Comprehensive Exam Fall 2006

PROPOSED ALGEBRA QUESTIONS (WITH SOLUTIONS)
MATT BAKER AND SAUGATA BASU

Find all finite simple groups having a subgroup of index 3.

Solution: Let G be a finite simple group having a subgroup H of index 3.
Then G acts on the set S of left cosets of H in G by left-multiplication, and
the kernel of this action is the largest normal subgroup of G contained
in H. Since G is simple, the kernel must be trivial. Therefore, since
|S| = 3, this action defines an injective homomorphism G — S3, i.e., G
is a subgroup of the symmetric group on 3 letters. Since G is simple and
has a subgroup of index 3, the only choice is G = Z/3Z.

Let p be a prime number, let k be a positive integer, and suppose that G
is a group of order p* acting on a finite set S. Show that the number of
elements of S fixed by every g € G is congruent to |S| (the cardinality of
S) modulo p.

Solution: If O is any orbit consisting of more than one element, then
since |O] divides |G|, it must be a multiple of p. The N elements of S
fixed by G are precisely the orbits of size one. Partitioning S into the
orbits of G and counting, we see that |S| = N (mod p) as desired.

If p and ¢ are primes, prove that a group of order p?q cannot be simple.
Solution: Let G be a group with |G| = p?q. If |G| = p3, then by the
structure theory for p-groups, G has a normal subgroup of index p. So
we may assume that p # q.

Assume that G is simple. Then the number of p-Sylow subgroups must
be ¢, and hence ¢ = 1 (mod p). In particular, ¢ > p.

The number of ¢-Sylow subgroups is either p or p?. It cannot be p, because
this would imply that p =1 (mod ¢) and thus p > ¢, a contradiction.

Hence, the number of ¢-Sylow subgroups must be p?. Any two such sub-
groups can have only the identity as a common element. Hence, the total
number of non-identity elements in the g-Sylow subgroups is p?(q — 1).



On the other hand the intersection of any two distinct p-Sylow subgroups
can have size at most p (the intersection has to be a subgroup of each).
Thus, since ¢ > 2, the number of elements in the p-Sylow subgroups is at
least 2p* — p. But then p?(q — 1)+ 2p*> —p =p?’q+p(p — 1) > |G| = p?q,
which is a contradiction.

. Give examples (with proof) of commutative ring R with identity such
that:

(1) R has exactly 10 ideals.
(ii) R has exactly 10 maximal ideals.

Solution: For (i), we may take R = Z/pZ for any prime number p. Ide-
als of R correspond bijectively to ideals (a) of Z with a | p°, and by unique
factorization in Z, there are exactly 10 such ideals: (1), (p), (p?), ..., (p?).
For (ii), we can use a direct product construction and take R = (Z/pZ)'°.
Ideals of a direct product are direct products of ideals in each factor, so a
maximal ideal in (Z/pZ)'® must be (1) on all but one factor. Since each
individual factor Z/pZ is a field, and thus has only (0) and (1) as ideals,

the maximal ideals of R are precisely the ideals

(1) x (1) >+ (0) -+ x (1) x (1) .
There are clearly 10 such ideals.

Suppose R is a ring with identity having p? elements for some prime
number p. Prove that R is commutative.

Solution: By the structure theorem for finite abelian groups, the additive
group (R, +) of R is isomorphic to either Z/p?Z or (Z/pZ) x (Z/pZ). In
the first case, there is an element x € R which generates (R, +), so that
every element of R is of the form nx for some n € Z. Elements of this
form clearly commute, so R is commutative in this case. In the second
case, we can view (R,+) as a 2-dimensional vector space over the field
F,. If 1,z is a basis for R/F,, then R = {a +bx : a,b € F,}. Since
elements of the form a+ bxr commute with one another, R is commutative
in this case as well.

. Let K be a field, and let f,g € K[x] be polynomials with f irreducible
over K. If h is any irreducible polynomial dividing fog = f(g(x)), prove
that deg(f) | deg(h).



Solution: Let o be a root of h in some splitting field, and let 5 = g(«).
Then 5 € K(a), so [K(B) : K] divides [K(«) : K]|. Since h(a) = 0 and
h| fog, it follows that f(3) = f(g(a)) = 0. As f and h are irreducible
over K, deg(h) = [K(«) : K] and deg(f) = [K(3) : K], and the result
follows.

Suppose A, B are commuting n X n matrices over the field C of complex
numbers. Prove that A, B have a common eigenvector.

Solution: Let A be an eigenvalue of A, and let V) be the corresponding
eigenspace. For any v € V), we have

A(Bv) = B(Av) = b(Av) = X- Bu ,

so that Bv € V). Therefore V) is invariant under B. Let w be an eigen-

vector of the restriction of B to V). Then w is a simultaneous eigenvector
for both A and B.

. Let M be a 3 x 3 matrix with integer entries and det(M) = —1. Assume
that every real eigenvalue of M is rational. What are the possibilities for
the minimal polynomial of M ?

Solution: The characteristic polynomial of M is ¢* + at® + bt + 1 € Z[t],
whose only integer roots are 1. If all eigenvalues are real, then they are
all rational by hypothesis, and hence are all integers since rational roots of
monic polynomials are integers (i.e., every rational algebraic integer is an
integer). The possible eigenvalues in this case are —1,1,1 and —1, —1, —1,
and the possible minimal polynomials for M are

t+1)(t—1), t+1)t—1)2% (t+1), t+1D2 (t+1)>.

If )\ is a complex eigenvalue, then so is its complex conjugate X. The
third eigenvalue p is a real number, hence an integer, and is equal to
—1/AX = —1/|A|]%. Since M) is both a rational number and an algebraic
integer, it follows that both |[A|* and —1/|\|? are integers, and therefore
that |A|> = 1 and g = —1. Therefore we have three distinct eigenvalues
—1, A\, X. The minimal polynomial is then (¢ + 1)(t — A)(t — \) where A is
a complex number with || = 1.



