Question 1
(a) Prove that every sequence of real numbers either has a non-decreasing sub-
sequence or a non-increasing subsequence.
(b) Deduce that every bounded sequence of real numbers has a convergent sub-
sequence.
Solution
Let us denote our sequence by (), .
(a) We say that the sequence has a peak at ng if

Tng > Ty for all n > nyg.
If there are infinitely many peaks, say at (ny)p,, where
ny <ng <ng<..,

then
Tpy > Tpy > Tpg > oo

SO (‘Tnj);; is a decreasing subsequence. If there are only finitely many peaks,
let N be the last peak. Then for all n > N, there exists m > n with

Ly = Ty

(If not, there would be a peak at n, imposible). Then we can construct an
increasing subsequence, using induction. To see this, let ny = N. Since there is
not a peak at ni, there exists ny > nq such that

Tpy = Ty -
Next, there is not a peak at ns, so there exists ng > nq such that
Tpg = Tngy-

Assuming that we have chosen n; < ne < ... < ng, we can choose ng41 > ng
such that
Tnjyy > Ty,

as there is not a peak at ng. Then (x,, ), is increasing.
(b) As (xn),—, is bounded, there exists A > 0 such that

|zn] < A, n>0.

By (a), (zn),., has either an increasing or decreasing subsequence (wna)j; If
this subsequence is increasing, then it is increasing and bounded above by A, so
converges. If this subsequence is decreasing, then it is decreasing and bounded

below by —A, and so converges.



Question 2
Let (f,) be a sequence of nonnegative Lebesgue measurable functions on [0, 1],
and let (Ey,) be a sequence of Lebesgue measurable subsets of [0, 1].
(a) Suppose that there is an integrable function f such that for n > 1 and
almost every z € [0,1],

fo(z) < f(2). (1)
Prove that

1 1
limsup/ fn < / lim sup f,. (2)
0 0

n—oo n—oo

Is the hypothesis (1) for some integrable f necessary?
(b) Let E,, C [0,1] for n > 1 and let

e

(i) Prove that
limsup meas (E,) < meas (E).

n—oo

(ii) Either prove that equality holds in part (i) or give an example in which
strict inequality holds.
(iii) Prove that

oo

Zmeas (Er) < oo = meas(E)=0.

k=1
Solutions
(a) We apply Fatou’s lemma to the non-negative measurable functions f — f,
(They are non-negative a.e. and we can ignore the set of measure 0). We have

1 1
timint [ (7= £ > [ timint (£~ 1), 1)

n—oo

Since f does not depend on n,

liminf (f — f,)

f +liminf (~f,)

= f —limsup f,,
SO
/ liminf (f — f,) = / / lim sup f,.
o N n— oo
Also

i ([[1-[[) = [/ e[ )
/Olf—liyrlnj;p/ol In-



Plugging these into (1) gives

1 1 1 1
/ f —limsup/ fn > / f —/ lim sup f,,
0 n—00 0 0 0 n— oo
and hence the result.

The condition (1) for some integrable f is necessary. We can use the same
type of counterexamples that are used to show we need a dominating function
in Lebesgue’s Dominated Convergence Theorem. For example, let

{n%c, z e [0,

'n
0, wze[i

fn (@) =
Then we see that if = € (0,1], we have f, (z) =0 for n > 1, so
lim f, (z)=0.
Also f, (0) =0 for n > 1. So
lim f, (z) =0,z €]0,1]

n—oo

and then . L
/ limsupfn:/ 0=0.
0 n—oo 0
But
1 1/n
/ fn = n2/ x dx
0 0
_ o2 1
B 2n2 2’
SO

1 1 1
limsup/ fa==>0= / lim sup f,.
0 0

n—oo 2 n—oo
(b) (i) Note that z € E iff € E, for infinitely many n, that is x5 (z) =1 for
infinitely many n. So

r € E <= limsup xp, (v)=1.

n—oo

Hence
Xk (v) = limsup x g, (z).

n—oo

Since characteristic functions are bounded above by 1, we can apply (b) to
deduce that

1 1
lim sup / Xg, < / limsup x5,
0 0

n—oo n—oo

1
:/XE'
0



That is,
limsup meas (E,) < meas (E).

n—oo

(i) No, we don’t have equality always. For example, let E,, = [0, ) if n is odd
and E,, = [%, 1] if n is even. Then

E =limsup E,, = [0, 1]

n—oo

as every point of [0, 1] belongs to infinitely many of the {E,}, and conversely,

each E,, C [0,1]. So
/ XE — / =1.

But for each n, E, has linear measure z, so

! 1
limsup/ XE, = -
n— oo 0 2

(iii) We have for each n,

S0
meas (E) < Z meas (E
Asn — oo, the right-hand side approaches 0 (because of convergence) and hence

meas (E) = 0.



Question 3
(a) State a necessary and sufficient criterion for a function f on [0,1] to be
Riemann integrable. Your criterion must involve Lebesgue measure.
(b) Let f :[0,1] — R be Lebesgue integrable. Set f (z) = f(0) for x < 0 and
f(z)=f(1) for x > 1. Prove that

1
,g;n/ (@4 h) — f(z)|dz =0,

(You may assume results about approximation of Lebesgue integrable functions
by continuous functions).

(c) Let g : [0,1] — [0,1] be measurable. Prove that if f is (bounded and)
Riemann integrable in [0, 1], then

1
,g;n/ f @+ hg (2)) - f ()| dz = 0,

Solution

(a) For f to be Riemann integrable, it is necessary and sufficient that f be
continuous a.e.

(b) If first f is continuous in [0, 1], then because of the way we extended it, it will
be continuous in [—1,2]. Then f is uniformly continuous there (a continuous
function on a compact interval is unformly continuous). Then given € > 0, we

can find ¢ € (0,1) such that
ze[0,1] and |h| <d=[f(x+h)— f(z)] <e.

So
1 1
h 1) h) — d dr = €.
h] < :»/O|f<x+> f<m>\xs/osw :

Then the result follows for continuous f. Now suppose that we only know f is
Lebesgue integrable. Then we can find continuous g : [0, 1] — R such that

1
/ f—gl<e/3.
0

We may also assume that g (0) = f(0) and ¢ (1) = f (1) (just change ¢ in small
neighborhoods of 0,1 if necessary). Extend g to the real line in the same way
we did for f. Then

/Olf(fc+h)—f(x)dx
< /Olf(x+h)—g(w+h)\dw+/0 |g<w+h>—g<m>\dx+/o l9(2) — f (2)|do

1
< 6/3—|—/0 lg(x +h) —g(z)|dx + /3.



For |h| small enough, as g is continuous, we have

[0t em-s@lar<es
and then .
/0 |f(x+h)—f(z)|de <e.
(c) Suppose M is such that
|f (x)] < M for all z.

We have
|f(x+ hg(x))— f(z)]| <2M for all z € [0,1].

Moreover, as g is bounded above by 1 and below by 0, we have at each point of
continuity of f,

limn f (2 + hg (2)) = f (2)

Hence a.e. (recall f is Riemann integrable),
lim |f (z + hg () — f ()] = 0.
By Lebesgue’s Dominated Convergence Theorem,

li
h—

1
m [ 1f o+ ho @) = 1 @)l do =0,



Question 4
Let 1 < p < oo and {f,} be a sequence of functions in L, [0,1]. Give a proof
of, or counterexample to, the following assertions:
(a) If f,, — f weakly in L, [0, 1] as n — oo, then there is a subsequence {f,, }
that converges a.e. to f.
(b) If f, — f in norm in L, [0, 1] as n — oo, then there is a subsequence {fy, }
that converges a.e. to f.
Solutions
(a) This is false. Let ¢ be the periodic function

For n > 1, let
fo () =@ (2™), t €[0,1].

Then
1

lim faxa =0
n—oo 0

for every measurable subset A of [0, 1]. Here x 4 denotes the characteristic func-
tion of A. (We can first see this for dyadic intervals [23—,_7, zk—g] , and then for general
intervals, then for finite unions of intervals, and by dominated convergence for
any measurable set). It follows that f, — 0 weakly as n — oo, but no subse-
quence converges a.e., since | fy, (t)| =1 for all n and ¢.

(b) This is true. Let € > 0 and meas denote linear Lebesgue measure. For

n>1,

e meas ({t - |fn — f|(t) = €})
/ |fn - f|p
{t:] fn—fI(t) 2}

1
< /Ifn—flp—>0,n—>00-
0

IN

It follows that for each € > 0,
meas ({t:|fn— f|(t) > €}) — 0 asn — oo.

That is, f, — f in measure. By a standard argument, there is a subsequence
of {fn} that converges a.e. to f.

Outline of this argument:

Choose ny < ng < nz < ... such that for £ > 1,

Be={t:1fu~ 1102 3}

has



Let o e
E:lilrcrisotipEk = U E

m=1k=m

Then it is easy to check that meas (E) =0 and for ¢t ¢ F,



Question 5
Let f be a function defined on R? with continuous second partial derivatives.
Use Fubini’s theorem to give an easy proof that

o*f  0*f
oxdy  Oyox’

(Hint: Assume it is not true, and integrate 8696 ny 8(?; afx over a suitable square).
Solution

Let us suppose the result is false. Then at some point
or _of
oxdy  Oyox

Let us suppose that it is positive at that point. By continuity, we may find a
square S = [a,a + h] X [b,b+ h] containing that point, in which

£0

o 2f
Oxdy Oyox
Then we know s
I—// [azay ayax] dx dy > 0. (1)
Here
0% f 0% f
I = //S &Caydm dy—//S 8y8zdm dy
= L — L. (2)

Because we are dealing with a continuous integrand, we may write these integrals
as iterated integrals, and may change the order of integration, and may also use
the fundamental theorem of calculus:

B b+h 2f
ne (/ oaoy ™ |
B b+h 8f 8f
—/b <a—y(a+h,y)—a—y(a,y))dy
— flathb+h)—f(a+hb) —f(ab+h)+f(ab).
Next,
a+h b+h 62f
I, = /a (/b 6yaxdy>dz

= f(a+hvb+h)_f(a7b+h)_f(a+h7b)+f(a7b)
Thus I1 = I» and (2) gives I = 0, contradicting (1).



Question 6
(a) Show that there is a bounded linear functional ¢ on £, such that

p(x) = lim z;

for every convergent sequence x = (z;) in £o.

(b) Is this linear functional unique?

Solution

(a) Let ¢ denote the set of all convergent sequences in £. It is a closed subspace
of {,. Note that ¢ is a linear functional on c. This follows from the linearity
of limits. Moreover, ¢ is a bounded/continuous linear functional. Indeed if
x = (z;) € ¢, then

lp(x)] = |lim a;| = lim |ay]
11— 00 1— 00
< sup ] = x|
1

So ¢ has norm at most one. By the Hahn-Banach theorem, ¢ has a bounded/continuous
extension to all of /.

(b) It is not unique. Let c. denote the set of all sequences in ¢, whose even

index components converge. Thus x = (z;) € ¢, iff

lim x9; exists.

11— 00

Similarly, let ¢, denote the set of all sequences in ¢, whose odd index compo-
nents converge. Thus x = (z;) € ¢, iff

lim x9;47 exists.
11— 00
Suppose we first extend ¢ above to c. by
v (x) = lim zg;.
11— 00
It clearly is a bounded linear extension. Now we extend via Hahn-Banach to all
of £o,. Call the resulting extension ¢,. Next, extend our original ¢ from ¢ to ¢,
by
0 (x) = lim zo;y1.
11— 00
Now we extend via Hahn-Banach to all of /.. Call the resulting extension ,.
Both ¢; and ¢, are bounded linear functional extending ¢ but they are not
equal. To see this, let x denote the sequence with
w2 = 0;22i41 =1

for all i. We have x € ¢, N ¢y and

0, (x) = lim x9; =0
pa(x) = limayy, =1

10



Question 7
Prove that there is no norm under which the vector space P of polynomials with
real coefficients is a Banach space.
Solution
There is no norm under which P is complete. Let us assume there is, and derive
a contradiction. We claim that

P,, = {polynomials P of degree < n}

is a closed subspace of P, and is also a nowhere dense subset of P.

Indeed, suppose (pi) is a sequence of polynomials of degree < n with ||px — p|| —
0, kK — oo, for some function p. Now P, is a finite dimensional subspace of a
Banach space, so K = {q € P, : ||[p— ¢|| <1}, which is closed and bounded,is
also compact. As p, € K for large enough k, we deduce that p € P, also. Thus
P, is closed.

To see that it is nowhere dense, we must show it has empty interior. But
that is obvious: if £ > n and ¢ is small enough, while p € P,,, then
q(z) =ex’ +p(x) ¢ Py
but
’
llg —pll =< |=*|]

may be made as small as we please. So P, must have empty interior. Then

(@

P = P,

n=1

is a countable union of nowhere dense sets, so is of the first category. This
contradicts Baire’s theorem for closed metric spaces (and hence Banach spaces.)
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