(a) Prove that every sequence of real numbers either has a non-decreasing subsequence or a non-increasing subsequence.

(b) Deduce that every bounded sequence of real numbers has a convergent subsequence.

Solution

Let us denote our sequence by $(x_n)_{n=0}^{\infty}$.

(a) We say that the sequence has a *peak* at n_0 if

$$x_{n_0} > x_n$$
 for all $n > n_0$.

If there are infinitely many peaks, say at $(n_k)_{k=1}^{\infty}$, where

$$n_1 < n_2 < n_3 < \dots$$

then

$$x_{n_1} > x_{n_2} > x_{n_3} > \dots$$

so $(x_{n_j})_{j=1}^{\infty}$ is a decreasing subsequence. If there are only finitely many peaks, let N be the last peak. Then for all n > N, there exists m > n with

 $x_m \ge x_n.$

(If not, there would be a peak at n, imposible). Then we can construct an increasing subsequence, using induction. To see this, let $n_1 = N$. Since there is not a peak at n_1 , there exists $n_2 > n_1$ such that

 $x_{n_2} \ge x_{n_1}.$

Next, there is not a peak at n_2 , so there exists $n_3 > n_2$ such that

$$x_{n_3} \ge x_{n_2}.$$

Assuming that we have chosen $n_1 < n_2 < \ldots < n_k$, we can choose $n_{k+1} > n_k$ such that

$$x_{n_{k+1}} > x_{n_k},$$

as there is not a peak at n_k . Then $(x_{n_k})_{k=1}^{\infty}$ is increasing. (b) As $(x_n)_{n=0}^{\infty}$ is bounded, there exists A > 0 such that

$$|x_n| \leq A, n \geq 0$$

By (a), $(x_n)_{n=0}^{\infty}$ has either an increasing or decreasing subsequence $(x_{n_j})_{j=1}^{\infty}$. If this subsequence is increasing, then it is increasing and bounded above by A, so converges. If this subsequence is decreasing, then it is decreasing and bounded below by -A, and so converges.

Let (f_n) be a sequence of nonnegative Lebesgue measurable functions on [0, 1], and let (E_m) be a sequence of Lebesgue measurable subsets of [0, 1]. (a) Suppose that there is an integrable function f such that for $n \ge 1$ and almost every $x \in [0, 1]$,

$$f_n\left(x\right) \le f\left(x\right). \tag{1}$$

Prove that

$$\limsup_{n \to \infty} \int_0^1 f_n \le \int_0^1 \limsup_{n \to \infty} f_n.$$
⁽²⁾

Is the hypothesis (1) for some integrable f necessary? (b) Let $E_n \subset [0, 1]$ for $n \ge 1$ and let

$$E = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_m$$

(i) Prove that

$$\limsup_{n \to \infty} meas(E_n) \le meas(E).$$

(ii) Either prove that equality holds in part (i) or give an example in which strict inequality holds.

(iii) Prove that

$$\sum_{k=1}^{\infty} meas\left(E_k\right) < \infty \; \Rightarrow \; meas\left(E\right) = 0.$$

Solutions

(a) We apply Fatou's lemma to the non-negative measurable functions $f - f_n$ (They are non-negative a.e. and we can ignore the set of measure 0). We have

$$\liminf_{n \to \infty} \int_0^1 (f - f_n) \ge \int_0^1 \liminf_{n \to \infty} (f - f_n).$$
(1)

Since f does not depend on n,

$$\lim_{n \to \infty} \inf (f - f_n) = f + \liminf_{n \to \infty} (-f_n)$$
$$= f - \limsup_{n \to \infty} f_n,$$

 \mathbf{SO}

$$\int_0^1 \liminf_{n \to \infty} \left(f - f_n \right) = \int_0^1 f - \int_0^1 \limsup_{n \to \infty} f_n.$$

Also

$$\liminf_{n \to \infty} \left(\int_0^1 f - \int_0^1 f_n \right) = \int_0^1 f + \liminf_{n \to \infty} \left(-\int_0^1 f_n \right)$$
$$= \int_0^1 f - \limsup_{n \to \infty} \int_0^1 f_n.$$

Plugging these into (1) gives

$$\int_0^1 f - \limsup_{n \to \infty} \int_0^1 f_n \ge \int_0^1 f - \int_0^1 \limsup_{n \to \infty} f_n$$

and hence the result.

The condition (1) for some integrable f is necessary. We can use the same type of counterexamples that are used to show we need a dominating function in Lebesgue's Dominated Convergence Theorem. For example, let

$$f_n(x) = \begin{cases} n^2 x, & x \in \left[0, \frac{1}{n}\right] \\ 0, & x \in \left[\frac{1}{n}, 1\right] \end{cases}.$$

Then we see that if $x \in (0,1]$, we have $f_n(x) = 0$ for $n > \frac{1}{x}$, so

$$\lim_{n \to \infty} f_n\left(x\right) = 0$$

Also $f_n(0) = 0$ for $n \ge 1$. So

$$\lim_{n \to \infty} f_n\left(x\right) = 0, x \in [0, 1]$$

and then

$$\int_0^1 \limsup_{n \to \infty} f_n = \int_0^1 0 = 0$$

But

$$\int_0^1 f_n = n^2 \int_0^{1/n} x \, dx$$
$$= n^2 \frac{1}{2n^2} = \frac{1}{2},$$

 \mathbf{SO}

$$\limsup_{n \to \infty} \int_0^1 f_n = \frac{1}{2} > 0 = \int_0^1 \limsup_{n \to \infty} f_n.$$

(b) (i) Note that $x \in E$ iff $x \in E_n$ for infinitely many n, that is $\chi_{E_n}(x) = 1$ for infinitely many n. So

$$x\in E \Longleftrightarrow \limsup_{n\to\infty} \chi_{E_n}\left(x\right)=1.$$

Hence

$$\chi_{E}\left(x\right) = \limsup_{n \to \infty} \chi_{E_{n}}\left(x\right).$$

Since characteristic functions are bounded above by 1, we can apply (b) to deduce that

$$\limsup_{n \to \infty} \int_0^1 \chi_{E_n} \leq \int_0^1 \limsup_{n \to \infty} \chi_{E_n}$$
$$= \int_0^1 \chi_E.$$

That is,

$$\limsup_{n \to \infty} meas(E_n) \le meas(E).$$

(ii) No, we don't have equality always. For example, let $E_n = [0, \frac{1}{2})$ if n is odd and $E_n = [\frac{1}{2}, 1]$ if n is even. Then

$$E = \limsup_{n \to \infty} E_n = [0, 1]$$

as every point of [0,1] belongs to infinitely many of the $\{E_n\}$, and conversely, each $E_n \subset [0,1]$. So

$$\int_0^1 \chi_E = \int_0^1 1 = 1.$$

But for each n, E_n has linear measure $\frac{1}{2}$, so

$$\limsup_{n \to \infty} \int_0^1 \chi_{E_n} = \frac{1}{2}.$$

(iii) We have for each n,

$$E \subset \bigcup_{m=n}^{\infty} E_m$$

 \mathbf{SO}

$$meas\left(E\right) \le \sum_{m=n}^{\infty} meas\left(E_{m}\right).$$

As $n \to \infty$, the right-hand side approaches 0 (because of convergence) and hence

$$meas\left(E\right) =0.$$

(a) State a necessary and sufficient criterion for a function f on [0,1] to be Riemann integrable. Your criterion must involve Lebesgue measure.

(b) Let $f : [0,1] \to \mathbb{R}$ be Lebesgue integrable. Set f(x) = f(0) for x < 0 and f(x) = f(1) for x > 1. Prove that

$$\lim_{h \to 0} \int_0^1 |f(x+h) - f(x)| \, dx = 0.$$

(You may assume results about approximation of Lebesgue integrable functions by continuous functions).

(c) Let $g: [0,1] \to [0,1]$ be measurable. Prove that if f is (bounded and) Riemann integrable in [0,1], then

$$\lim_{h \to 0} \int_0^1 |f(x + hg(x)) - f(x)| \, dx = 0.$$

Solution

(a) For f to be Riemann integrable, it is necessary and sufficient that f be continuous a.e.

(b) If first f is continuous in [0, 1], then because of the way we extended it, it will be continuous in [-1, 2]. Then f is uniformly continuous there (a continuous function on a compact interval is unformly continuous). Then given $\varepsilon > 0$, we can find $\delta \in (0, 1)$ such that

$$x \in [0,1]$$
 and $|h| < \delta \Rightarrow |f(x+h) - f(x)| < \varepsilon$.

 So

$$|h| < \delta \Rightarrow \int_0^1 |f(x+h) - f(x)| \, dx \le \int_0^1 \varepsilon \, dx = \varepsilon.$$

Then the result follows for continuous f. Now suppose that we only know f is Lebesgue integrable. Then we can find continuous $g:[0,1] \to \mathbb{R}$ such that

$$\int_0^1 |f - g| < \varepsilon/3.$$

We may also assume that g(0) = f(0) and g(1) = f(1) (just change g in small neighborhoods of 0, 1 if necessary). Extend g to the real line in the same way we did for f. Then

$$\begin{split} &\int_{0}^{1} |f\left(x+h\right) - f\left(x\right)| \, dx \\ &\leq \int_{0}^{1} |f\left(x+h\right) - g\left(x+h\right)| \, dx + \int_{0}^{1} |g\left(x+h\right) - g\left(x\right)| \, dx + \int_{0}^{1} |g\left(x\right) - f\left(x\right)| \, dx \\ &< \varepsilon/3 + \int_{0}^{1} |g\left(x+h\right) - g\left(x\right)| \, dx + \varepsilon/3. \end{split}$$

For |h| small enough, as g is continuous, we have

$$\int_{0}^{1}\left|g\left(x+h\right)-g\left(x\right)\right|dx<\varepsilon/3$$

and then

$$\int_0^1 |f(x+h) - f(x)| \, dx < \varepsilon.$$

(c) Suppose M is such that

$$|f(x)| \leq M$$
 for all x .

We have

$$|f(x + hg(x)) - f(x)| \le 2M$$
 for all $x \in [0, 1]$.

Moreover, as g is bounded above by 1 and below by 0, we have at each point of continuity of f,

$$\lim_{h \to 0} f\left(x + hg\left(x\right)\right) = f\left(x\right).$$

Hence a.e. (recall f is Riemann integrable),

$$\lim_{h \to 0} |f(x + hg(x)) - f(x)| = 0.$$

By Lebesgue's Dominated Convergence Theorem,

$$\lim_{h \to 0} \int_{0}^{1} |f(x + hg(x)) - f(x)| \, dx = 0.$$

Let $1 and <math>\{f_n\}$ be a sequence of functions in $L_p[0,1]$. Give a proof of, or counterexample to, the following assertions:

(a) If $f_n \to f$ weakly in $L_p[0,1]$ as $n \to \infty$, then there is a subsequence $\{f_{n_k}\}$ that converges a.e. to f.

(b) If $f_n \to f$ in norm in $L_p[0,1]$ as $n \to \infty$, then there is a subsequence $\{f_{n_k}\}$ that converges a.e. to f.

Solutions

(a) This is false. Let φ be the periodic function

$$\varphi(t) = \begin{cases} 1, & 0 \le t < \frac{1}{2}, \\ -1, & \frac{1}{2} \le t < 1 \end{cases}$$

For $n \ge 1$, let

$$f_n(t) = \varphi(2^n t), t \in [0,1].$$

Then

$$\lim_{n \to \infty} \int_0^1 f_n \chi_A = 0$$

for every measurable subset A of [0, 1]. Here χ_A denotes the characteristic function of A. (We can first see this for dyadic intervals $\left[\frac{j}{2^{\ell}}, \frac{k}{2^{\ell}}\right]$, and then for general intervals, then for finite unions of intervals, and by dominated convergence for any measurable set). It follows that $f_n \to 0$ weakly as $n \to \infty$, but no subsequence converges a.e., since $|f_n(t)| = 1$ for all n and t.

(b) This is true. Let $\varepsilon > 0$ and *meas* denote linear Lebesgue measure. For $n \ge 1$,

$$\varepsilon \ meas\left(\left\{t: |f_n - f|(t) \ge \varepsilon\right\}\right)$$

$$\leq \int_{\left\{t: |f_n - f|(t) \ge \varepsilon\right\}} |f_n - f|^p$$

$$\leq \int_0^1 |f_n - f|^p \to 0, \ n \to \infty.$$

It follows that for each $\varepsilon > 0$,

meas
$$(\{t : |f_n - f|(t) \ge \varepsilon\}) \to 0 \text{ as } n \to \infty.$$

That is, $f_n \to f$ in measure. By a standard argument, there is a subsequence of $\{f_n\}$ that converges a.e. to f.

Outline of this argument:

Choose $n_1 < n_2 < n_3 < \dots$ such that for $k \ge 1$,

$$E_k = \left\{ t : |f_{n_k} - f|(t) \ge \frac{1}{2^k} \right\}$$

has

$$meas\left(E_k\right) \le \frac{1}{2^k}.$$

Let

$$E = \limsup_{k \to \infty} E_k = \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} E_k.$$

Then it is easy to check that meas(E) = 0 and for $t \notin E$,

$$\lim_{k \to \infty} f_{n_k}\left(t\right) = f\left(t\right).$$

Let f be a function defined on \mathbb{R}^2 with continuous second partial derivatives. Use Fubini's theorem to give an easy proof that

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}.$$

(Hint: Assume it is not true, and integrate $\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x}$ over a suitable square). Solution

Let us suppose the result is false. Then at some point

$$\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} \neq 0.$$

Let us suppose that it is positive at that point. By continuity, we may find a square $S = [a, a + h] \times [b, b + h]$ containing that point, in which

$$\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} > 0.$$

Then we know

$$I = \int \int_{S} \left[\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} \right] dx \, dy > 0.$$
(1)

Here

$$I = \int \int_{S} \frac{\partial^{2} f}{\partial x \partial y} dx \, dy - \int \int_{S} \frac{\partial^{2} f}{\partial y \partial x} dx \, dy$$

= $I_{1} - I_{2}.$ (2)

Because we are dealing with a continuous integrand, we may write these integrals as iterated integrals, and may change the order of integration, and may also use the fundamental theorem of calculus:

$$I_{1} = \int_{b}^{b+h} \left(\int_{a}^{a+h} \frac{\partial^{2} f}{\partial x \partial y} dx \right) dy$$

=
$$\int_{b}^{b+h} \left(\frac{\partial f}{\partial y} (a+h,y) - \frac{\partial f}{\partial y} (a,y) \right) dy$$

=
$$f (a+h,b+h) - f (a+h,b) - f (a,b+h) + f (a,b)$$

Next,

$$I_{2} = \int_{a}^{a+h} \left(\int_{b}^{b+h} \frac{\partial^{2} f}{\partial y \partial x} dy \right) dx$$

$$= \int_{a}^{a+h} \left(\frac{\partial f}{\partial x} (x, b+h) - \frac{\partial f}{\partial x} (x, b) \right) dx$$

$$= f (a+h, b+h) - f (a, b+h) - f (a+h, b) + f (a, b) .$$

Thus $I_1 = I_2$ and (2) gives I = 0, contradicting (1).

(a) Show that there is a bounded linear functional φ on ℓ_∞ such that

$$\varphi\left(\mathbf{x}\right) = \lim_{i \to \infty} x_i$$

for every convergent sequence $\mathbf{x} = (x_i)$ in ℓ_{∞} .

(b) Is this linear functional unique?

Solution

(a) Let c denote the set of all convergent sequences in ℓ_{∞} . It is a closed subspace of ℓ_{∞} . Note that φ is a linear functional on c. This follows from the linearity of limits. Moreover, φ is a bounded/continuous linear functional. Indeed if $\mathbf{x} = (x_i) \in c$, then

$$\begin{aligned} |\varphi\left(\mathbf{x}\right)| &= \left|\lim_{i \to \infty} x_i\right| = \lim_{i \to \infty} |x_i| \\ &\leq \sup_i |x_i| = \|\mathbf{x}\|. \end{aligned}$$

So φ has norm at most one. By the Hahn-Banach theorem, φ has a bounded/continuous extension to all of ℓ_{∞} .

(b) It is not unique. Let c_e denote the set of all sequences in ℓ_{∞} whose even index components converge. Thus $\mathbf{x} = (x_i) \in c_e$ iff

$$\lim_{i \to \infty} x_{2i}$$
 exists.

Similarly, let c_o denote the set of all sequences in ℓ_{∞} whose odd index components converge. Thus $\mathbf{x} = (x_i) \in c_e$ iff

$$\lim_{i \to \infty} x_{2i+1} \text{ exists.}$$

Suppose we first extend φ above to c_e by

$$\varphi\left(\mathbf{x}\right) = \lim_{i \to \infty} x_{2i}.$$

It clearly is a bounded linear extension. Now we extend via Hahn-Banach to all of ℓ_{∞} . Call the resulting extension φ_1 . Next, extend our original φ from c to c_o by

$$\varphi\left(\mathbf{x}\right) = \lim_{i \to \infty} x_{2i+1}.$$

Now we extend via Hahn-Banach to all of ℓ_{∞} . Call the resulting extension φ_2 .

Both φ_1 and φ_2 are bounded linear functional extending φ but they are not equal. To see this, let **x** denote the sequence with

$$x_{2i} = 0; x_{2i+1} = 1$$

for all *i*. We have $\mathbf{x} \in c_e \cap c_0$ and

$$\varphi_1 (\mathbf{x}) = \lim_{i \to \infty} x_{2i} = 0;$$

$$\varphi_2 (\mathbf{x}) = \lim_{i \to \infty} x_{2i+1} = 1.$$

Prove that there is no norm under which the vector space P of polynomials with real coefficients is a Banach space.

Solution

There is no norm under which P is complete. Let us assume there is, and derive a contradiction. We claim that

$$P_n = \{ \text{polynomials } P \text{ of degree } \leq n \}$$

is a closed subspace of P, and is also a nowhere dense subset of P.

Indeed, suppose (p_k) is a sequence of polynomials of degree $\leq n$ with $||p_k - p|| \rightarrow 0$, $k \rightarrow \infty$, for some function p. Now P_n is a finite dimensional subspace of a Banach space, so $K = \{q \in P_n : ||p - q|| \leq 1\}$, which is closed and bounded, is also compact. As $p_k \in K$ for large enough k, we deduce that $p \in P_n$ also. Thus P_n is closed.

To see that it is nowhere dense, we must show it has empty interior. But that is obvious: if $\ell > n$ and ε is small enough, while $p \in P_n$, then

$$q\left(x\right) = \varepsilon x^{\ell} + p\left(x\right) \notin P_{n}$$

but

$$\|q - p\| = \varepsilon \|x^{\ell}\|$$

may be made as small as we please. So P_n must have empty interior. Then

$$P = \bigcup_{n=1}^{\infty} P_n$$

is a countable union of nowhere dense sets, so is of the first category. This contradicts Baire's theorem for closed metric spaces (and hence Banach spaces.)