Analysis Comprehensive Exam Questions

Fall 2007

1. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ-finite measure spaces, and fix $1<p<\infty$. Show that if f is a measurable function on $X \times Y$, then

$$
\begin{equation*}
\left(\int_{Y}\left(\int_{X}|f(x, y)| d \mu(x)\right)^{p} d \nu(y)\right)^{1 / p} \leq \int_{X}\left(\int_{Y}|f(x, y)|^{p} d \nu(y)\right)^{1 / p} d \mu(x) \tag{1}
\end{equation*}
$$

Solution
Let p^{\prime} be the dual index to p. Define

$$
F(y)=\int_{X}|f(x, y)| d \mu(x)
$$

Then the left-hand side of equation (1) can be rewritten as:

$$
\left(\int_{Y}\left(\int_{X}|f(x, y)| d \mu(x)\right)^{p} d \nu(y)\right)^{1 / p}=\left(\int_{Y}|F(y)|^{p} d \nu(y)\right)^{1 / p}=\|F\|_{p}
$$

We estimate this as follows:

$$
\begin{align*}
\|F\|_{p}^{p} & =\int_{Y} F(y)^{p-1} F(y) d \nu(y) \\
& =\int_{Y} F(y)^{p-1} \int_{X}|f(x, y)| d \mu(x) d \nu(y) \\
& =\int_{X} \int_{Y} F(y)^{p-1}|f(x, y)| d \nu(y) d \mu(x) \quad \text { (Tonelli) } \\
& \leq \int_{X}\left(\int_{Y} F(y)^{(p-1) p^{\prime}} d \nu(y)\right)^{1 / p^{\prime}}\left(\int_{Y}|f(x, y)|^{p} d \nu(y)\right)^{1 / p} d \mu(x) \tag{Hölder}\\
& =\int_{X}\left(\int_{Y} F(y)^{p} d \nu(y)\right)^{1 / p^{\prime}}\left(\int_{Y}|f(x, y)|^{p} d \nu(y)\right)^{1 / p} d \mu(x) \\
& =\|F\|_{p}^{p-1} \int_{X}\left(\int_{Y}|f(x, y)|^{p} d \nu(y)\right)^{1 / p} d \mu(x)
\end{align*}
$$

Dividing through by $\|F\|_{p}^{p-1}$, we therefore obtain

$$
\|F\|_{p} \leq \int_{X}\left(\int_{Y}|f(x, y)|^{p} d \nu(y)\right)^{1 / p} d \mu(x)
$$

which is equation (1).
2. Let (X, M, μ) be a measure space, let μ be a positive measure, and let $f, f_{n} \in$ $L^{1}(X, M, \mu)$ for $1 \leq n<\infty$. Assume that:
(1) $f_{n}(x) \rightarrow f(x)$ for almost every $x \in X$,
(2) $\left\|f_{n}\right\|_{1} \rightarrow\|f\|_{1}$.

Prove $\left\|f_{n}-f\right\|_{1} \rightarrow 0$.
Solution
Define $h_{n}=\left(|f|+\left|f_{n}\right|\right)-\left|f-f_{n}\right|$, which is nonnegative. Then by Fatou's lemma,

$$
\begin{aligned}
\int 2|f| d \mu & =\int \liminf _{n \rightarrow \infty} h_{n} d \mu \\
& \leq \liminf _{n \rightarrow \infty} \int h_{n} d \mu \\
& =\int|f| d \mu+\liminf _{n \rightarrow \infty}\left(\int\left|f_{n}\right| d \mu-\int\left|f-f_{n}\right| d \mu\right) \\
& \leq \int|f| d \mu+\limsup _{n \rightarrow \infty} \int\left|f_{n}\right| d \mu+\liminf _{n \rightarrow \infty}\left(-\int\left|f-f_{n}\right| d \mu\right) \\
& =2 \int|f| d \mu-\limsup _{n \rightarrow \infty}\left(\int\left|f-f_{n}\right| d \mu\right)
\end{aligned}
$$

Since $\int|f| d \mu$ is finite, one can subtract it from both sides to get

$$
\limsup _{n \rightarrow \infty} \int_{A}\left|f-f_{n}\right| d \mu \leq 0
$$

and hence $\left\|f-f_{n}\right\|_{1} \rightarrow 0$.
3. Let X be a Banach space. A sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is called a Schauder basis for X if for each $x \in X$ there exist unique scalars $a_{n}(x)$ such that

$$
x=\sum_{n=1}^{\infty} a_{n}(x) x_{n}
$$

where the series converges in the norm of X. It can be shown (you may take this as given) that $a_{n} \in X^{*}$ for each n.

Suppose that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Schauder basis for a Banach space X and $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ is a Schauder basis for a Banach space Y. Prove that the following two statements are equivalent.
(a) There exists a continuous linear bijection $S: X \rightarrow Y$ such that $S\left(x_{n}\right)=y_{n}$ for each $n \in \mathbb{N}$.
(b) Given scalars c_{n},

$$
\sum_{n=1}^{\infty} c_{n} x_{n} \text { converges in } X \quad \Longleftrightarrow \quad \sum_{n=1}^{\infty} c_{n} y_{n} \text { converges in } Y \text {. }
$$

Solution
(a) $\Rightarrow(\mathrm{b})$. Suppose that statement (a) holds, and that $x=\sum c_{n} x_{n}$ converges in X. Then since S is linear and continuous, we have that $S(x)=\sum c_{n} S\left(x_{n}\right)=\sum c_{n} y_{n}$ converges in X. To see why exactly this is true, note that $x=\sum c_{n} x_{n}$ means that

$$
\lim _{N \rightarrow \infty}\left\|x-\sum_{n=1}^{N} c_{n} x_{n}\right\|=0
$$

Therefore,

$$
\begin{aligned}
\left\|S(x)-\sum_{n=1}^{N} c_{n} y_{n}\right\| & =\left\|S(x)-\sum_{n=1}^{N} c_{n} S\left(x_{n}\right)\right\| \\
& =\left\|S\left(x-\sum_{n=1}^{N} c_{n} x_{n}\right)\right\| \\
& \leq\|S\|\left\|x-\sum_{n=1}^{N} c_{n} x_{n}\right\| \rightarrow 0
\end{aligned}
$$

so $\sum c_{n} y_{n}$ converges in Y to $S(x)$.
The Inverse Mapping Theorem tells us that S^{-1} is continuous, so a symmetric argument using S^{-1} shows that if $\sum c_{n} y_{n}$ converges in Y, then $\sum c_{n} x_{n}$ converges in X.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$. Suppose that (b) holds. By definition of Schauder basis, there exist functionals $a_{n} \in X^{*}$ such that

$$
x=\sum_{n=1}^{\infty} a_{n}(x) x_{n}, \quad x \in X
$$

and there exist functionals $b_{n} \in Y^{*}$ that satisfy

$$
y=\sum_{n=1}^{\infty} b_{n}(y) y_{n}, \quad y \in Y
$$

Choose any $x \in X$. Then $x=\sum a_{n}(x) x_{n}$ converges in X, so by hypothesis

$$
S(x)=\sum_{n=1}^{\infty} a_{n}(x) y_{n}
$$

converges in $Y . S$ defined in this way is linear, and we will show that it is a continuous bijection of X onto Y.

Suppose that $S(x)=0$. Then we have

$$
\sum_{n=1}^{\infty} a_{n}(x) y_{n}=S(x)=0=\sum_{n=1}^{\infty} 0 y_{n}
$$

The uniqueness of the coefficients therefore implies that $a_{n}(x)=0$ for every n, and hence $x=\sum a_{n}(x) x_{n}=0$. Therefore S is injective.

Next, if y is any element of Y, then $y=\sum b_{n}(y) y_{n}$ converges in Y, so by hypothesis $x=\sum b_{n}(y) x_{n}$ converges in X. The uniqueness of the coefficients implies that $b_{n}(y)=a_{n}(x)$ for every n. Hence $S(x)=y$ and therefore S is surjective. Thus S is a bijection of X onto Y.

Now we show that S is continuous. For each N, define $S_{N}: X \rightarrow Y$ by

$$
S_{N}(x)=\sum_{n=1}^{N} a_{n}(x) y_{n}
$$

Since each functional a_{n} is continuous, we conclude that each S_{N} is continuous. And since $S_{N}(x) \rightarrow S(x)$, the Banach-Steinhaus Theorem implies that S is continuous, which completes the proof.

Alternatively, we can appeal directly to the Uniform Boundedness Principle (of which the Banach-Steinhaus Theorem is simply a special case). We have that $S_{N}(x) \rightarrow S(x)$, so

$$
\forall x \in X, \quad \sup _{N}\left\|S_{N}(x)\right\|<\infty .
$$

Since each S_{N} is bounded, the Uniform Boundedness Principle implies that Hence

$$
\|S(x)\| \leq \limsup _{N \rightarrow \infty}\left\|S_{N}\right\|\|x\| \leq M\|x\|
$$

so S is bounded.
4. Prove that if f is integrable on $[a, b]$ and

$$
\begin{equation*}
\int_{a}^{x} f(t) d t=0 \tag{2}
\end{equation*}
$$

for all $x \in[a, b]$, then $f(t)=0$ a.e. in $[a, b]$.
Solution
Without loss of generality, we may suppose $f(x)>0$ on some set E of positive measure (a similar argument applies if $f(x)$ is negative on a a set of positive measure). Because $|E|>0$, then there exists a closed set $F \subset E$ with $|F|>0$. Let $O=[a, b] \backslash F$. Since

$$
0=\int_{a}^{b} f(t) d t=\int_{F} f(t) d t+\int_{O} f(t) d t
$$

we have

$$
\int_{O} f(t) d t=-\int_{F} f(t) d t \neq 0
$$

Since O is open, it is a union of disjoint open intervals, say,

$$
O=\bigcup_{n}\left(a_{n}, b_{n}\right)
$$

Then

$$
\int_{O} f(t) d t=\sum_{n} \int_{a_{n}}^{b_{n}} f(t) d t \neq 0
$$

so there must be an n such that

$$
\int_{a_{n}}^{b_{n}} f(t) d t \neq 0
$$

But then either

$$
\int_{a}^{a_{n}} f(t) d t \neq 0 \quad \text { or } \quad \int_{a}^{b_{n}} f(t) d t \neq 0
$$

which contradicts the condition (2).
An alternative approach is to use the Lebesgue Differentiation Theorem.
5. Let (X, \mathcal{M}, μ) be a measure space, and assume that μ is a bounded measure, i.e., $\mu(X)<\infty$. Fix $1 \leq p<\infty$, and assume that $F \in L^{p}(X)^{\prime}$, the dual space of $L^{p}(X)$. Show that there exists a $g \in L^{1}(X)$ such that

$$
\forall A \in \mathcal{M}, \quad F\left(\chi_{A}\right)=\int_{A} g(x) d \mu(x) .
$$

Notes: You cannot assume that $L^{p}(X)^{\prime} \cong L^{p^{\prime}}(X)$; this problem is one step in the proof of that isomorphism. You may assume that the scalar field is \mathbb{R}, so that all linear functionals are real-valued.

Solution

We are given that F is a bounded linear functional on $L^{p}(X)$. Define $\lambda: \Sigma \rightarrow \mathbb{R}$ by

$$
\lambda(A)=F\left(\chi_{A}\right), \quad A \in \mathcal{M}
$$

We claim that λ is a signed measure on X.
First, $\lambda(\emptyset)=F(0)=0$.
Second, to show that λ is countably additive, suppose that $E_{k}, k \in \mathbb{N}$, are disjoint measurable subsets of X. Define

$$
A=\bigcup_{k=1}^{\infty} E_{k}, \quad A_{N}=\bigcup_{k=1}^{N} E_{k}, N \in \mathbb{N} .
$$

Then $\mu\left(A_{N}\right) \rightarrow \mu(A)$ by continuity from above. On the other hand, since μ is a bounded measure, we have that $\mu\left(A \backslash A_{N}\right)=\mu(A)-\mu\left(A_{N}\right)$, and hence $\mu\left(A \backslash A_{N}\right) \rightarrow 0$. Hence

$$
\left\|\chi_{A}-\chi_{A_{N}}\right\|_{p}^{p}=\int_{X}\left|\chi_{A}(x)-\chi_{A_{N}}(x)\right|^{p} d x=\int_{X}\left|\chi_{A \backslash A_{N}}(x)\right|^{p} d x=\mu\left(A \backslash A_{N}\right) \rightarrow 0
$$

Hence $\chi_{A_{N}} \rightarrow \chi_{A}$ in $L^{p}(X)$. But F is a continuous linear functional on $L^{p}(X)$, so this implies that $F\left(\chi_{A_{N}}\right) \rightarrow F\left(\chi_{A}\right)$. Hence, because the E_{k} are disjoint, we have

$$
\begin{aligned}
\lambda(A)=F(A) & =\lim _{N \rightarrow \infty} F\left(\chi_{A_{N}}\right) \\
& =\lim _{N \rightarrow \infty} F\left(\sum_{k=1}^{N} \chi_{E_{k}}\right) \\
& =\lim _{N \rightarrow \infty} \sum_{k=1}^{N} F\left(\chi_{E_{k}}\right) \\
& =\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \lambda\left(E_{k}\right) \\
& =\sum_{k=1}^{\infty} \lambda\left(E_{k}\right)
\end{aligned}
$$

Therefore λ is countably additive and hence is a signed measure on X.

Now, if $E \in \mathcal{M}$ and $\mu(A)=0$, then we have $\chi_{A}=0 \mu$-a.e., and hence $\lambda(A)=F\left(\chi_{A}\right)=$ $F(0)=0$. Therefore λ is absolutely continuous with respect to μ, i.e., $\lambda \ll \mu$. The RadonNikodym theorem therefore implies that there exists a $g \in L^{1}(X)$ such that

$$
F\left(\chi_{A}\right)=\lambda(A)=\int_{X} g(x) d \mu(x), \quad A \in \mathcal{M}
$$

6. (a) Suppose ϕ is a real function on \mathbb{R} such that

$$
\begin{equation*}
\phi\left(\int_{0}^{1} f(x) d x\right) \leq \int_{0}^{1} \phi(f(x)) d x \tag{3}
\end{equation*}
$$

for every real bounded measurable function f. Prove that ϕ is convex.
(b) Let ϕ be a convex function on \mathbb{R}. Prove that the inequality (3) holds for each integrable function f on $[0,1]$.
Solution
Given any two finite real values a and b and given an arbitrary $\lambda \in[0,1]$, define

$$
f(x)= \begin{cases}a, & \lambda<x \leq 1 \\ b, & 0 \leq x \leq \lambda\end{cases}
$$

Clearly, $f(x)$ is a real bounded measurable function. Further,

$$
\begin{align*}
\phi\left(\int_{0}^{1} f(x) d x\right) & =\phi\left(\int_{0}^{\lambda} f(x) d x+\int_{\lambda}^{1} f(x) d x\right) \tag{4}\\
& =\phi\left(\int_{0}^{\lambda} b d x+\int_{\lambda}^{1} a d x\right) \\
& =\phi(\lambda b+(1-\lambda) a)
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\int_{0}^{1} \phi(f(x)) d x & =\int_{0}^{\lambda} \phi(f(x)) d x+\int_{\lambda}^{1} \phi(f(x)) d x \tag{5}\\
& =\int_{0}^{\lambda} \phi(b) d x+\int_{\lambda}^{1} \phi(a) d x \\
& =\lambda \phi(b)+(1-\lambda) \phi(a)
\end{align*}
$$

Putting (4) and (5) back into (3), we obtain

$$
\phi(\lambda b+(1-\lambda) a) \leq \lambda \phi(b)+(1-\lambda) \phi(a),
$$

which confirms that ϕ is convex.
(b) This part is Jensen's inequality. Let $\alpha=\int_{0}^{1} f(t) d t$, and let $y=m(x-\alpha)+\phi(\alpha)$ be the equation of a supporting line at α, where m is taken to lie between the left- and right-hand derivatives of ϕ at α. Since the supporting line always lies below the graph of ϕ, we have

$$
m(x-\alpha)+\phi(\alpha) \leq \phi(x)
$$

Replacing x by $f(t)$, we obtain for almost every $t \in(0,1)$ that

$$
m(f(t)-\alpha)+\phi(\alpha) \leq \phi(f(t))
$$

Integrating both sides with respect to t then gives equation 3 .
7. Let f be a bounded linear functional on a separable Hilbert space H. Prove that there is a unique $y \in H$ such that $f(x)=\langle x, y\rangle$ for all x and, moreover, $\|f\|=\|y\|$.
Solution
The result is also true for arbitrary Hilbert spaces, but since we have assumed that H is separable, we can use the fact that there exists a complete orthonomal system (basis) $\left\{\phi_{\nu}\right\}_{\nu \in \mathbb{N}}$ for H.

Set $b_{\nu}=f\left(\phi_{\nu}\right)$. Then for each finite n, we have

$$
\sum_{\nu=1}^{n} b_{\nu}^{2}=f\left(\sum_{\nu=1}^{n} b_{\nu} \phi_{\nu}\right) \leq\|f\|\left\|\sum_{\nu=1}^{n} b_{\nu} \phi_{\nu}\right\| \leq\|f\|\left(\sum_{\nu=1}^{n} b_{\nu}^{2}\right)^{1 / 2} .
$$

This implies that

$$
\sum_{\nu=1}^{n} b_{\nu}^{2} \leq\|f\|^{2}, \quad \text { all } n
$$

and therefore

$$
\sum_{\nu=1}^{\infty} b_{\nu}^{2} \leq\|f\|^{2}<\infty
$$

Hence the series

$$
y=\sum_{\nu=1}^{\infty} b_{\nu} \phi_{\nu}
$$

converges, and furthermore

$$
\|y\|^{2}=\sum_{\nu=1}^{\infty} b_{\nu}^{2} \leq\|f\|^{2}
$$

Given any $x \in H$, set

$$
a_{\nu}=\left\langle x, \phi_{\nu}\right\rangle .
$$

Then

$$
x=\sum_{\nu=1}^{\infty} a_{\nu} \phi_{\nu} .
$$

Since $\sum_{\nu=1}^{n} a_{\nu} \phi_{\nu} \rightarrow x$, we have by the continuity and linearity of f that

$$
f(x)=\lim _{n \rightarrow \infty} f\left(\sum_{\nu=1}^{n} a_{\nu} \phi_{\nu}\right)=\lim _{n \rightarrow \infty} \sum_{\nu=1}^{n} a_{\nu} b_{\nu}=\sum_{\nu=1}^{\infty} a_{\nu} b_{\nu}=\langle x, y\rangle .
$$

Finally, by the Schwarz inequality, we have

$$
\|f\| \leq\|y\|
$$

so $\|f\|=\|y\|$.
8. Let (X, \mathcal{M}, μ) and be a measure space such that $\mu(X)<\infty$. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of measurable functions, and let f be a measurable function. Prove that

$$
f_{n} \rightarrow f \text { in measure } \Longleftrightarrow \lim _{n \rightarrow \infty} \int_{X} \frac{\left|f-f_{n}\right|}{1+\left|f-f_{n}\right|} d \mu=0
$$

Solution
\Rightarrow. Suppose that $f_{n} \rightarrow f$ in measure, and choose any $\varepsilon>0$. Then

$$
\begin{aligned}
\int_{X} \frac{\left|f-f_{n}\right|}{1+\left|f-f_{n}\right|} d \mu & =\int_{\left|f-f_{n}\right|>\varepsilon} \frac{\left|f-f_{n}\right|}{1+\left|f-f_{n}\right|} d \mu+\int_{\left|f-f_{n}\right| \leq \varepsilon} \frac{\left|f-f_{n}\right|}{1+\left|f-f_{n}\right|} d \mu \\
& \leq \int_{\left|f-f_{n}\right|>\varepsilon} 1 d \mu+\int_{\left|f-f_{n}\right| \leq \varepsilon} \frac{\varepsilon}{1} d \mu \\
& \leq \mu\left\{\left|f-f_{n}\right|>\varepsilon\right\}+\varepsilon \mu(X)
\end{aligned}
$$

Consequently,

$$
\limsup _{n \rightarrow \infty} \int_{X} \frac{\left|f-f_{n}\right|}{1+\left|f-f_{n}\right|} d \mu \leq \limsup _{n \rightarrow \infty}\left(\mu\left\{\left|f-f_{n}\right|>\varepsilon\right\}+\varepsilon \mu(X)\right)=\varepsilon \mu(X)
$$

Since $\mu(X)<\infty$ and ε is arbitrary, we conclude that $\lim _{n \rightarrow \infty} \int_{X} \frac{\left|f-f_{n}\right|}{1+\left|f-f_{n}\right|} d \mu=0$.
\Leftarrow. Assume that $\lim _{n \rightarrow \infty} \int_{X} \frac{\left|f-f_{n}\right|}{1+\left|f-f_{n}\right|} d \mu=0$. Choose any $\varepsilon>0$. Note that

$$
x \geq \varepsilon \quad \Longrightarrow \quad \frac{x}{1+x} \geq \frac{\varepsilon}{1+\varepsilon}
$$

so

$$
\begin{aligned}
\mu\left\{\left|f-f_{n}\right|>\varepsilon\right\} d \mu & =\frac{1+\varepsilon}{\varepsilon} \int_{\left|f-f_{n}\right|>\varepsilon} \frac{\varepsilon}{1+\varepsilon} d \mu \\
& \leq \frac{1+\varepsilon}{\varepsilon} \int_{\left|f-f_{n}\right|>\varepsilon} \frac{\left|f-f_{n}\right|}{1+\left|f-f_{n}\right|} d \mu \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence $f_{n} \rightarrow f$ in measure.

