Algebra Comprehensive Exam — Fall 2007 -

Instructions: Complete five of the seven problems below. If you attempt more than five questions, then clearly indicate which five should be graded.
(1) Let G be a finite group such that $\operatorname{Aut}(G)$ acts transitively on the set $G \backslash\{e\}$. Show that G is a p-group for some prime p, and that G is abelian.
Solution. Let p be a prime dividing the order of G. Then there is an element $x \in G$ with $|x|=p$. Let $y \in G \backslash\{e\}$ be an arbitrary element. Then there exists $\phi \in \operatorname{Aut}(G)$ with $\phi(y)=x$, and $e=\phi\left(x^{p}\right)=y^{p}$, which implies that $|y|=p$. Consequently if $q \neq p$ is a prime, then G has no element of order q, and so $|G|$ is a power of p.

Since G is a p-group, there exists a $z \neq e$ in the center of G. If $a, b \in G \backslash\{e\}$ are arbitrary elements, then there exists $\psi \in \operatorname{Aut}(G)$ with $\psi(b)=z$. But then

$$
\psi(a b)=\psi(a) z=z \psi(a)=\psi(b a) .
$$

Since ψ is an automorphism, and hence injective, $a b=b a$.
(2) An element $e \in A$ is an idempotent if $e^{2}=e$. A commutative ring with $1 \neq 0$ that has a unique maximal ideal is called a local ring. Prove that the only idempotent elements in a local ring are 0 and 1 .

Solution. Let \mathfrak{m} be the unique maximal ideal of A. Then $e(1-e)=0 \in \mathfrak{m}$ and since \mathfrak{m} is prime, $e \in \mathfrak{m}$ or $1-e \in \mathfrak{m}$. Note that e and $1-e$ cannot both be elements of \mathfrak{m} since this would imply $1=e+(1-e) \in \mathfrak{m}$.

If $e \in \mathfrak{m}$, then $1-e \notin \mathfrak{m}$, and so $1-e$ is a unit. (Indeed, if a is a nonunit then (a) is a proper ideal of A. Thus (a) is contained in some maximal ideal but since there is only one we have $(a) \subset \mathfrak{m}$. So all nonunits are contained in \mathfrak{m}.) But then $e=0$. Similarly, if $1-e \in \mathfrak{m}$, then e is a unit and so $1-e=0$.
(3) If $p<q<r$ are primes and G is a finite group of order $p q r$, prove that the Sylow r-subgroup of G is normal. It is true and you may assume (without proving it) that one of the Sylow subgroups is normal.
Solution. If the Sylow p-subgroup P is normal then consider $G^{\prime}=G / P$. (The argument when the q-subgroup is normal is analogous.) This is a group of order $q r$. Let n_{r}^{\prime} be the number of Sylow r subgroups in G^{\prime}. We know by the Sylow theorems that n_{r}^{\prime} must divide q and be equal to $1+n r$ for some non-negative integer n. Thus $n=0$, since $r>p$, and $n_{r}^{\prime}=1$. So there is a unique Sylow r-subgroup R^{\prime} in G^{\prime} which must be normal. From the fourth isomorphism theorem there is a normal subgroup $R^{\prime \prime}$ in G such that $R^{\prime \prime} / P$ is isomorphic to R^{\prime}. Thus the order of $R^{\prime \prime}$ is $r p$. Considering $R^{\prime \prime}$ as a group in its own right we can argue as above (since r is larger than p) that there is a unique Sylow r subgroup of $R^{\prime \prime}$ which we denote by R. So the order of R is r and R is a subgroup of G. So it is a Sylow r-subgroup. If S is another Sylow r-subgroup of G then, again by the Sylow theorems, there is some element $g \in G$ such that $g R g^{-1}=S$ so $S=g R g^{-1} \subset g R^{\prime \prime} g^{-1}=R^{\prime \prime}$. Thus S is a subgroup of $R^{\prime \prime}$ that has order r. Since the order r-subgroup of $R^{\prime \prime}$ is unique we know $S=R$. We have shown that R is the only Sylow r-subgroup of G and thus it is normal.
(4) The operators A_{1}, \ldots, A_{k} in a vector space of dimension n are such that $A_{1}+\cdots+A_{k}=I$. Prove that the following conditions are equivalent.
(a) Each A_{i} is a projection.
(b) $A_{i} A_{j}=0, i \neq j$.
(c) $\operatorname{rank}\left(A_{1}\right)+\cdots+\operatorname{rank}\left(A_{k}\right)=n$.

Solution. $(\mathrm{a}) \Rightarrow(\mathrm{c})$. Notice that if the range of l of the A_{i} 's nontrivially overlapped and v was in this common range then $\left(A_{1}+\cdots+A_{k}\right) v=l v$ This is not possible unless $l=1$. Thus the ranges do not overlap and if r_{i} denotes the rank of A_{i} we see that $r_{1}+\cdots+r_{k} \leq n$. However $A_{1}+\cdots+A_{k}=I$ implies that $r_{1}+\cdots+r_{k} \geq n$. (Since the range of a sum of operators must be contained in the span of the ranges of each operator.)
$(c) \Rightarrow(b)$ Since the whole vector space is contained in the span of the images of the A_{i} and $r_{1}+\cdots+r_{k}=n$ we see that the images of the A_{i} can only have trivial intersection. Thus if v_{i} is a vector in the image of A_{i} and $v_{1}+\cdots+v_{k}=0$ then all the $v_{i}=0$. Now if v is in the image of A_{1} then $A_{1} v+A_{2} v+\cdots+A_{k} v=v$ so $\left(A_{1} v-v\right)+A_{2} v+\cdots+A_{k} v=0$ and we see that $A_{i} v=0$ for $i \neq 1$ and $A_{1} v=v$. In particular $A_{i} A_{1}=0$ for all $i \neq 1$. Similarly $A_{j} A_{i}=0$ for all $i \neq j$.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$. Not $A_{1}=A_{1}\left(A_{1}+\cdots+A_{k}\right)=A_{1}^{2}+A_{1} A_{2}+\cdots+A_{1} A_{k}=A_{1}^{2}$ so A_{1} is a projection. Similarly the other A_{i} are projections.
(5) Let F be a field and K an extension of K of degree n. Let $f(x) \in F[x]$ be an irreducible polynomial of degree m. Suppose n and m are relatively prime. Show that $f(x)$ is irreducible as a polynomial in $K[x]$.
Solution. Suppose $f(x)$ factors in $K[x]$ as $f_{1}(x) f_{2}(x)$, with $f_{1}(x)$ irreducible. Let m_{1} and m_{2} be the degrees of f_{1} and f_{2}, respectively. If m_{1} or m_{2} is 1 then there is a root a of $f(x)$ in K and if we let $E=K(a)$ then we know $[E: F]=m$ and $[K: F]=[K: E][E: F]=[K: E] m$ and hence m divides n, a contradiction. Thus $1<m_{i}<m$ for $i=1,2$. Let $K^{\prime}=K[x] /\left(f_{1}(x)\right)$. We know $\left[K^{\prime}: K\right]=m_{1}$ and K^{\prime} has a root of $f_{1}(x)$, hence a root of $f(x)$. Since K^{\prime} is a field extension of F that contains a root of $f(x)$, as argued above, we know m divides [$\left.K^{\prime}: F\right]=m_{1} n$. Therefore m_{2} divides n, but this contradicts m and n being relatively prime unless $m_{2}=1$ which we already argued is not the case. Hence $f(x)$ is irreducible in $K[x]$.
(6) Let R be a commutative ring with 1 and let M be an ideal of R. Show that if M is maximal and principal then there is no ideal I such that $M^{2} \subsetneq I \subsetneq M$. Moreover, give examples to show that this is not true if M is not assumed to be maximal and give an example to show that this is not true if M is not assumed to be principal.

Solution. Suppose $M=(a)$ and I is an ideal contained in M and containing M^{2}. One may easily check that $M^{2}=\left(a^{2}\right)$. Thus $a^{2} r \in I$ for all $r \in R$. If we assume $I \neq M^{2}$ then there is some element in M that is not in M^{2} in I. That is there is some element of the form ar in I for some $r \in R$ with a not dividing r. Thus $r \notin M$ and (a, r) is an ideal properly containing M. So $(a, r)=R$ and we know there are r_{1} and r_{2} such that $a r_{1}+r r_{2}=1$. Which implies that $a=a^{2} r_{1}+a r r_{2}$ is in I. So $I=M$.

To see the necessity of M being maximal consider $R=\mathbb{Z}$ and $M=(6)$. Then $M^{2}=(36)$ and $I=(12)$ is properly between M and M^{2}.

To see the necessity of M begin principal consider $R=\mathbb{Z}[x]$ and $M=(2, x)$. Consider $I=\left(2, x^{2}\right)$. Clearly $x \notin I$ so I is a proper sub-ideal of M. Moreover, $2 \notin M^{2}$. (Indeed if it were then $2=(a 2+b x)(c 2+d x)=a c 4+(a d+b c) 2 x+d b x^{2}$, thus $d b=0$ which implies, say $d=0$. Thus $2=a c 4+b c 2 x$. This implies $b c 2=0$. If $b=0$ then $2=a c 4$ a clear contradiction, so we must have $c=0$. But this implies $2=a 2+b x$ also a clear contradiction.) Thus $I \neq M^{2}$.
(7) Let G be a non-abelian group of order p^{3} where p is a prime. Prove that the center $Z(G)$ of G is of order p and that $Z(G)=[G, G]$ where $[G, G]$ is the commutator subgroup of G, that is the subgroup generated by $x y x^{-1} y^{-1}$ for all $x, y \in G$.
Solution. Since G is a p-group it has nontrivial center. Thus $|Z(G)|=p, p^{2}$ or p^{3}, but since G is non-abelian the order cannot be p^{3}. Thus we are left to show that $|Z(G)| \neq p^{2}$. If this were the case then $G / Z(G)$ would have order p and hence be cyclic. So $G / Z(G)$ is generated by a single element say, $g Z(G)$. Thus any element in G is of the from $g^{n} h$ for some n and $h \in Z(G)$. Given two elements a and b in G write them as $a=g^{n} z$ and $b=g^{m} z^{\prime}$. We now see

$$
a b=g^{n} z g^{m} z^{\prime}=g^{n} g^{m} z z^{\prime}=g^{m} g^{n} z^{\prime} z=g^{m} z^{\prime} g^{n} z=a b .
$$

Thus G would have to be abelian, a contradiction. Therefore $|Z(G)|=p$.
Since $G / Z(G)$ has order p^{2} we know it is an abelian group (indeed, we know it has nontrivial center and when we quotient by it we get a cyclic group, so arguing as above it must be abelian). Thus if we denote $Z(G)$ by Z then for any $a, b \in G$ we have $a b Z=a Z b Z=b Z a Z=$ $b a Z$ so $b^{-1} a^{-1} b a \in Z(G)$ and $[G, G] \subset Z(G)$. Since G is non-abelian we know $[G, G] \neq\{e\}$ and since it is a subgroup of G it has order divisible by p. Thus $[G, G]=Z(G)$.
(8) Let $M_{n}(\mathbb{C})$ be the group of $n \times n$ matrices with entries in the complex numbers \mathbb{C}.
(a) Given two diagonalizable elements A and B in $M_{n}(\mathbb{C})$ there is an invertible matrix T in $M_{n}(\mathbb{C})$ such that $T A T^{-1}$ and $T B T^{-1}$ are both diagonal matrices if and only if $A B=B A$.
(b) Let A be a nonsingular diagonalizable matrix in $M_{n}(\mathbb{C})$. Prove there is a polynomial $f(x) \in \mathbb{C}[x]$ such that $A^{-1}=f(A)$.
Solution. (a) Suppose v is an eigenvector for A so that $A v=\lambda v$. Then notice that

$$
A B v=B A v=B \lambda v=\lambda v
$$

Thus is we let E_{λ} be the eigenspace of A corresponding to the eigenvalue λ then $B\left(E_{\lambda}\right) \subset E_{\lambda}$. That is B preserves the eigenspaces of A. Thus we can choose eigenvectors v_{1}, \ldots, v_{n} for B that span \mathbb{C}^{n} and so that each v_{i} is also an eigenvector of A. (This is easy to do, just restrict B to E_{λ} and pick eigenvectors for B as a linear transformation on E_{λ}. Do this for each eigenspace.) Let T be the $n \times n$ matrix with columns given by the v_{i} 's. Clearly $T A T^{-1}$ and $T B T^{-1}$ are both diagonal matrices.

Conversely assume that you can find the desired T then

$$
A B=\left(T^{-1} D T\right)\left(T^{-1} D^{\prime} T\right)=T^{-1} D D^{\prime} T=T^{-1} D^{\prime} D T=T^{-1} D^{\prime} T T^{-1} D T=B A
$$

where $D=T A T^{-1}$ and $D^{\prime}=T B T^{-1}$.
(b) Consider $A=A$ and $B=A^{-1}$. Clearly A and B satisfy the hypotheses of part (a) so there is a K that simultaneously diagonalizes A and B. Let c_{1}, \ldots, c_{n} be the values along the diagonal of D (from part (a)) and d_{1}, \ldots, d_{n} the values along the diagonal of D^{\prime}. Of course $d_{i}=c_{i}^{-1}$. There is a polynomial $f(x)$ that will take the value d_{i} at the point c_{i}. (If we look at the distinct values of the c_{i} 's and the d_{i} 's we get a one-to-one correspondence between them. Given such a correspondence it is easy to construct a polynomial that will induce this correspondence.) Thus

$$
f(A)=f\left(T D T^{-1}\right)=T f(D) T^{-1}=T D^{\prime} T^{-1}=B=A^{-1}
$$

where the second inequality follows since $\left(T D T^{-1}\right)^{k}=T D^{k} T^{-1}$ and the third inequality follows since evaluating a polynomial on a diagonal matrix is the same as evaluating the polynomial on the diagonal elements of the matrix.

