
Question 1

(a) Prove that every sequence of real numbers either has a non-decreasing sub-
sequence or a non-increasing subsequence.
(b) Deduce that every bounded sequence of real numbers has a convergent sub-
sequence.
Solution

Let us denote our sequence by (xn)∞n=0.
(a) We say that the sequence has a peak at n0 if

xn0
> xn for all n > n0.

If there are infinitely many peaks, say at (nk)∞k=1, where

n1 < n2 < n3 < ...,

then
xn1

> xn2
> xn3

> ...

so
(

xnj

)∞

j=1
is a decreasing subsequence. If there are only finitely many peaks,

let N be the last peak. Then for all n > N , there exists m > n with

xm ≥ xn.

(If not, there would be a peak at n, imposible). Then we can construct an
increasing subsequence, using induction. To see this, let n1 = N . Since there is
not a peak at n1, there exists n2 > n1 such that

xn2
≥ xn1

.

Next, there is not a peak at n2, so there exists n3 > n2 such that

xn3
≥ xn2

.

Assuming that we have chosen n1 < n2 < ... < nk, we can choose nk+1 > nk

such that
xnk+1

> xnk
,

as there is not a peak at nk. Then (xnk
)
∞
k=1 is increasing.

(b) As (xn)
∞
n=0 is bounded, there exists A > 0 such that

|xn| ≤ A, n ≥ 0.

By (a), (xn)
∞
n=0 has either an increasing or decreasing subsequence

(

xnj

)∞

j=1
. If

this subsequence is increasing, then it is increasing and bounded above by A, so
converges. If this subsequence is decreasing, then it is decreasing and bounded
below by −A, and so converges.
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Question 2

Let (fn) be a sequence of nonnegative Lebesgue measurable functions on [0, 1],
and let (Em) be a sequence of Lebesgue measurable subsets of [0, 1].
(a) Suppose that there is an integrable function f such that for n ≥ 1 and
almost every x ∈ [0, 1] ,

fn (x) ≤ f (x) . (1)

Prove that

lim sup
n→∞

∫ 1

0

fn ≤

∫ 1

0

lim sup
n→∞

fn. (2)

Is the hypothesis (1) for some integrable f necessary?
(b) Let En ⊂ [0, 1] for n ≥ 1 and let

E =

∞
⋂

n=1

∞
⋃

m=n

Em.

(i) Prove that
lim sup

n→∞
meas (En) ≤ meas (E) .

(ii) Either prove that equality holds in part (i) or give an example in which
strict inequality holds.
(iii) Prove that

∞
∑

k=1

meas (Ek) < ∞ ⇒ meas (E) = 0.

Solutions

(a) We apply Fatou’s lemma to the non-negative measurable functions f − fn

(They are non-negative a.e. and we can ignore the set of measure 0). We have

lim inf
n→∞

∫ 1

0

(f − fn) ≥

∫ 1

0

lim inf
n→∞

(f − fn) . (1)

Since f does not depend on n,

lim inf
n→∞

(f − fn) = f + lim inf
n→∞

(−fn)

= f − lim sup
n→∞

fn,

so
∫ 1

0

lim inf
n→∞

(f − fn) =

∫ 1

0

f −

∫ 1

0

lim sup
n→∞

fn.

Also

lim inf
n→∞

(
∫ 1

0

f −

∫ 1

0

fn

)

=

∫ 1

0

f + lim inf
n→∞

(

−

∫ 1

0

fn

)

=

∫ 1

0

f − lim sup
n→∞

∫ 1

0

fn.
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Plugging these into (1) gives

∫ 1

0

f − lim sup
n→∞

∫ 1

0

fn ≥

∫ 1

0

f −

∫ 1

0

lim sup
n→∞

fn

and hence the result.

The condition (1) for some integrable f is necessary. We can use the same
type of counterexamples that are used to show we need a dominating function
in Lebesgue’s Dominated Convergence Theorem. For example, let

fn (x) =

{

n2x, x ∈
[

0, 1
n

]

0, x ∈
[

1
n , 1
] .

Then we see that if x ∈ (0, 1], we have fn (x) = 0 for n > 1
x , so

lim
n→∞

fn (x) = 0.

Also fn (0) = 0 for n ≥ 1. So

lim
n→∞

fn (x) = 0, x ∈ [0, 1]

and then
∫ 1

0

lim sup
n→∞

fn =

∫ 1

0

0 = 0.

But
∫ 1

0

fn = n2

∫ 1/n

0

x dx

= n2 1

2n2
=

1

2
,

so

lim sup
n→∞

∫ 1

0

fn =
1

2
> 0 =

∫ 1

0

lim sup
n→∞

fn.

(b) (i) Note that x ∈ E iff x ∈ En for infinitely many n, that is χEn
(x) = 1 for

infinitely many n. So

x ∈ E ⇐⇒ lim sup
n→∞

χEn
(x) = 1.

Hence
χE (x) = lim sup

n→∞
χEn

(x) .

Since characteristic functions are bounded above by 1, we can apply (b) to
deduce that

lim sup
n→∞

∫ 1

0

χEn
≤

∫ 1

0

lim sup
n→∞

χEn

=

∫ 1

0

χE .
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That is,
lim sup

n→∞
meas (En) ≤ meas (E) .

(ii) No, we don’t have equality always. For example, let En = [0, 1
2 ) if n is odd

and En =
[

1
2 , 1
]

if n is even. Then

E = lim sup
n→∞

En = [0, 1]

as every point of [0, 1] belongs to infinitely many of the {En}, and conversely,
each En ⊂ [0, 1]. So

∫ 1

0

χE =

∫ 1

0

1 = 1.

But for each n, En has linear measure 1
2 , so

lim sup
n→∞

∫ 1

0

χEn
=

1

2
.

(iii) We have for each n,

E ⊂

∞
⋃

m=n

Em

so

meas (E) ≤
∞
∑

m=n

meas (Em) .

As n → ∞, the right-hand side approaches 0 (because of convergence) and hence

meas (E) = 0.
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Question 3

(a) State a necessary and sufficient criterion for a function f on [0, 1] to be
Riemann integrable. Your criterion must involve Lebesgue measure.
(b) Let f : [0, 1] → R be Lebesgue integrable. Set f (x) = f (0) for x < 0 and
f (x) = f (1) for x > 1. Prove that

lim
h→0

∫ 1

0

|f (x + h) − f (x)| dx = 0.

(You may assume results about approximation of Lebesgue integrable functions
by continuous functions).
(c) Let g : [0, 1] → [0, 1] be measurable. Prove that if f is (bounded and)
Riemann integrable in [0, 1], then

lim
h→0

∫ 1

0

|f (x + hg (x)) − f (x)| dx = 0.

Solution

(a) For f to be Riemann integrable, it is necessary and sufficient that f be
continuous a.e.
(b) If first f is continuous in [0, 1], then because of the way we extended it, it will
be continuous in [−1, 2]. Then f is uniformly continuous there (a continuous
function on a compact interval is unformly continuous). Then given ε > 0, we
can find δ ∈ (0, 1) such that

x ∈ [0, 1] and |h| < δ ⇒ |f (x + h) − f (x)| < ε.

So

|h| < δ ⇒

∫ 1

0

|f (x + h) − f (x)| dx ≤

∫ 1

0

ε dx = ε.

Then the result follows for continuous f . Now suppose that we only know f is
Lebesgue integrable. Then we can find continuous g : [0, 1] → R such that

∫ 1

0

|f − g| < ε/3.

We may also assume that g (0) = f (0) and g (1) = f (1) (just change g in small
neighborhoods of 0, 1 if necessary). Extend g to the real line in the same way
we did for f . Then

∫ 1

0

|f (x + h) − f (x)| dx

≤

∫ 1

0

|f (x + h) − g (x + h)| dx +

∫ 1

0

|g (x + h) − g (x)| dx +

∫ 1

0

|g (x) − f (x)| dx

< ε/3 +

∫ 1

0

|g (x + h) − g (x)| dx + ε/3.
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For |h| small enough, as g is continuous, we have

∫ 1

0

|g (x + h) − g (x)| dx < ε/3

and then
∫ 1

0

|f (x + h) − f (x)| dx < ε.

(c) Suppose M is such that

|f (x)| ≤ M for all x.

We have
|f (x + hg (x)) − f (x)| ≤ 2M for all x ∈ [0, 1] .

Moreover, as g is bounded above by 1 and below by 0, we have at each point of
continuity of f ,

lim
h→0

f (x + hg (x)) = f (x) .

Hence a.e. (recall f is Riemann integrable),

lim
h→0

|f (x + hg (x)) − f (x)| = 0.

By Lebesgue’s Dominated Convergence Theorem,

lim
h→0

∫ 1

0

|f (x + hg (x)) − f (x)| dx = 0.
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Question 4

Let 1 < p < ∞ and {fn} be a sequence of functions in Lp [0, 1]. Give a proof
of, or counterexample to, the following assertions:
(a) If fn → f weakly in Lp [0, 1] as n → ∞, then there is a subsequence {fnk

}
that converges a.e. to f .
(b) If fn → f in norm in Lp [0, 1] as n → ∞, then there is a subsequence {fnk

}
that converges a.e. to f .
Solutions

(a) This is false. Let ϕ be the periodic function

ϕ (t) =

{

1, 0 ≤ t < 1
2 ,

−1, 1
2 ≤ t < 1

.

For n ≥ 1, let
fn (t) = ϕ (2nt) , t ∈ [0, 1] .

Then

lim
n→∞

∫ 1

0

fnχA = 0

for every measurable subset A of [0, 1]. Here χA denotes the characteristic func-
tion of A. (We can first see this for dyadic intervals

[

j
2` , k

2`

]

, and then for general
intervals, then for finite unions of intervals, and by dominated convergence for
any measurable set). It follows that fn → 0 weakly as n → ∞, but no subse-
quence converges a.e., since |fn (t)| = 1 for all n and t.
(b) This is true. Let ε > 0 and meas denote linear Lebesgue measure. For
n ≥ 1,

ε meas ({t : |fn − f | (t) ≥ ε})

≤

∫

{t:|fn−f |(t)≥ε}

|fn − f |
p

≤

∫ 1

0

|fn − f |
p
→ 0, n → ∞.

It follows that for each ε > 0,

meas ({t : |fn − f | (t) ≥ ε}) → 0 as n → ∞.

That is, fn → f in measure. By a standard argument, there is a subsequence
of {fn} that converges a.e. to f .
Outline of this argument:

Choose n1 < n2 < n3 < ... such that for k ≥ 1,

Ek =

{

t : |fnk
− f | (t) ≥

1

2k

}

has

meas (Ek) ≤
1

2k
.
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Let

E = lim sup
k→∞

Ek =

∞
⋂

m=1

∞
⋃

k=m

Ek.

Then it is easy to check that meas (E) = 0 and for t /∈ E,

lim
k→∞

fnk
(t) = f (t) .
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Question 5

Let f be a function defined on R
2 with continuous second partial derivatives.

Use Fubini’s theorem to give an easy proof that

∂2f

∂x∂y
=

∂2f

∂y∂x
.

(Hint: Assume it is not true, and integrate ∂2f
∂x∂y − ∂2f

∂y∂x over a suitable square).
Solution

Let us suppose the result is false. Then at some point

∂2f

∂x∂y
−

∂2f

∂y∂x
6= 0.

Let us suppose that it is positive at that point. By continuity, we may find a
square S = [a, a + h] × [b, b + h] containing that point, in which

∂2f

∂x∂y
−

∂2f

∂y∂x
> 0.

Then we know

I =

∫ ∫

S

[

∂2f

∂x∂y
−

∂2f

∂y∂x

]

dx dy > 0. (1)

Here

I =

∫ ∫

S

∂2f

∂x∂y
dx dy −

∫ ∫

S

∂2f

∂y∂x
dx dy

= I1 − I2. (2)

Because we are dealing with a continuous integrand, we may write these integrals
as iterated integrals, and may change the order of integration, and may also use
the fundamental theorem of calculus:

I1 =

∫ b+h

b

(

∫ a+h

a

∂2f

∂x∂y
dx

)

dy

=

∫ b+h

b

(

∂f

∂y
(a + h, y) −

∂f

∂y
(a, y)

)

dy

= f (a + h, b + h) − f (a + h, b) − f (a, b + h) + f (a, b) .

Next,

I2 =

∫ a+h

a

(

∫ b+h

b

∂2f

∂y∂x
dy

)

dx

=

∫ a+h

a

(

∂f

∂x
(x, b + h) −

∂f

∂x
(x, b)

)

dx

= f (a + h, b + h) − f (a, b + h) − f (a + h, b) + f (a, b) .

Thus I1 = I2 and (2) gives I = 0, contradicting (1).
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Question 6

(a) Show that there is a bounded linear functional ϕ on `∞ such that

ϕ (x) = lim
i→∞

xi

for every convergent sequence x = (xi) in `∞.
(b) Is this linear functional unique?
Solution

(a) Let c denote the set of all convergent sequences in `∞. It is a closed subspace
of `∞. Note that ϕ is a linear functional on c. This follows from the linearity
of limits. Moreover, ϕ is a bounded/continuous linear functional. Indeed if
x = (xi) ∈ c, then

|ϕ (x)| =
∣

∣

∣
lim

i→∞
xi

∣

∣

∣
= lim

i→∞
|xi|

≤ sup
i

|xi| = ‖x‖ .

So ϕ has norm at most one. By the Hahn-Banach theorem, ϕ has a bounded/continuous
extension to all of `∞.
(b) It is not unique. Let ce denote the set of all sequences in `∞ whose even
index components converge. Thus x = (xi) ∈ ce iff

lim
i→∞

x2i exists.

Similarly, let co denote the set of all sequences in `∞ whose odd index compo-
nents converge. Thus x = (xi) ∈ ce iff

lim
i→∞

x2i+1 exists.

Suppose we first extend ϕ above to ce by

ϕ (x) = lim
i→∞

x2i.

It clearly is a bounded linear extension. Now we extend via Hahn-Banach to all
of `∞. Call the resulting extension ϕ1. Next, extend our original ϕ from c to co

by
ϕ (x) = lim

i→∞
x2i+1.

Now we extend via Hahn-Banach to all of `∞. Call the resulting extension ϕ2.

Both ϕ1 and ϕ2 are bounded linear functional extending ϕ but they are not
equal. To see this, let x denote the sequence with

x2i = 0; x2i+1 = 1

for all i. We have x ∈ ce ∩ c0 and

ϕ1 (x) = lim
i→∞

x2i = 0;

ϕ2 (x) = lim
i→∞

x2i+1 = 1.
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Question 7

Prove that there is no norm under which the vector space P of polynomials with
real coefficients is a Banach space.
Solution

There is no norm under which P is complete. Let us assume there is, and derive
a contradiction. We claim that

Pn = {polynomials P of degree ≤ n}

is a closed subspace of P , and is also a nowhere dense subset of P .

Indeed, suppose (pk) is a sequence of polynomials of degree ≤ n with ‖pk − p‖ →
0, k → ∞, for some function p. Now Pn is a finite dimensional subspace of a
Banach space, so K = {q ∈ Pn : ‖p − q‖ ≤ 1}, which is closed and bounded,is
also compact. As pk ∈ K for large enough k, we deduce that p ∈ Pn also. Thus
Pn is closed.

To see that it is nowhere dense, we must show it has empty interior. But
that is obvious: if ` > n and ε is small enough, while p ∈ Pn, then

q (x) = εx` + p (x) /∈ Pn

but
‖q − p‖ = ε

∥

∥x`
∥

∥

may be made as small as we please. So Pn must have empty interior. Then

P =

∞
⋃

n=1

Pn

is a countable union of nowhere dense sets, so is of the first category. This
contradicts Baire’s theorem for closed metric spaces (and hence Banach spaces.)
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