Question 1

(a) Prove that every sequence of real numbers either has a non-decreasing subsequence or a non-increasing subsequence.
(b) Deduce that every bounded sequence of real numbers has a convergent subsequence.

Solution

Let us denote our sequence by $\left(x_{n}\right)_{n=0}^{\infty}$.
(a) We say that the sequence has a peak at n_{0} if

$$
x_{n_{0}}>x_{n} \text { for all } n>n_{0}
$$

If there are infinitely many peaks, say at $\left(n_{k}\right)_{k=1}^{\infty}$, where

$$
n_{1}<n_{2}<n_{3}<\ldots
$$

then

$$
x_{n_{1}}>x_{n_{2}}>x_{n_{3}}>\ldots
$$

so $\left(x_{n_{j}}\right)_{j=1}^{\infty}$ is a decreasing subsequence. If there are only finitely many peaks, let N be the last peak. Then for all $n>N$, there exists $m>n$ with

$$
x_{m} \geq x_{n}
$$

(If not, there would be a peak at n, imposible). Then we can construct an increasing subsequence, using induction. To see this, let $n_{1}=N$. Since there is not a peak at n_{1}, there exists $n_{2}>n_{1}$ such that

$$
x_{n_{2}} \geq x_{n_{1}}
$$

Next, there is not a peak at n_{2}, so there exists $n_{3}>n_{2}$ such that

$$
x_{n_{3}} \geq x_{n_{2}}
$$

Assuming that we have chosen $n_{1}<n_{2}<\ldots<n_{k}$, we can choose $n_{k+1}>n_{k}$ such that

$$
x_{n_{k+1}}>x_{n_{k}}
$$

as there is not a peak at n_{k}. Then $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ is increasing.
(b) As $\left(x_{n}\right)_{n=0}^{\infty}$ is bounded, there exists $A>0$ such that

$$
\left|x_{n}\right| \leq A, n \geq 0
$$

By (a), $\left(x_{n}\right)_{n=0}^{\infty}$ has either an increasing or decreasing subsequence $\left(x_{n_{j}}\right)_{j=1}^{\infty}$. If this subsequence is increasing, then it is increasing and bounded above by A, so converges. If this subsequence is decreasing, then it is decreasing and bounded below by $-A$, and so converges.

Question 2

Let $\left(f_{n}\right)$ be a sequence of nonnegative Lebesgue measurable functions on $[0,1]$, and let $\left(E_{m}\right)$ be a sequence of Lebesgue measurable subsets of $[0,1]$.
(a) Suppose that there is an integrable function f such that for $n \geq 1$ and almost every $x \in[0,1]$,

$$
\begin{equation*}
f_{n}(x) \leq f(x) \tag{1}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{0}^{1} f_{n} \leq \int_{0}^{1} \limsup _{n \rightarrow \infty} f_{n} \tag{2}
\end{equation*}
$$

Is the hypothesis (1) for some integrable f necessary?
(b) Let $E_{n} \subset[0,1]$ for $n \geq 1$ and let

$$
E=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_{m} .
$$

(i) Prove that

$$
\limsup _{n \rightarrow \infty} \text { meas }\left(E_{n}\right) \leq \text { meas }(E)
$$

(ii) Either prove that equality holds in part (i) or give an example in which strict inequality holds.
(iii) Prove that

$$
\sum_{k=1}^{\infty} \operatorname{meas}\left(E_{k}\right)<\infty \Rightarrow \operatorname{meas}(E)=0
$$

Solutions

(a) We apply Fatou's lemma to the non-negative measurable functions $f-f_{n}$ (They are non-negative a.e. and we can ignore the set of measure 0). We have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \int_{0}^{1}\left(f-f_{n}\right) \geq \int_{0}^{1} \liminf _{n \rightarrow \infty}\left(f-f_{n}\right) \tag{1}
\end{equation*}
$$

Since f does not depend on n,
so

$$
\begin{aligned}
\liminf _{n \rightarrow \infty}\left(f-f_{n}\right) & =f+\liminf _{n \rightarrow \infty}\left(-f_{n}\right) \\
& =f-\limsup _{n \rightarrow \infty} f_{n}
\end{aligned}
$$

$$
\int_{0}^{1} \liminf _{n \rightarrow \infty}\left(f-f_{n}\right)=\int_{0}^{1} f-\int_{0}^{1} \limsup _{n \rightarrow \infty} f_{n}
$$

Also

$$
\begin{aligned}
\liminf _{n \rightarrow \infty}\left(\int_{0}^{1} f-\int_{0}^{1} f_{n}\right) & =\int_{0}^{1} f+\liminf _{n \rightarrow \infty}\left(-\int_{0}^{1} f_{n}\right) \\
& =\int_{0}^{1} f-\limsup _{n \rightarrow \infty} \int_{0}^{1} f_{n}
\end{aligned}
$$

Plugging these into (1) gives

$$
\int_{0}^{1} f-\limsup _{n \rightarrow \infty} \int_{0}^{1} f_{n} \geq \int_{0}^{1} f-\int_{0}^{1} \limsup _{n \rightarrow \infty} f_{n}
$$

and hence the result.
The condition (1) for some integrable f is necessary. We can use the same type of counterexamples that are used to show we need a dominating function in Lebesgue's Dominated Convergence Theorem. For example, let

$$
f_{n}(x)=\left\{\begin{array}{cc}
n^{2} x, & x \in\left[0, \frac{1}{n}\right. \\
0, & x \in\left[\frac{1}{n}, 1\right]
\end{array} .\right.
$$

Then we see that if $x \in(0,1]$, we have $f_{n}(x)=0$ for $n>\frac{1}{x}$, so

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0
$$

Also $f_{n}(0)=0$ for $n \geq 1$. So

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0, x \in[0,1]
$$

and then

$$
\int_{0}^{1} \limsup _{n \rightarrow \infty} f_{n}=\int_{0}^{1} 0=0
$$

But

$$
\begin{aligned}
\int_{0}^{1} f_{n} & =n^{2} \int_{0}^{1 / n} x d x \\
& =n^{2} \frac{1}{2 n^{2}}=\frac{1}{2}
\end{aligned}
$$

so

$$
\limsup _{n \rightarrow \infty} \int_{0}^{1} f_{n}=\frac{1}{2}>0=\int_{0}^{1} \limsup _{n \rightarrow \infty} f_{n}
$$

(b) (i) Note that $x \in E$ iff $x \in E_{n}$ for infinitely many n, that is $\chi_{E_{n}}(x)=1$ for infinitely many n. So

$$
x \in E \Longleftrightarrow \limsup _{n \rightarrow \infty} \chi_{E_{n}}(x)=1
$$

Hence

$$
\chi_{E}(x)=\limsup _{n \rightarrow \infty} \chi_{E_{n}}(x)
$$

Since characteristic functions are bounded above by 1, we can apply (b) to deduce that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \int_{0}^{1} \chi_{E_{n}} & \leq \int_{0}^{1} \limsup _{n \rightarrow \infty} \chi_{E_{n}} \\
& =\int_{0}^{1} \chi_{E}
\end{aligned}
$$

That is,

$$
\limsup _{n \rightarrow \infty} \operatorname{meas}\left(E_{n}\right) \leq \text { meas }(E)
$$

(ii) No, we don't have equality always. For example, let $E_{n}=\left[0, \frac{1}{2}\right)$ if n is odd and $E_{n}=\left[\frac{1}{2}, 1\right]$ if n is even. Then

$$
E=\limsup _{n \rightarrow \infty} E_{n}=[0,1]
$$

as every point of $[0,1]$ belongs to infinitely many of the $\left\{E_{n}\right\}$, and conversely, each $E_{n} \subset[0,1]$. So

$$
\int_{0}^{1} \chi_{E}=\int_{0}^{1} 1=1
$$

But for each n, E_{n} has linear measure $\frac{1}{2}$, so

$$
\limsup _{n \rightarrow \infty} \int_{0}^{1} \chi_{E_{n}}=\frac{1}{2}
$$

(iii) We have for each n,

$$
E \subset \bigcup_{m=n}^{\infty} E_{m}
$$

so

$$
\operatorname{meas}(E) \leq \sum_{m=n}^{\infty} \operatorname{meas}\left(E_{m}\right)
$$

As $n \rightarrow \infty$, the right-hand side approaches 0 (because of convergence) and hence

$$
\operatorname{meas}(E)=0
$$

Question 3

(a) State a necessary and sufficient criterion for a function f on $[0,1]$ to be Riemann integrable. Your criterion must involve Lebesgue measure.
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ be Lebesgue integrable. Set $f(x)=f(0)$ for $x<0$ and $f(x)=f(1)$ for $x>1$. Prove that

$$
\lim _{h \rightarrow 0} \int_{0}^{1}|f(x+h)-f(x)| d x=0
$$

(You may assume results about approximation of Lebesgue integrable functions by continuous functions).
(c) Let $g:[0,1] \rightarrow[0,1]$ be measurable. Prove that if f is (bounded and) Riemann integrable in $[0,1]$, then

$$
\lim _{h \rightarrow 0} \int_{0}^{1}|f(x+h g(x))-f(x)| d x=0
$$

Solution

(a) For f to be Riemann integrable, it is necessary and sufficient that f be continuous a.e.
(b) If first f is continuous in $[0,1]$, then because of the way we extended it, it will be continuous in $[-1,2]$. Then f is uniformly continuous there (a continuous function on a compact interval is unformly continuous). Then given $\varepsilon>0$, we can find $\delta \in(0,1)$ such that

$$
x \in[0,1] \text { and }|h|<\delta \Rightarrow|f(x+h)-f(x)|<\varepsilon
$$

So

$$
|h|<\delta \Rightarrow \int_{0}^{1}|f(x+h)-f(x)| d x \leq \int_{0}^{1} \varepsilon d x=\varepsilon
$$

Then the result follows for continuous f. Now suppose that we only know f is Lebesgue integrable. Then we can find continuous $g:[0,1] \rightarrow \mathbb{R}$ such that

$$
\int_{0}^{1}|f-g|<\varepsilon / 3
$$

We may also assume that $g(0)=f(0)$ and $g(1)=f(1)$ (just change g in small neighborhoods of 0,1 if necessary). Extend g to the real line in the same way we did for f. Then

$$
\begin{aligned}
& \int_{0}^{1}|f(x+h)-f(x)| d x \\
\leq & \int_{0}^{1}|f(x+h)-g(x+h)| d x+\int_{0}^{1}|g(x+h)-g(x)| d x+\int_{0}^{1}|g(x)-f(x)| d x \\
< & \varepsilon / 3+\int_{0}^{1}|g(x+h)-g(x)| d x+\varepsilon / 3
\end{aligned}
$$

For $|h|$ small enough, as g is continuous, we have

$$
\int_{0}^{1}|g(x+h)-g(x)| d x<\varepsilon / 3
$$

and then

$$
\int_{0}^{1}|f(x+h)-f(x)| d x<\varepsilon
$$

(c) Suppose M is such that

$$
|f(x)| \leq M \text { for all } x
$$

We have

$$
|f(x+h g(x))-f(x)| \leq 2 M \text { for all } x \in[0,1]
$$

Moreover, as g is bounded above by 1 and below by 0 , we have at each point of continuity of f,

$$
\lim _{h \rightarrow 0} f(x+h g(x))=f(x) .
$$

Hence a.e. (recall f is Riemann integrable),

$$
\lim _{h \rightarrow 0}|f(x+h g(x))-f(x)|=0
$$

By Lebesgue's Dominated Convergence Theorem,

$$
\lim _{h \rightarrow 0} \int_{0}^{1}|f(x+h g(x))-f(x)| d x=0
$$

Question 4

Let $1<p<\infty$ and $\left\{f_{n}\right\}$ be a sequence of functions in $L_{p}[0,1]$. Give a proof of, or counterexample to, the following assertions:
(a) If $f_{n} \rightarrow f$ weakly in $L_{p}[0,1]$ as $n \rightarrow \infty$, then there is a subsequence $\left\{f_{n_{k}}\right\}$ that converges a.e. to f.
(b) If $f_{n} \rightarrow f$ in norm in $L_{p}[0,1]$ as $n \rightarrow \infty$, then there is a subsequence $\left\{f_{n_{k}}\right\}$ that converges a.e. to f.

Solutions

(a) This is false. Let φ be the periodic function

$$
\varphi(t)=\left\{\begin{array}{rc}
1, & 0 \leq t<\frac{1}{2}, \\
-1, & \frac{1}{2} \leq t<1
\end{array} .\right.
$$

For $n \geq 1$, let

$$
f_{n}(t)=\varphi\left(2^{n} t\right), t \in[0,1] .
$$

Then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n} \chi_{A}=0
$$

for every measurable subset A of $[0,1]$. Here χ_{A} denotes the characteristic function of A. (We can first see this for dyadic intervals $\left[\frac{j}{2^{\ell}}, \frac{k}{2^{\ell}}\right]$, and then for general intervals, then for finite unions of intervals, and by dominated convergence for any measurable set). It follows that $f_{n} \rightarrow 0$ weakly as $n \rightarrow \infty$, but no subsequence converges a.e., since $\left|f_{n}(t)\right|=1$ for all n and t.
(b) This is true. Let $\varepsilon>0$ and meas denote linear Lebesgue measure. For $n \geq 1$,

$$
\begin{aligned}
& \varepsilon \text { meas }\left(\left\{t:\left|f_{n}-f\right|(t) \geq \varepsilon\right\}\right) \\
\leq & \int_{\left\{t:\left|f_{n}-f\right|(t) \geq \varepsilon\right\}}\left|f_{n}-f\right|^{p} \\
\leq & \int_{0}^{1}\left|f_{n}-f\right|^{p} \rightarrow 0, n \rightarrow \infty .
\end{aligned}
$$

It follows that for each $\varepsilon>0$,

$$
\text { meas }\left(\left\{t:\left|f_{n}-f\right|(t) \geq \varepsilon\right\}\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

That is, $f_{n} \rightarrow f$ in measure. By a standard argument, there is a subsequence of $\left\{f_{n}\right\}$ that converges a.e. to f.
Outline of this argument:
Choose $n_{1}<n_{2}<n_{3}<\ldots$ such that for $k \geq 1$,

$$
E_{k}=\left\{t:\left|f_{n_{k}}-f\right|(t) \geq \frac{1}{2^{k}}\right\}
$$

has

$$
\text { meas }\left(E_{k}\right) \leq \frac{1}{2^{k}} \text {. }
$$

Let

$$
E=\limsup _{k \rightarrow \infty} E_{k}=\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} E_{k}
$$

Then it is easy to check that meas $(E)=0$ and for $t \notin E$,

$$
\lim _{k \rightarrow \infty} f_{n_{k}}(t)=f(t)
$$

Question 5

Let f be a function defined on \mathbb{R}^{2} with continuous second partial derivatives. Use Fubini's theorem to give an easy proof that

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

(Hint: Assume it is not true, and integrate $\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}$ over a suitable square).

Solution

Let us suppose the result is false. Then at some point

$$
\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x} \neq 0
$$

Let us suppose that it is positive at that point. By continuity, we may find a square $S=[a, a+h] \times[b, b+h]$ containing that point, in which

$$
\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}>0
$$

Then we know

$$
\begin{equation*}
I=\iint_{S}\left[\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}\right] d x d y>0 \tag{1}
\end{equation*}
$$

Here

$$
\begin{align*}
I & =\iint_{S} \frac{\partial^{2} f}{\partial x \partial y} d x d y-\iint_{S} \frac{\partial^{2} f}{\partial y \partial x} d x d y \\
& =I_{1}-I_{2} \tag{2}
\end{align*}
$$

Because we are dealing with a continuous integrand, we may write these integrals as iterated integrals, and may change the order of integration, and may also use the fundamental theorem of calculus:

$$
\begin{aligned}
I_{1} & =\int_{b}^{b+h}\left(\int_{a}^{a+h} \frac{\partial^{2} f}{\partial x \partial y} d x\right) d y \\
& =\int_{b}^{b+h}\left(\frac{\partial f}{\partial y}(a+h, y)-\frac{\partial f}{\partial y}(a, y)\right) d y \\
& =f(a+h, b+h)-f(a+h, b)-f(a, b+h)+f(a, b)
\end{aligned}
$$

Next,

$$
\begin{aligned}
I_{2} & =\int_{a}^{a+h}\left(\int_{b}^{b+h} \frac{\partial^{2} f}{\partial y \partial x} d y\right) d x \\
& =\int_{a}^{a+h}\left(\frac{\partial f}{\partial x}(x, b+h)-\frac{\partial f}{\partial x}(x, b)\right) d x \\
& =f(a+h, b+h)-f(a, b+h)-f(a+h, b)+f(a, b)
\end{aligned}
$$

Thus $I_{1}=I_{2}$ and (2) gives $I=0$, contradicting (1).

Question 6

(a) Show that there is a bounded linear functional φ on ℓ_{∞} such that

$$
\varphi(\mathbf{x})=\lim _{i \rightarrow \infty} x_{i}
$$

for every convergent sequence $\mathbf{x}=\left(x_{i}\right)$ in ℓ_{∞}.
(b) Is this linear functional unique?

Solution

(a) Let c denote the set of all convergent sequences in ℓ_{∞}. It is a closed subspace of ℓ_{∞}. Note that φ is a linear functional on c. This follows from the linearity of limits. Moreover, φ is a bounded/continuous linear functional. Indeed if $\mathbf{x}=\left(x_{i}\right) \in c$, then

$$
\begin{aligned}
|\varphi(\mathbf{x})| & =\left|\lim _{i \rightarrow \infty} x_{i}\right|=\lim _{i \rightarrow \infty}\left|x_{i}\right| \\
& \leq \sup _{i}\left|x_{i}\right|=\|\mathbf{x}\| .
\end{aligned}
$$

So φ has norm at most one. By the Hahn-Banach theorem, φ has a bounded/continuous extension to all of ℓ_{∞}.
(b) It is not unique. Let c_{e} denote the set of all sequences in ℓ_{∞} whose even index components converge. Thus $\mathbf{x}=\left(x_{i}\right) \in c_{e}$ iff

$$
\lim _{i \rightarrow \infty} x_{2 i} \text { exists. }
$$

Similarly, let c_{o} denote the set of all sequences in ℓ_{∞} whose odd index components converge. Thus $\mathbf{x}=\left(x_{i}\right) \in c_{e}$ iff

$$
\lim _{i \rightarrow \infty} x_{2 i+1} \text { exists. }
$$

Suppose we first extend φ above to c_{e} by

$$
\varphi(\mathbf{x})=\lim _{i \rightarrow \infty} x_{2 i}
$$

It clearly is a bounded linear extension. Now we extend via Hahn-Banach to all of ℓ_{∞}. Call the resulting extension φ_{1}. Next, extend our original φ from c to c_{o} by

$$
\varphi(\mathbf{x})=\lim _{i \rightarrow \infty} x_{2 i+1}
$$

Now we extend via Hahn-Banach to all of ℓ_{∞}. Call the resulting extension φ_{2}.
Both φ_{1} and φ_{2} are bounded linear functional extending φ but they are not equal. To see this, let \mathbf{x} denote the sequence with

$$
x_{2 i}=0 ; x_{2 i+1}=1
$$

for all i. We have $\mathbf{x} \in c_{e} \cap c_{0}$ and

$$
\begin{aligned}
\varphi_{1}(\mathbf{x}) & =\lim _{i \rightarrow \infty} x_{2 i}=0 \\
\varphi_{2}(\mathbf{x}) & =\lim _{i \rightarrow \infty} x_{2 i+1}=1
\end{aligned}
$$

Question 7

Prove that there is no norm under which the vector space P of polynomials with real coefficients is a Banach space.

Solution

There is no norm under which P is complete. Let us assume there is, and derive a contradiction. We claim that

$$
P_{n}=\{\text { polynomials } P \text { of degree } \leq n\}
$$

is a closed subspace of P, and is also a nowhere dense subset of P.
Indeed, suppose $\left(p_{k}\right)$ is a sequence of polynomials of degree $\leq n$ with $\left\|p_{k}-p\right\| \rightarrow$ $0, k \rightarrow \infty$, for some function p. Now P_{n} is a finite dimensional subspace of a Banach space, so $K=\left\{q \in P_{n}:\|p-q\| \leq 1\right\}$, which is closed and bounded,is also compact. As $p_{k} \in K$ for large enough k, we deduce that $p \in P_{n}$ also. Thus P_{n} is closed.

To see that it is nowhere dense, we must show it has empty interior. But that is obvious: if $\ell>n$ and ε is small enough, while $p \in P_{n}$, then

$$
q(x)=\varepsilon x^{\ell}+p(x) \notin P_{n}
$$

but

$$
\|q-p\|=\varepsilon\left\|x^{\ell}\right\|
$$

may be made as small as we please. So P_{n} must have empty interior. Then

$$
P=\bigcup_{n=1}^{\infty} P_{n}
$$

is a countable union of nowhere dense sets, so is of the first category. This contradicts Baire's theorem for closed metric spaces (and hence Banach spaces.)

