Analysis Comprehensive Exam (Questions
Fall 2007

1. Let (X, M, ) and (Y, N, v) be o-finite measure spaces, and fix 1 < p < co. Show that
if f is a measurable function on X x Y, then

([ (fyeoan) aw)” < [ ([reoron) ww. o
Solution

Let p’ be the dual index to p. Define
/ |f(z,y)| dp(z

Then the left-hand side of equation (1) can be rewritten as:

([ ([ 1semiae aw)” = ([ rwrew)” = e,

We estimate this as follows:

|F|l2 = / F(y)™! Fly) duy)

= [ Fort [ il dute) )

/ / )P (@)l dv(y) du(e)  (Tonelli)

< [ ([ ror at ) ( [ i >) ") (Holder)
- [ ([ rwr vty ) </|fxy|”dv >) " i)
~1ri [ (f \f(as,y)\pdu(y)) " o).

Dividing through by ||F|[>~", we therefore obtain

17l < | ( / If(x,y)|pdV(y))1/pdu(x),

which is equation (1). O



2. Let (X,M,u) be a measure space, let u be a positive measure, and let f, f, €
LY X, M, ) for 1 <n < oco. Assume that:

(1) fu(z) — f(x) for almost every x € X,

() Ifalls = L1
Prove ||f, — flli — 0.

Solution
Define h,, = (|f| + | fal) = |f — fn], which is nonnegative. Then by Fatou’s lemma,

/2|f|du=/li£rii£fhndu

< liminf/hn du

n—0o0

:/|f|dﬂ+1igg)lf(/|fn|dp—/|f_fn|du)

< [\t timsup [ \g]dn-s imine (= [17 - £l dn )

n—0o0

=2/\f|du—1iinj£p</\f—fnldu)

Since [ |f|du is finite, one can subtract it from both sides to get

limsup [ 1 = fuldu <0,
A

n—0o0

and hence || f — fu|l1 — 0. O
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3. Let X be a Banach space. A sequence {x,},en is called a Schauder basis for X if for
each € X there exist unique scalars a,(z) such that

o
T = Z an(x) Ty,
n=1

where the series converges in the norm of X. It can be shown (you may take this as given)
that a, € X* for each n.

Suppose that {x, },en is a Schauder basis for a Banach space X and {y, }»en is a Schauder
basis for a Banach space Y. Prove that the following two statements are equivalent.

(a) There exists a continuous linear bijection S: X — Y such that S(x,) = y, for each
n € N.

(b) Given scalars ¢,

(0.] o
E CnTp converges in X < E CnYpn converges in Y.

n=1 n=1

Solution

(a) = (b). Suppose that statement (a) holds, and that = ) ¢,x,, converges in X. Then
since S is linear and continuous, we have that S(z) = > ¢,5(z,) = Y_ ¢,y» converges in X.
To see why exactly this is true, note that x = >_ ¢,x,, means that

N
Tr — E CnTy
n=1

lim =0.
N—oo

Therefore,

_ HS(SL’) - écnsm)
“Js(e- L)
x_ikwn

st - iy

< [15]]

— 0,

SO Y Cpy, converges in Y to S(x).
The Inverse Mapping Theorem tells us that S—! is continuous, so a symmetric argument
using S~! shows that if >_ ¢,y, converges in Y, then > ¢,x, converges in X.

(b) = (a). Suppose that (b) holds. By definition of Schauder basis, there exist functionals
a, € X* such that

o
x:Zan(x)xn, r e X,
n=1
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and there exist functionals b, € Y* that satisfy

y=> by, yeY
n=1

Choose any z € X. Then z = Y a,(z) x, converges in X, so by hypothesis

S@) =" au(2) v

converges in Y. S defined in this way is linear, and we will show that it is a continuous
bijection of X onto Y.
Suppose that S(z) = 0. Then we have

Zan(x)yn =S(x)=0= ZOyn.

The uniqueness of the coefficients therefore implies that a,(x) = 0 for every n, and hence
x =Y ay(x)x, =0. Therefore S is injective.
Next, if y is any element of Y, then y = > b,(y) y, converges in Y, so by hypothesis
x =Y b,(y)x, converges in X. The uniqueness of the coefficients implies that b, (y) = a,(x)
for every n. Hence S(x) = y and therefore S is surjective. Thus S is a bijection of X onto Y.
Now we show that S is continuous. For each N, define Sy: X — Y by

Sn(x) = Z () Yn-

Since each functional a,, is continuous, we conclude that each Sy is continuous. And since
Sn(z) — S(z), the Banach—Steinhaus Theorem implies that S is continuous, which com-
pletes the proof.

Alternatively, we can appeal directly to the Uniform Boundedness Principle (of which the
Banach—Steinhaus Theorem is simply a special case). We have that Sy(z) — S(z), so

Ve X, sup|Sn(z)| < oo.
N

Since each Sy is bounded, the Uniform Boundedness Principle implies that Hence
ISl < Yimsup IS [ |z < M]l],

so S is bounded. O



4. Prove that if f is integrable on [a, b] and

/ £t )

for all = € [a,b], then f(t) =0 a.e. in [a, b].

Solution

Without loss of generality, we may suppose f(z) > 0 on some set E of positive measure (a
similar argument applies if f(x) is negative on a a set of positive measure). Because |E| > 0,
then there exists a closed set F' C E with |F| > 0. Let O = [a,b] \ F. Since

0:/abf(t)dt:/Ff(t)dtJr/Of(t)dt
/Of(t)dt:—/Ff(t)dt;«éO.

Since O is open, it is a union of disjoint open intervals, say,

0 = J(an,bn)

we have

Then

[roa=3 [" i zo

so there must be an n such that )

F(t)dt # 0.

an

But then either

/f Yt £0 o " ) dt 40,

which contradicts the condition (2).
An alternative approach is to use the Lebesgue Differentiation Theorem. O



5. Let (X, M,u) be a measure space, and assume that p is a bounded measure, i.e.,
w(X) < o0o. Fix 1 < p < oo, and assume that F' € LP(X)', the dual space of LP(X). Show
that there exists a g € L'(X) such that

VAe M, F(XA):/Ag(x)dp,(x).

Notes: You cannot assume that LP(X) 22 [P (X); this problem is one step in the proof of
that isomorphism. You may assume that the scalar field is R, so that all linear functionals
are real-valued.

Solution
We are given that F'is a bounded linear functional on LP(X). Define A\: ¥ — R by

MA) = F(Xa), AeM.

We claim that A is a signed measure on X.

First, A(0) = F(0) = 0.

Second, to show that A is countably additive, suppose that Ey, k € N, are disjoint mea-
surable subsets of X. Define

o) N
A:UEk> AN:UEk,NGN.

k=1 k=1

Then pu(Ayx) — p(A) by continuity from above. On the other hand, since p is a bounded
measure, we have that p(A\Ayx) = pu(A) — u(Ay), and hence u(A\Ay) — 0. Hence

X — Xan|l2 = / Xa(@) = Xy (2)]? do = / Naay (@) dz = p(A\Ax) — 0.
X X

Hence X4, — X4 in LP(X). But F' is a continuous linear functional on L?(X), so this implies
that F'(X4,) — F(Xa). Hence, because the Ej are disjoint, we have

AA) = F(A) = lim F(Xay)
N
= lim F(Z xEk)
k=1

N
= lim > F(Xg,)
k=1

Therefore X is countably additive and hence is a signed measure on X.
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Now, if £ € M and pu(A) = 0, then we have X4 = 0 p-a.e., and hence \(A) = F(X4) =
F(0) = 0. Therefore A is absolutely continuous with respect to pu, i.e., A < pu. The Radon—
Nikodym theorem therefore implies that there exists a g € L'(X) such that

F(XA):)\(A):/g(x)du($), AeM. O

X



6. (a) Suppose ¢ is a real function on R such that

¢<A{ﬂ@¢0félaﬂﬂ@ﬁma 3)

for every real bounded measurable function f. Prove that ¢ is convex.

(b) Let ¢ be a convex function on R. Prove that the inequality (3) holds for each integrable
function f on [0, 1].

Solution
Given any two finite real values a and b and given an arbitrary A € [0, 1], define

f(x):{a’ A<z <1,

b, 0<zxz <A\

Clearly, f(z) is a real bounded measurable function. Further,

/f ) dx) (/f d:t—i—/f d:t) (4)
—¢</0 bd:z:—l—/A ad:z:)
— 6+ (1 — N)a).
Aﬁmwmzf%mmwﬁ/?mmm: 8
/(b d:r—l—/ o(a

= Ap(0) + (1 = A)g(a).
Putting (4) and (5) back into (3), we obtain
G(Ab+ (1 = N)a) < Ap(b) + (1 = N)o(a),

which confirms that ¢ is convex.

On the other hand,

(b) This part is Jensen’s inequality. Let o = fo t)dt, and let y = m(z— o)+ ¢(a) be the
equation of a supporting line at a, where m is taken to he between the left- and right-hand
derivatives of ¢ at «. Since the supporting line always lies below the graph of ¢, we have

m(z — o) + ¢(a) < ¢(x).
Replacing = by f(t), we obtain for almost every t € (0, 1) that

m(f(t) —a) + ¢(a) < o(f(1)).
Integrating both sides with respect to ¢ then gives equation 3. U
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7. Let f be a bounded linear functional on a separable Hilbert space H. Prove that there
is a unique y € H such that f(z) = (z,y) for all z and, moreover, || f| = ||yl

Solution
The result is also true for arbitrary Hilbert spaces, but since we have assumed that H
is separable, we can use the fact that there exists a complete orthonomal system (basis)

{¢V}V€N for H.
Set b, = f(¢,). Then for each finite n, we have

0= f(wau) <A1 buts

This implies that

n 1/2
< I/ (Z bz) .

S <|fI7 alln,
v=1
and therefore

Db <SP < oo

v=1
Hence the series

Yy = Z bl/¢l/?
v=1

converges, and furthermore
o
lyll> =0 < If11%
v=1

Given any = € H, set

a, = (x,d,).

o0
T = Z ay Q.
v=1

Since > "_, a,¢, — x, we have by the continuity and linearity of f that

f(z) = lim f(Z a,,gb,,) = lim Z a,b, = Zal,b,, = (x,y).
v=1 v=1 v=1
Finally, by the Schwarz inequality, we have

LEIF< Tyl
so [lF1 = 1lyll- O

Then
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8. Let (X, M, ) and be a measure space such that (X)) < co. Let {f,},en be a sequence
of measurable functions, and let f be a measurable function. Prove that

fn — [ in measure <= lim M du=0.

Solution
=. Suppose that f,, — f in measure, and choose any £ > 0. Then

——du = —d —
/X L+ |f = fal a /If—fn>e L+ |f = fal M+/|f—fn|§s L+|f = fal :

< / Ldp + / £ du
|f~ ful>e = fal<e 1

< 1S = fal > €} +ep(X).

Consequently,
sy [ 2Ly <t (ol = £l > 2} + 2 u00) = (),
n—oo Jx 1+ |f - fn| n—00

Since (X) < oo and ¢ is arbitrary, we conclude that lim, . [ % dp = 0.

<. Assume that lim,, fX 1J‘f|;f’}L| dp = 0. Choose any € > 0. Note that

T €
>
1+ 1+4¢

T > € -

)

SO

1+¢ €
W{If = ful > e}du = / i
e Jip—pase L t¢

€ \f—fn\>€1+|f_fn|

—0 asn— oo.

Hence f, — f in measure. O



