
Algebra Comprehensive Exam
— Fall 2007 —

Instructions: Complete five of the seven problems below. If you attempt more than five questions,
then clearly indicate which five should be graded.

(1) Let G be a finite group such that Aut(G) acts transitively on the set G \ {e}. Show that G
is a p-group for some prime p, and that G is abelian.

Solution. Let p be a prime dividing the order of G. Then there is an element x ∈ G with
|x| = p. Let y ∈ G\{e} be an arbitrary element. Then there exists φ ∈ Aut(G) with φ(y) = x,
and e = φ(xp) = yp, which implies that |y| = p. Consequently if q 6= p is a prime, then G has
no element of order q, and so |G| is a power of p.

Since G is a p-group, there exists a z 6= e in the center of G. If a, b ∈ G \ {e} are arbitrary
elements, then there exists ψ ∈ Aut(G) with ψ(b) = z. But then

ψ(ab) = ψ(a)z = zψ(a) = ψ(ba).

Since ψ is an automorphism, and hence injective, ab = ba. �

(2) An element e ∈ A is an idempotent if e2 = e. A commutative ring with 1 6= 0 that has a
unique maximal ideal is called a local ring. Prove that the only idempotent elements in a
local ring are 0 and 1.

Solution. Let m be the unique maximal ideal of A. Then e(1 − e) = 0 ∈ m and since m is
prime, e ∈ m or 1 − e ∈ m. Note that e and 1 − e cannot both be elements of m since this
would imply 1 = e+ (1 − e) ∈ m.

If e ∈ m, then 1 − e /∈ m, and so 1 − e is a unit. (Indeed, if a is a nonunit then (a) is a
proper ideal of A. Thus (a) is contained in some maximal ideal but since there is only one we
have (a) ⊂ m. So all nonunits are contained in m.) But then e = 0. Similarly, if 1 − e ∈ m,
then e is a unit and so 1 − e = 0. �

(3) If p < q < r are primes and G is a finite group of order pqr, prove that the Sylow r-subgroup
of G is normal. It is true and you may assume (without proving it) that one of the Sylow
subgroups is normal.

Solution. If the Sylow p-subgroup P is normal then consider G′ = G/P. (The argument when
the q-subgroup is normal is analogous.) This is a group of order qr. Let n′

r be the number of
Sylow r subgroups in G′. We know by the Sylow theorems that n′

r must divide q and be equal
to 1 + nr for some non-negative integer n. Thus n = 0, since r > p, and n′

r = 1. So there
is a unique Sylow r-subgroup R′ in G′ which must be normal. From the fourth isomorphism
theorem there is a normal subgroup R′′ in G such that R′′/P is isomorphic to R′. Thus the
order of R′′ is rp. Considering R′′ as a group in its own right we can argue as above (since
r is larger than p) that there is a unique Sylow r subgroup of R′′ which we denote by R. So
the order of R is r and R is a subgroup of G. So it is a Sylow r-subgroup. If S is another
Sylow r-subgroup of G then, again by the Sylow theorems, there is some element g ∈ G such
that gRg−1 = S so S = gRg−1 ⊂ gR′′g−1 = R′′. Thus S is a subgroup of R′′ that has order
r. Since the order r-subgroup of R′′ is unique we know S = R. We have shown that R is the
only Sylow r-subgroup of G and thus it is normal. �

(4) The operators A1, . . . , Ak in a vector space of dimension n are such that A1 + · · · + Ak = I.
Prove that the following conditions are equivalent.
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(a) Each Ai is a projection.
(b) AiAj = 0, i 6= j.
(c) rank(A1) + · · ·+rank(Ak) = n.

Solution. (a)⇒(c). Notice that if the range of l of the Ai’s nontrivially overlapped and v was
in this common range then (A1 + · · · + Ak)v = lv This is not possible unless l = 1. Thus the
ranges do not overlap and if ri denotes the rank of Ai we see that r1 + · · ·+ rk ≤ n. However
A1 + · · ·+Ak = I implies that r1 + · · ·+ rk ≥ n. (Since the range of a sum of operators must
be contained in the span of the ranges of each operator.)

(c)⇒(b) Since the whole vector space is contained in the span of the images of the Ai and
r1 + · · ·+ rk = n we see that the images of the Ai can only have trivial intersection. Thus if
vi is a vector in the image of Ai and v1 + · · · + vk = 0 then all the vi = 0. Now if v is in the
image of A1 then A1v +A2v + · · ·+ Akv = v so (A1v − v) + A2v + · · ·+Akv = 0 and we see
that Aiv = 0 for i 6= 1 and A1v = v. In particular AiA1 = 0 for all i 6= 1. Similarly AjAi = 0
for all i 6= j.

(b)⇒(a). Not A1 = A1(A1 + · · ·+Ak) = A2

1
+A1A2 + · · ·+A1Ak = A2

1
so A1 is a projection.

Similarly the other Ai are projections. �

(5) Let F be a field and K an extension of K of degree n. Let f(x) ∈ F [x] be an irreducible
polynomial of degree m. Suppose n and m are relatively prime. Show that f(x) is irreducible
as a polynomial in K[x].

Solution. Suppose f(x) factors in K[x] as f1(x)f2(x), with f1(x) irreducible. Let m1 and m2

be the degrees of f1 and f2, respectively. If m1 or m2 is 1 then there is a root a of f(x) in K and
if we let E = K(a) then we know [E : F ] = m and [K : F ] = [K : E][E : F ] = [K : E]m and
hence m divides n, a contradiction. Thus 1 < mi < m for i = 1, 2. Let K ′ = K[x]/(f1(x)).
We know [K ′ : K] = m1 and K ′ has a root of f1(x), hence a root of f(x). Since K ′ is
a field extension of F that contains a root of f(x), as argued above, we know m divides
[K ′ : F ] = m1n. Therefore m2 divides n, but this contradicts m and n being relatively prime
unless m2 = 1 which we already argued is not the case. Hence f(x) is irreducible in K[x]. �

(6) Let R be a commutative ring with 1 and let M be an ideal of R. Show that if M is maximal
and principal then there is no ideal I such that M 2 ( I ( M. Moreover, give examples to
show that this is not true if M is not assumed to be maximal and give an example to show
that this is not true if M is not assumed to be principal.

Solution. Suppose M = (a) and I is an ideal contained in M and containing M 2. One may
easily check that M 2 = (a2). Thus a2r ∈ I for all r ∈ R. If we assume I 6= M 2 then there is
some element in M that is not in M 2 in I. That is there is some element of the form ar in I
for some r ∈ R with a not dividing r. Thus r 6∈ M and (a, r) is an ideal properly containing
M. So (a, r) = R and we know there are r1 and r2 such that ar1 + rr2 = 1. Which implies
that a = a2r1 + arr2 is in I. So I = M.

To see the necessity of M being maximal consider R = Z and M = (6). Then M 2 = (36)
and I = (12) is properly between M and M 2.

To see the necessity of M begin principal consider R = Z[x] and M = (2, x). Consider
I = (2, x2). Clearly x 6∈ I so I is a proper sub-ideal of M. Moreover, 2 6∈ M 2. (Indeed if it
were then 2 = (a2 + bx)(c2 + dx) = ac4 + (ad+ bc)2x+ dbx2, thus db = 0 which implies, say
d = 0. Thus 2 = ac4 + bc2x. This implies bc2 = 0. If b = 0 then 2 = ac4 a clear contradiction,
so we must have c = 0. But this implies 2 = a2 + bx also a clear contradiction.) Thus
I 6= M2. �
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(7) Let G be a non-abelian group of order p3 where p is a prime. Prove that the center Z(G) of
G is of order p and that Z(G) = [G,G] where [G,G] is the commutator subgroup of G, that
is the subgroup generated by xyx−1y−1 for all x, y ∈ G.

Solution. Since G is a p-group it has nontrivial center. Thus |Z(G)| = p, p2 or p3, but since
G is non-abelian the order cannot be p3. Thus we are left to show that |Z(G)| 6= p2. If this
were the case then G/Z(G) would have order p and hence be cyclic. So G/Z(G) is generated
by a single element say, gZ(G). Thus any element in G is of the from gnh for some n and
h ∈ Z(G). Given two elements a and b in G write them as a = gnz and b = gmz′. We now see

ab = gnzgmz′ = gngmzz′ = gmgnz′z = gmz′gnz = ab.

Thus G would have to be abelian, a contradiction. Therefore |Z(G)| = p.
Since G/Z(G) has order p2 we know it is an abelian group (indeed, we know it has nontrivial

center and when we quotient by it we get a cyclic group, so arguing as above it must be
abelian). Thus if we denote Z(G) by Z then for any a, b ∈ G we have abZ = aZbZ = bZaZ =
baZ so b−1a−1ba ∈ Z(G) and [G,G] ⊂ Z(G). Since G is non-abelian we know [G,G] 6= {e}
and since it is a subgroup of G it has order divisible by p. Thus [G,G] = Z(G). �

(8) Let Mn(C) be the group of n× n matrices with entries in the complex numbers C.
(a) Given two diagonalizable elements A and B in Mn(C) there is an invertible matrix T in

Mn(C) such that TAT−1 and TBT−1 are both diagonal matrices if and only if AB = BA.
(b) Let A be a nonsingular diagonalizable matrix in Mn(C). Prove there is a polynomial

f(x) ∈ C[x] such that A−1 = f(A).

Solution. (a) Suppose v is an eigenvector for A so that Av = λv. Then notice that

ABv = BAv = Bλv = λv.

Thus is we let Eλ be the eigenspace of A corresponding to the eigenvalue λ then B(Eλ) ⊂ Eλ.
That is B preserves the eigenspaces of A. Thus we can choose eigenvectors v1, . . . , vn for
B that span Cn and so that each vi is also an eigenvector of A. (This is easy to do, just
restrict B to Eλ and pick eigenvectors for B as a linear transformation on Eλ. Do this for
each eigenspace.) Let T be the n× n matrix with columns given by the vi’s. Clearly TAT−1

and TBT−1 are both diagonal matrices.
Conversely assume that you can find the desired T then

AB = (T−1DT )(T−1D′T ) = T−1DD′T = T−1D′DT = T−1D′TT−1DT = BA,

where D = TAT−1 and D′ = TBT−1.
(b) Consider A = A and B = A−1. Clearly A and B satisfy the hypotheses of part (a) so

there is aK that simultaneously diagonalizes A and B. Let c1, . . . , cn be the values along the
diagonal of D (from part (a)) and d1, . . . , dn the values along the diagonal of D′. Of course
di = c−1

i . There is a polynomial f(x) that will take the value di at the point ci. (If we look
at the distinct values of the ci’s and the di’s we get a one-to-one correspondence between
them. Given such a correspondence it is easy to construct a polynomial that will induce this
correspondence.) Thus

f(A) = f(TDT−1) = Tf(D)T−1 = TD′T−1 = B = A−1,

where the second inequality follows since (TDT−1)k = TDkT−1 and the third inequality
follows since evaluating a polynomial on a diagonal matrix is the same as evaluating the
polynomial on the diagonal elements of the matrix. �


