Algebra Comprehensive Exam
— Fall 2007 —

Instructions: Complete five of the seven problems below. If you attempt more than five questions,
then clearly indicate which five should be graded.

(1)

(2)

Let G be a finite group such that Aut(G) acts transitively on the set G \ {e}. Show that G
is a p-group for some prime p, and that G is abelian.

Solution. Let p be a prime dividing the order of G. Then there is an element x € G with
|x| = p. Let y € G\ {e} be an arbitrary element. Then there exists ¢ € Aut(G) with ¢(y) = =,
and e = ¢(zP) = yP, which implies that |y| = p. Consequently if ¢ # p is a prime, then G has
no element of order ¢, and so |G| is a power of p.

Since G is a p-group, there exists a z # e in the center of G. If a,b € G'\ {e} are arbitrary
elements, then there exists ¢ € Aut(G) with ¢(b) = z. But then

¥(ab) = ¥(a)z = zp(a) = Y(ba).
Since v is an automorphism, and hence injective, ab = ba. O

An element e € A is an idempotent if e = e. A commutative ring with 1 # 0 that has a
unique maximal ideal is called a local ring. Prove that the only idempotent elements in a
local ring are 0 and 1.

Solution. Let m be the unique maximal ideal of A. Then e(1 —¢e) = 0 € m and since m is
prime, e € m or 1 — e € m. Note that e and 1 — e cannot both be elements of m since this
would imply 1 =e+ (1 —e) € m.

If e € m, then 1 —e ¢ m, and so 1 — e is a unit. (Indeed, if @ is a nonunit then (a) is a
proper ideal of A. Thus (a) is contained in some maximal ideal but since there is only one we
have (a) C m. So all nonunits are contained in m.) But then e = 0. Similarly, if 1 — e € m,
then e is a unit and so 1 —e = 0. O]

If p < g < r are primes and G is a finite group of order pgr, prove that the Sylow r-subgroup
of G is normal. It is true and you may assume (without proving it) that one of the Sylow
subgroups is normal.

Solution. If the Sylow p-subgroup P is normal then consider G’ = G/ P. (The argument when
the ¢g-subgroup is normal is analogous.) This is a group of order ¢r. Let n!. be the number of
Sylow r subgroups in G'. We know by the Sylow theorems that n! must divide ¢ and be equal
to 1 + nr for some non-negative integer n. Thus n = 0, since r > p, and n,. = 1. So there
is a unique Sylow r-subgroup R’ in G’ which must be normal. From the fourth isomorphism
theorem there is a normal subgroup R” in G such that R”/P is isomorphic to R’. Thus the
order of R” is rp. Considering R” as a group in its own right we can argue as above (since
r is larger than p) that there is a unique Sylow r subgroup of R” which we denote by R. So
the order of R is » and R is a subgroup of G. So it is a Sylow r-subgroup. If S is another
Sylow r-subgroup of GG then, again by the Sylow theorems, there is some element g € GG such
that gRg™' = S so S = gRg~! C gR"g~! = R". Thus S is a subgroup of R” that has order
r. Since the order r-subgroup of R” is unique we know S = R. We have shown that R is the
only Sylow r-subgroup of G and thus it is normal. OJ

The operators Ay, ..., A in a vector space of dimension n are such that A; +---+ A, = 1.
Prove that the following conditions are equivalent.



(a) Each A; is a projection.
(b) A;A; = 0,4 # j.
(c) rank(Ay) + - - - +rank(Ay) = n.

Solution. (a)=(c). Notice that if the range of [ of the A;’s nontrivially overlapped and v was
in this common range then (A; + - - - + Ag)v = lv This is not possible unless | = 1. Thus the
ranges do not overlap and if r; denotes the rank of A; we see that r{ + - - -+ r, < n. However
A+ -+ A = I implies that r; + - - - + 7, > n. (Since the range of a sum of operators must
be contained in the span of the ranges of each operator.)

(¢)=-(b) Since the whole vector space is contained in the span of the images of the A; and
ry 4 -+ rx = n we see that the images of the A; can only have trivial intersection. Thus if
v; is a vector in the image of A; and v + - - - + v = 0 then all the v; = 0. Now if v is in the
image of Ay then Ajv+ Asv+ -+ Agv = v so (Ajv —v) + Ayv + - -+ + Arv = 0 and we see
that A;u = 0 for ¢ # 1 and A;v = v. In particular A;A; = 0 for all ¢ # 1. Similarly A;A;, =0
for all ¢ # j.

(b)=(a). Not A; = Aj(A;+---+Ay) = A2+ Aj Ay +-- -+ A} Ay = A2 s0 A; is a projection.
Similarly the other A; are projections. 0]

Let F be a field and K an extension of K of degree n. Let f(x) € F|x] be an irreducible
polynomial of degree m. Suppose n and m are relatively prime. Show that f(z) is irreducible
as a polynomial in K{z].

Solution. Suppose f(x) factors in K|z] as fi(z)f2(x), with fi(x) irreducible. Let m; and msy
be the degrees of f; and f,, respectively. If m; or ms is 1 then there is a root a of f(z) in K and
if we let F = K(a) then we know [E : F]=m and [K : F| =[K : E][E : F| = [K : E]m and
hence m divides n, a contradiction. Thus 1 < m; < m for i = 1,2. Let K' = K[z]/(fi(x)).
We know [K’ : K] = my and K’ has a root of fi(z), hence a root of f(x). Since K’ is
a field extension of F' that contains a root of f(x), as argued above, we know m divides
[K'": F| = myn. Therefore my divides n, but this contradicts m and n being relatively prime
unless my = 1 which we already argued is not the case. Hence f(x) is irreducible in K[z]. O

Let R be a commutative ring with 1 and let M be an ideal of R. Show that if M is maximal
and principal then there is no ideal I such that M? C I C M. Moreover, give examples to
show that this is not true if M is not assumed to be maximal and give an example to show
that this is not true if M is not assumed to be principal.

Solution. Suppose M = (a) and I is an ideal contained in M and containing M?. One may
easily check that M? = (a?). Thus a?r € I for all r € R. If we assume I # M? then there is
some element in M that is not in M? in I. That is there is some element of the form ar in I
for some r € R with a not dividing r. Thus r ¢ M and (a,r) is an ideal properly containing
M. So (a,r) = R and we know there are r; and 7o such that ar; + rro = 1. Which implies
that @ = a®ry + arry isin I. So I = M.

To see the necessity of M being maximal consider R = Z and M = (6). Then M? = (36)
and I = (12) is properly between M and M?2.

To see the necessity of M begin principal consider R = Z[z] and M = (2,z). Consider
I = (2,2%). Clearly &€ I so I is a proper sub-ideal of M. Moreover, 2 ¢ M?. (Indeed if it
were then 2 = (a2 + bx)(c2 + dx) = acd + (ad + be)2x + dbz?, thus db = 0 which implies, say
d = 0. Thus 2 = ac4 + bc2x. This implies bc2 = 0. If b = 0 then 2 = ac4 a clear contradiction,
so we must have ¢ = 0. But this implies 2 = a2 + bz also a clear contradiction.) Thus
I+ M2 O



(7)

3

Let G be a non-abelian group of order p* where p is a prime. Prove that the center Z(G) of
G is of order p and that Z(G) = |G, G] where |G, G] is the commutator subgroup of G, that
is the subgroup generated by zyxz~'y~! for all z,y € G.

Solution. Since G is a p-group it has nontrivial center. Thus |Z(G)| = p, p* or p?, but since
G is non-abelian the order cannot be p*. Thus we are left to show that |Z(G)| # p?. If this
were the case then G/Z(G) would have order p and hence be cyclic. So G/Z(G) is generated
by a single element say, ¢Z(G). Thus any element in G is of the from ¢"h for some n and
h € Z(G). Given two elements a and b in G write them as a = ¢"z and b = ¢g"2’. We now see

ab = g"2qg"7 = g"g" 27 = ¢"¢" 2 = ¢g"Z ¢"z = ab.
Thus G would have to be abelian, a contradiction. Therefore |Z(G)| = p.

Since G/Z(G) has order p* we know it is an abelian group (indeed, we know it has nontrivial
center and when we quotient by it we get a cyclic group, so arguing as above it must be
abelian). Thus if we denote Z(G) by Z then for any a,b € G we have abZ = aZbZ = bZaZ =
baZ so b~ la"'ba € Z(G) and [G,G] C Z(G). Since G is non-abelian we know [G, G| # {e}
and since it is a subgroup of G it has order divisible by p. Thus [G, G| = Z(G). O

Let M, (C) be the group of n X n matrices with entries in the complex numbers C.

(a) Given two diagonalizable elements A and B in M,,(C) there is an invertible matrix 7" in
M,,(C) such that TAT~! and TBT~! are both diagonal matrices if and only if AB = BA.

(b) Let A be a nonsingular diagonalizable matrix in M, (C). Prove there is a polynomial
f(x) € C[x] such that A™! = f(A).

Solution. (a) Suppose v is an eigenvector for A so that Av = Av. Then notice that
ABv = BAv = B\v = Jv.

Thus is we let £ be the eigenspace of A corresponding to the eigenvalue A then B(E)) C E,.
That is B preserves the eigenspaces of A. Thus we can choose eigenvectors vy, ...,v, for
B that span C" and so that each wv; is also an eigenvector of A. (This is easy to do, just
restrict B to E) and pick eigenvectors for B as a linear transformation on E). Do this for
each eigenspace.) Let T be the n x n matrix with columns given by the v;’s. Clearly T AT !
and T BT~ are both diagonal matrices.

Conversely assume that you can find the desired T" then

AB = (T'DT)(T7'D'T)=T'DD'T =T 'D'DT =T 'D'TT 'DT = BA,
where D = TAT~! and D' = TBT!.

(b) Consider A = A and B = A~!. Clearly A and B satisfy the hypotheses of part (a) so
there is aK that simultaneously diagonalizes A and B. Let ¢, ..., ¢, be the values along the
diagonal of D (from part (a)) and dy,...,d, the values along the diagonal of D’. Of course
d; = ¢;’'. There is a polynomial f(z) that will take the value d; at the point ¢;. (If we look
at the distinct values of the ¢;’s and the d;’s we get a one-to-one correspondence between
them. Given such a correspondence it is easy to construct a polynomial that will induce this
correspondence.) Thus

f(A)=fTDT YHY=TfD)T'=TDT*'=B=A",

where the second inequality follows since (TDT~')¥ = TD*TI'~! and the third inequality
follows since evaluating a polynomial on a diagonal matrix is the same as evaluating the
polynomial on the diagonal elements of the matrix. O



