
Analysis Comprehensive Exam Questions
Fall 2007

1. Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces, and fix 1 < p < ∞. Show that
if f is a measurable function on X × Y , then

(
∫

Y

(
∫

X

|f(x, y)| dµ(x)

)p

dν(y)

)1/p

≤

∫

X

(
∫

Y

|f(x, y)|p dν(y)

)1/p

dµ(x). (1)

Solution
Let p′ be the dual index to p. Define

F (y) =

∫

X

|f(x, y)| dµ(x).

Then the left-hand side of equation (1) can be rewritten as:
(

∫

Y

(
∫

X

|f(x, y)| dµ(x)

)p

dν(y)

)1/p

=

(
∫

Y

|F (y)|p dν(y)

)1/p

= ‖F‖p.

We estimate this as follows:

‖F‖p
p =

∫

Y

F (y)p−1 F (y) dν(y)

=

∫

Y

F (y)p−1

∫

X

|f(x, y)| dµ(x) dν(y)

=

∫

X

∫

Y

F (y)p−1 |f(x, y)| dν(y) dµ(x) (Tonelli)

≤

∫

X

(
∫

Y

F (y)(p−1)p′ dν(y)

)1/p′(∫

Y

|f(x, y)|p dν(y)

)1/p

dµ(x) (Hölder)

=

∫

X

(
∫

Y

F (y)p dν(y)

)1/p′(∫

Y

|f(x, y)|p dν(y)

)1/p

dµ(x)

= ‖F‖p−1
p

∫

X

(
∫

Y

|f(x, y)|p dν(y)

)1/p

dµ(x).

Dividing through by ‖F‖p−1
p , we therefore obtain

‖F‖p ≤

∫

X

(
∫

Y

|f(x, y)|p dν(y)

)1/p

dµ(x),

which is equation (1). �
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2. Let (X, M, µ) be a measure space, let µ be a positive measure, and let f , fn ∈
L1(X, M, µ) for 1 ≤ n < ∞. Assume that:

(1) fn(x) → f(x) for almost every x ∈ X,

(2) ‖fn‖1 → ‖f‖1.

Prove ‖fn − f‖1 → 0.

Solution
Define hn = (|f | + |fn|) − |f − fn|, which is nonnegative. Then by Fatou’s lemma,

∫

2|f | dµ =

∫

lim inf
n→∞

hn dµ

≤ lim inf
n→∞

∫

hn dµ

=

∫

|f | dµ + lim inf
n→∞

(
∫

|fn| dµ −

∫

|f − fn| dµ

)

≤

∫

|f | dµ + lim sup
n→∞

∫

|fn| dµ + lim inf
n→∞

(

−

∫

|f − fn| dµ

)

= 2

∫

|f | dµ− lim sup
n→∞

(
∫

|f − fn| dµ

)

Since
∫

|f | dµ is finite, one can subtract it from both sides to get

lim sup
n→∞

∫

A

|f − fn| dµ ≤ 0,

and hence ‖f − fn‖1 → 0. �
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3. Let X be a Banach space. A sequence {xn}n∈N is called a Schauder basis for X if for
each x ∈ X there exist unique scalars an(x) such that

x =

∞
∑

n=1

an(x) xn,

where the series converges in the norm of X. It can be shown (you may take this as given)
that an ∈ X∗ for each n.

Suppose that {xn}n∈N is a Schauder basis for a Banach space X and {yn}n∈N is a Schauder
basis for a Banach space Y . Prove that the following two statements are equivalent.

(a) There exists a continuous linear bijection S : X → Y such that S(xn) = yn for each
n ∈ N.

(b) Given scalars cn,

∞
∑

n=1

cnxn converges in X ⇐⇒
∞

∑

n=1

cnyn converges in Y.

Solution
(a) ⇒ (b). Suppose that statement (a) holds, and that x =

∑

cnxn converges in X. Then
since S is linear and continuous, we have that S(x) =

∑

cnS(xn) =
∑

cnyn converges in X.
To see why exactly this is true, note that x =

∑

cnxn means that

lim
N→∞

∥

∥

∥

∥

x −
N

∑

n=1

cnxn

∥

∥

∥

∥

= 0.

Therefore,

∥

∥

∥

∥

S(x) −
N

∑

n=1

cnyn

∥

∥

∥

∥

=

∥

∥

∥

∥

S(x) −
N

∑

n=1

cnS(xn)

∥

∥

∥

∥

=

∥

∥

∥

∥

S

(

x −
N

∑

n=1

cnxn

)
∥

∥

∥

∥

≤ ‖S‖

∥

∥

∥

∥

x −
N

∑

n=1

cnxn

∥

∥

∥

∥

→ 0,

so
∑

cnyn converges in Y to S(x).
The Inverse Mapping Theorem tells us that S−1 is continuous, so a symmetric argument

using S−1 shows that if
∑

cnyn converges in Y , then
∑

cnxn converges in X.

(b) ⇒ (a). Suppose that (b) holds. By definition of Schauder basis, there exist functionals
an ∈ X∗ such that

x =
∞

∑

n=1

an(x) xn, x ∈ X,



4

and there exist functionals bn ∈ Y ∗ that satisfy

y =
∞

∑

n=1

bn(y) yn, y ∈ Y.

Choose any x ∈ X. Then x =
∑

an(x) xn converges in X, so by hypothesis

S(x) =
∞

∑

n=1

an(x) yn

converges in Y . S defined in this way is linear, and we will show that it is a continuous
bijection of X onto Y .

Suppose that S(x) = 0. Then we have
∞

∑

n=1

an(x) yn = S(x) = 0 =
∞

∑

n=1

0 yn.

The uniqueness of the coefficients therefore implies that an(x) = 0 for every n, and hence
x =

∑

an(x) xn = 0. Therefore S is injective.
Next, if y is any element of Y , then y =

∑

bn(y) yn converges in Y , so by hypothesis
x =

∑

bn(y) xn converges in X. The uniqueness of the coefficients implies that bn(y) = an(x)
for every n. Hence S(x) = y and therefore S is surjective. Thus S is a bijection of X onto Y .

Now we show that S is continuous. For each N , define SN : X → Y by

SN(x) =
N

∑

n=1

an(x) yn.

Since each functional an is continuous, we conclude that each SN is continuous. And since
SN(x) → S(x), the Banach–Steinhaus Theorem implies that S is continuous, which com-
pletes the proof.

Alternatively, we can appeal directly to the Uniform Boundedness Principle (of which the
Banach–Steinhaus Theorem is simply a special case). We have that SN(x) → S(x), so

∀ x ∈ X, sup
N

‖SN(x)‖ < ∞.

Since each SN is bounded, the Uniform Boundedness Principle implies that Hence

‖S(x)‖ ≤ lim sup
N→∞

‖SN‖ ‖x‖ ≤ M ‖x‖,

so S is bounded. �
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4. Prove that if f is integrable on [a, b] and
∫ x

a

f(t) dt = 0 (2)

for all x ∈ [a, b], then f(t) = 0 a.e. in [a, b].

Solution
Without loss of generality, we may suppose f(x) > 0 on some set E of positive measure (a

similar argument applies if f(x) is negative on a a set of positive measure). Because |E| > 0,
then there exists a closed set F ⊂ E with |F | > 0. Let O = [a, b] \ F . Since

0 =

∫ b

a

f(t) dt =

∫

F

f(t) dt +

∫

O

f(t) dt,

we have
∫

O

f(t) dt = −

∫

F

f(t) dt 6= 0.

Since O is open, it is a union of disjoint open intervals, say,

O =
⋃

n

(an, bn).

Then
∫

O

f(t) dt =
∑

n

∫ bn

an

f(t) dt 6= 0,

so there must be an n such that
∫ bn

an

f(t) dt 6= 0.

But then either
∫ an

a

f(t) dt 6= 0 or

∫ bn

a

f(t) dt 6= 0,

which contradicts the condition (2).
An alternative approach is to use the Lebesgue Differentiation Theorem. �
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5. Let (X,M, µ) be a measure space, and assume that µ is a bounded measure, i.e.,
µ(X) < ∞. Fix 1 ≤ p < ∞, and assume that F ∈ Lp(X)′, the dual space of Lp(X). Show
that there exists a g ∈ L1(X) such that

∀A ∈ M, F (χA) =

∫

A

g(x) dµ(x).

Notes: You cannot assume that Lp(X)′ ∼= Lp′(X); this problem is one step in the proof of
that isomorphism. You may assume that the scalar field is R, so that all linear functionals
are real-valued.

Solution
We are given that F is a bounded linear functional on Lp(X). Define λ : Σ → R by

λ(A) = F (χA), A ∈ M.

We claim that λ is a signed measure on X.
First, λ(∅) = F (0) = 0.
Second, to show that λ is countably additive, suppose that Ek, k ∈ N, are disjoint mea-

surable subsets of X. Define

A =
∞
⋃

k=1

Ek, AN =
N
⋃

k=1

Ek, N ∈ N.

Then µ(AN) → µ(A) by continuity from above. On the other hand, since µ is a bounded
measure, we have that µ(A\AN) = µ(A) − µ(AN), and hence µ(A\AN) → 0. Hence

‖χA − χAN
‖p

p =

∫

X

|χA(x) − χAN
(x)|p dx =

∫

X

|χA\AN
(x)|p dx = µ(A\AN) → 0.

Hence χAN
→ χA in Lp(X). But F is a continuous linear functional on Lp(X), so this implies

that F (χAN
) → F (χA). Hence, because the Ek are disjoint, we have

λ(A) = F (A) = lim
N→∞

F (χAN
)

= lim
N→∞

F

( N
∑

k=1

χEk

)

= lim
N→∞

N
∑

k=1

F (χEk
)

= lim
N→∞

N
∑

k=1

λ(Ek)

=

∞
∑

k=1

λ(Ek).

Therefore λ is countably additive and hence is a signed measure on X.
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Now, if E ∈ M and µ(A) = 0, then we have χA = 0 µ-a.e., and hence λ(A) = F (χA) =
F (0) = 0. Therefore λ is absolutely continuous with respect to µ, i.e., λ � µ. The Radon–
Nikodym theorem therefore implies that there exists a g ∈ L1(X) such that

F (χA) = λ(A) =

∫

X

g(x) dµ(x), A ∈ M. �
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6. (a) Suppose φ is a real function on R such that

φ

(
∫ 1

0

f(x) dx

)

≤

∫ 1

0

φ(f(x)) dx, (3)

for every real bounded measurable function f . Prove that φ is convex.

(b) Let φ be a convex function on R. Prove that the inequality (3) holds for each integrable
function f on [0, 1].

Solution
Given any two finite real values a and b and given an arbitrary λ ∈ [0, 1], define

f(x) =

{

a, λ < x ≤ 1,

b, 0 ≤ x ≤ λ.

Clearly, f(x) is a real bounded measurable function. Further,

φ(

∫ 1

0

f(x) dx) = φ

(
∫ λ

0

f(x) dx +

∫ 1

λ

f(x) dx

)

(4)

= φ

(
∫ λ

0

b dx +

∫ 1

λ

a dx

)

= φ(λb + (1 − λ)a).

On the other hand,
∫ 1

0

φ(f(x)) dx =

∫ λ

0

φ(f(x)) dx +

∫ 1

λ

φ(f(x)) dx (5)

=

∫ λ

0

φ(b) dx +

∫ 1

λ

φ(a) dx

= λφ(b) + (1 − λ)φ(a).

Putting (4) and (5) back into (3), we obtain

φ(λb + (1 − λ)a) ≤ λφ(b) + (1 − λ)φ(a),

which confirms that φ is convex.

(b) This part is Jensen’s inequality. Let α =
∫ 1

0
f(t) dt, and let y = m(x−α)+φ(α) be the

equation of a supporting line at α, where m is taken to lie between the left- and right-hand
derivatives of φ at α. Since the supporting line always lies below the graph of φ, we have

m(x − α) + φ(α) ≤ φ(x).

Replacing x by f(t), we obtain for almost every t ∈ (0, 1) that

m(f(t) − α) + φ(α) ≤ φ(f(t)).

Integrating both sides with respect to t then gives equation 3. �
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7. Let f be a bounded linear functional on a separable Hilbert space H. Prove that there
is a unique y ∈ H such that f(x) = 〈x, y〉 for all x and, moreover, ‖f‖ = ‖y‖.

Solution
The result is also true for arbitrary Hilbert spaces, but since we have assumed that H

is separable, we can use the fact that there exists a complete orthonomal system (basis)
{φν}ν∈N for H.

Set bν = f(φν). Then for each finite n, we have
n

∑

ν=1

b2
ν = f

( n
∑

ν=1

bνφν

)

≤ ‖f‖

∥

∥

∥

∥

n
∑

ν=1

bνφν

∥

∥

∥

∥

≤ ‖f‖

( n
∑

ν=1

b2
ν

)1/2

.

This implies that
n

∑

ν=1

b2
ν ≤ ‖f‖2, all n,

and therefore
∞

∑

ν=1

b2
ν ≤ ‖f‖2 < ∞.

Hence the series

y =

∞
∑

ν=1

bνφν,

converges, and furthermore

‖y‖2 =
∞

∑

ν=1

b2
ν ≤ ‖f‖2.

Given any x ∈ H, set
aν = 〈x, φν〉.

Then

x =
∞

∑

ν=1

aνφν.

Since
∑n

ν=1 aνφν → x, we have by the continuity and linearity of f that

f(x) = lim
n→∞

f

( n
∑

ν=1

aνφν

)

= lim
n→∞

n
∑

ν=1

aνbν =

∞
∑

ν=1

aνbν = 〈x, y〉.

Finally, by the Schwarz inequality, we have

‖f‖ ≤ ‖y‖,

so ‖f‖ = ‖y‖. �
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8. Let (X,M, µ) and be a measure space such that µ(X) < ∞. Let {fn}n∈N be a sequence
of measurable functions, and let f be a measurable function. Prove that

fn → f in measure ⇐⇒ lim
n→∞

∫

X

|f − fn|

1 + |f − fn|
dµ = 0.

Solution
⇒. Suppose that fn → f in measure, and choose any ε > 0. Then

∫

X

|f − fn|

1 + |f − fn|
dµ =

∫

|f−fn|>ε

|f − fn|

1 + |f − fn|
dµ +

∫

|f−fn|≤ε

|f − fn|

1 + |f − fn|
dµ

≤

∫

|f−fn|>ε

1 dµ +

∫

|f−fn|≤ε

ε

1
dµ

≤ µ{|f − fn| > ε} + ε µ(X).

Consequently,

lim sup
n→∞

∫

X

|f − fn|

1 + |f − fn|
dµ ≤ lim sup

n→∞
(µ{|f − fn| > ε} + ε µ(X)) = εµ(X).

Since µ(X) < ∞ and ε is arbitrary, we conclude that limn→∞

∫

X
|f−fn|

1+|f−fn|
dµ = 0.

⇐. Assume that limn→∞

∫

X
|f−fn|

1+|f−fn|
dµ = 0. Choose any ε > 0. Note that

x ≥ ε =⇒
x

1 + x
≥

ε

1 + ε
,

so

µ{|f − fn| > ε}dµ =
1 + ε

ε

∫

|f−fn|>ε

ε

1 + ε
dµ

≤
1 + ε

ε

∫

|f−fn|>ε

|f − fn|

1 + |f − fn|
dµ

→ 0 as n → ∞.

Hence fn → f in measure. �


