to deal with possible cancelation. It is
easier to modify the construction slightly to facilitate this.
Let {a,} and {b,} be two sequences of positive numbers. Let ¥, (x) = a,, for |z| < b,

0 otherwise. Let
oo

Z(_l)nwn(x —n) -

n=1

We will choose the sequence {b,,} so that for each N,
bN>2<Z bm>. )
m=N+1

In this case, the union of supports of the ¥,,(z — ¢,,) for m > N is less than half the
support of ¥ (x — gn), and so there cannot be too much cancellation from later terms:

Z 1/}?71(37 - QM)

m=N

> an

on a set of measure at least by. Next, we choose the sequence {a,} so that

N—1
aN>2<Zam> . 2)
m=1
In this case there cannot be too much cancelation from the first N — 1 terms, and so

(-1 (Z Ym (z — qm)) > an /2 (3)

on a set of measure at least by.
Next, ||¢nllp = an(2b,)*/P, so we also need the sequences {a,} and {b,} to satisify

i an(2b,)YP < 00 (4)

for all p with 1 < p < oo. If (3) is satisfied, then f € LP by Minkowskii’s inequality. And
by (3), for every x, and every e > 0, for all N large enough, there is a subset of [z — €, x + €]
of positive measure in which (—1)" f > an/2, so as long as this sequence ends to infinity,
we have the result.

It remains to show that there are sequences {a,} and {b, } satisfying (1), (2) and (4).
This is easy. Fix any number R > 1. Define

a, = R*" and b, =R
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It is pretty clear from familiar facts about geometric sums being close in value to the mist
significant term that these work. But since questions were asked, here are the gory details:
To see that this works, note

[ee) o0 1
§ bm,< 2 f{%:Z_R—UV+DN+1______
— _ -1
m=N+1 k=(N+4+1)N+1 1 R

since the sum is over distinct powers of R, the smallest of which is (N +1)~*1. Therefore,

o0 _ N+1
D m=nN+1bm < RN+ 1 < R—5N/4 1 _
by - RNY 1-R1'~™ 1-R!
Clearly, we can easily choose R so that (1) is satisfied.
Likewise,
N-1 2N -1 B2V g
am < R™ =
m=1 m=1 k-1
so that vy
SN lam  R¥ TP 1 1 v 1
— < ~ <R o
an R? R—-1 R-1
Clearly, we can easily choose R so that (2) is satisfied.
Finally, consider
o0 oo
Zan(zbn)l/p _ ZRQn_nn/p .
n=1 n=1

Notice that
2" —n"/p=-2"((n/2)"/p—1)

and (n/2)"/p > 2 for all n large enough, so
2" —n"/p < 2" < —n

for all n large enough, so the series converges by comparison with the geometric series.



3. (a) Let (X,S,u) be a measure space. Let 1 < p < oo, and suppose that f is a
measurable function on X such that for some C < oo

[ 17 @)idn < Cuay ()
for every measurable set A C X, where 1/p + 1/p’ = 1. Show that this does not imply

that f € LP(X,S, ).

(b) Suppose in addition to (x) that for some g with p < ¢ < oo, there is a constant D < oo
such that

/A F(@)ldu < Du(A)V ()

for every measurable set A C X, where 1/¢ + 1/¢’ = 1. Show that then f € L"(X,S, u)
for each r with p < r < q.

SOLUTION (a) Let X = R, , and let u be Lebesgue measure. Let f(z) = 1/2'/P. Then
if u(A) = a, it is clear that

— —-1/p :l—l/;ﬂ’
Jr@ians [ is@an= [ o= G

[0,a] p
Thus, (%) holds with C' = 1/p’. However, f is not in LP.
(b) For each t > 0, let h(t) = p({z : |f(x)] >t }). Then for any 1 < r < oo,

Iflr = —/OOO 1Pdh(t) = r/ooo ()t (4)

We can use (xx) to estimate L" norms if we can estimate h(t). We can do this using
(%) and (*x) if we consider the set A ={z : |f(z)| >t }. By (%),

thit) < / F(@)ldu < Ch() 7 .
z : |f(z)|>t }

That is,
h(t) < (C/t)P .

Likewise, form (k) we deduce
h(t) < (C/t)?.
We then have

e’} 1 )
7"/ t"th(t)dt < r/ tr~H(C/t)Pdt + r/ t"~Y(D/t)"dt
0 0 1
1 o0
< rcp/ TP < qu/ trimade .
0 1
Since p < r < ¢, both of these integral converge, and then by (xx), f € L".
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4 Let F(z,y) be a continuous function on [0,1] x [0,1]. Define a linear transformation

T ([0, 1]) — C([0.1]) by 1
Tf(z) = / Fla,y)f(y)dy .

Show that if {f,,} is any sequence in C(]0,1]) with
sup || fnlle(o,1)) < o0

then there is a subsequence of {T'f,,} that is strongly convergent in C([0, 1]).

SOLUTION Use Arzela—Ascoli to get compactness...



5 Let S be a closed linear subspace of L([0,1]) with the property that for each individual
f €S, there is some p > 1 so that f € LP([0,1]). Show that there is then some p > 1 so
that S C LP([0,1]).

SOLUTION Let S, = SN L'*Y/7([0,1]). Show that these sets are closed in S using
Fatou, pointwise convergent subsequence... Then apply Baire’s Theorem.



6. Let (X,S, ) be a measure space and f € L'(X, ). Show that there exists a convex
increasing function ¢ : [0,00) — R such that

»(0) =0, lim 20) = 00,

t—oo t

and

o(f1) € L'(X, ).

SOLUTION Recall that for any measurable function f on (X,S, u),

[ tdu= [ wyan

wA) =p({{z e X :|f(x) > A}) for A € [0, 00).

where

This can be proved using Fubini’s theorem. In particular, f € L'(X, ) if and only if w(\)
is in L]0, 00).
We first consider the trivial case where |f| € L (X, ). Denote M = ||f||p~ < oo.
Define
p(t)=t (0<t<M), o(t)=t+(t—M)* (t>M).

Then ¢ satisfies the requirements.
Next consider the case where |f| & L (X, ). Let

We see that p(0) = || f|lL: < 0o, p(A) is positive and decreasing, p(A\) | 0 as A T oo, p(A) is
absolutely continuous, and p'(A) = —w(\) a.e. A € (0,00). Define

$(0) =0,  ¢(t) = /tP(A)_l/zd/\ t>0.
0

Since ¢'(t) = p(t)~'/? > 0is increasing, it follows that ¢(t) is convex and strictly increasing.
It is also easy to see

t
tim 28 _ iy L p(N) 24\ = 0,

t—oo t—oo t Jq
since p(A)~1/2 — 00 as A — co. Finally, let us verify ¢(|f|) € L*(X, ). Notice that

p({z e X o(lf(@)) > M) =pn({zr € X [f(2)] > 7 (N)}) = w(@ (V).
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Hence,

[ otrbin= [ o
0
= / w( dt (change of variable A = ¢(t))
0
= / w( 1/2dt
0
0
= [ 1/2} (since p(t) is abs. conti.)
= 2p(0)"/% = 2||f|}/* < o0.
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7. Let f :]0,1] — R be continuous, g : [0,1] — R Lebesgue measurable, and 0 < g(z) <1
for a.e. x € [0,1]. Find the limit:

lim f(g(x)™)dx.

n—oo 0

SOLUTION Define
A={zx€[0,1]: g(x) =1}, B={xe€]0,1]:0<g(x) <1}.
By the assumption, AU B is of full measure in [0, 1]; that is, u(A) + u(B) = 1.

For every z € A, f(g(x)") = 1.
For every x € B, g(z)" — 0 as n — oco. Combining this with the continuity of f, we

obtain f (¢(z)") — £(0).
Since f is continuous on a compact set [0, 1], |f| is bounded: |f(t)] < M < oo for all
x € [0,1]. This implies the boundedness of the integrand:
If (g(x)™)| < M for all x € AU B.

By Lebesgue’s dominated convergence theorem,

im [ f(g(x)")do = /A f(1)dz + /B F(0)dz = F(D)u(A) + FO)[1 — p(A)).

n—oo 0
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8. Let X and Y be metric spaces and f : X — Y be a mapping. Show that if the
restriction of f on any compact subset of X is continuous, then f is continuous on X.

SOLUTION Let 2, — z in X. We need to show f(z,) — f(z). Define
K ={z1,22, - -} U{z}.

It is easily seen that K is a compact subset of X. By the assumption, f is continuous on
K. This implies f(z,) — f(x).
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