Algebra Comprehensive Exam - Fall 2008 -

Instructions: Complete five of the seven problems below. If you attempt more/less than five questions, then circle in the box below

1	2	3	4	5	6	7

which five should be graded. Uncircled problems will not be graded.
(1) (a) If G is a finite group with 125 elements, prove that its center Z is non-trivial.
(b) Prove that there is no finite group G with 125 elements whose center Z has 25 elements.
(c) Construct a non-abelian group G with 125 elements and with center Z a cyclic group of order 5.

Solution. (a) Let G act on $X=G$ by conjugation. The size of the conjugacy class of $g \in G$ is $|G| /|C(g)|$ where $C(g)$ is the centralizer of g in G. Thus, the size of the conjugacy class is 5^{k} for $k=1,2,3$. $k=1$ iff $g \in Z$ and $|Z|$ divides 125 . Since $125=|X|$ and 5 divides the size of every non-trivial conjugacy class, it follows that 5 divides $|Z|$.
(b) If $|G|=125$ and $|Z|=25$, take $g \in G \backslash Z$ and consider the centralizer $C(g)$. $|C(g)|$ divides 125 and $C(g)$ contains Z and g, so $C(g)$ strictly contains Z. So $C(g)=G$ which implies that $g \in Z$ a contradiction.
(c) Let G denote the set of upper-triangular matrices with 1 on the diagonal and entries in $\mathbb{Z} / 3 . G$ is a group under multiplication. Indeed if $A \in G$ then $A=I-N$ where N is stricly upper triangular; thus $N^{3}=0$. So $A^{-1}=I+N+N^{2}$ is in G. Likewise, G is closed under multiplication. Indeed if $A=I+N_{1}, B=I+N_{2}$, then $A B=I+\left(N_{1}+N_{2}+N_{1} N_{2}\right)$. So G is a group of order 125. If A, B are general elements of G with 12 and 23 entries a, c and x, z respectively then $A B-B A$ has 13 entry $-c x+a z$ and all others zero. It follows that Z consists of all matrices with 13 entry arbitrary and all other entries zero. Z is indeed a group of order 5 .
(2) Let S_{4} denote the group of permutations of $\{1,2,3,4\}$.
(a) How many elements are in the conjugacy class C of (12)(34)?
(b) How many 2-Sylow subgroups does S_{4} have?
(c) List all permutations in your favorite 2-Sylow subgroup of S_{4}.

Solution. (a) Two permutations in S_{n} are conjugate iff they have the same cycle type, corresponding to a partition λ of n, where λ contains n_{1} cycles of type $1, n_{2}$ cycles of type 2 etc, where $n=\sum_{k} k n_{k}$. Then C contains $n!/ \prod_{k} k^{n_{k}} n_{k}!$ elements. In our case $n_{2}=2$ and $n_{k}=0$ for $k \neq 2$. Thus there are 3 elements in the conjugacy class 2^{2}.
(b) $\left|S_{4}\right|=4!=24$. If P is a 2-Sylow subgroup, then $|P|=8$. The number of 2-Sylow subgroups is $1+2 k$ which divides 24 . So there is either 1 or 32 -Sylow subgroups. If there is only one such, then P is normal of order 8 . The conjugacy class of type $1^{2} 2$ has 6 elements, the one of type 1^{4} has 1 element, the one of type 4 has 6 elements. Since P contains an element of oder 2 , it follows that it contains elements of the conjucacy class $2^{2}, 1^{2} 2$ or 4 . The square of an element of type 4 is an element of type 2^{2}. In all cases, $P-1$, a set with 7 elements is a union of conjugacy classes and the above numbers do not work giving a contradiction. So there are 32 -Sylow subgroups in S_{4}.
(c) By trial, the following set P is a group of order 8 :

$$
\{1,(12),(34),(12)(34),(13)(24),(14)(23),(1324),(1423)\}
$$

(3) Let A_{n} denote the alternating group of n elements.
(a) Can A_{4} be mapped homomorphically onto $\mathbb{Z} / 2$?
(b) Can A_{5} be mapped homomorphically onto $\mathbb{Z} / 2$? Reason your answers.

Solution. (b) A_{5} is simple; the kernel of a nontrivial homomorphism into a group is normal, so the answer is no for A_{5}.
(a) If $\phi: A_{4} \rightarrow \mathbb{Z} / 2$ is onto, the kernel K has order 6 . A_{4} has four conjugacy classes 1 , (123), (132) and (12)(34) with 1, 4,4 and 3 elements (compare with Fulton-Harris: Representation Theory, exercise 2.26). Since K is a union of conjugacy classes, this is not possible. No such homomorphism exists.
(4) Suppose that $R \subseteq \mathbb{C}$ is a ring that also is a finitely generated free \mathbb{Z}-module. Let $\alpha \in \mathbb{C}$ have the property that $\alpha R \subseteq R$. Show that α is a root of a monic, irreducible polynomial in $\mathbb{Z}[x]$.

Hint: Think of multiplication of R by α as acting like a linear transformation.
Solution. Let x_{1}, \ldots, x_{k} be a \mathbb{Z} basis of R. The fact that $\alpha R \subseteq R$ implies that $\alpha x_{i} \in R$ for $i=1, \ldots, k$. From the fact that R is a free module with basis x_{1}, \ldots, x_{k} we deduce that

$$
\begin{aligned}
\alpha x_{1} & =a_{1,1} x_{1}+\cdots+a_{1, k} x_{k} \\
\alpha x_{2} & =a_{2,1} x_{1}+\cdots+a_{2, k} x_{k} \\
& \vdots \\
\alpha x_{k} & =a_{k, 1} x_{1}+\cdots+a_{k, k} x_{k} .
\end{aligned}
$$

Letting M denote the $k \times k$ matrix of the $a_{i, j}$, we find that we may rewrite this in matrix notation as

$$
\alpha\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right]=M\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right] .
$$

So, α is an eigenvalue of the integer matrix M, and it follows therefore that α is a root of

$$
\operatorname{det}(M-x I)
$$

Upon multiplying through by -1 if needed, we see that this polynomial is monic in $\mathbb{Z}[x]$, and therefore so is the minimal polynomial of α.
(5) Fix a prime number p, and let α lie in an extension field of \mathbb{F}_{p} of degree r, and let β lie in an extension field of \mathbb{F}_{p} of degree s where r and s are distinct prime numbers. Furthermore, assume $\alpha, \beta \notin \mathbb{F}_{p}$. Prove that $\alpha+\beta$ lies in $\mathbb{F}_{p^{r s}}$ but does not lie in any smaller field.

Solution. Let F denote $\mathbb{F}_{p}[\alpha], G$ denote $\mathbb{F}_{p}[\beta], H$ denote $\mathbb{F}_{p}[\alpha+\beta]$, and K denote $\mathbb{F}_{p}^{r s}$. Clearly, we have the chain

$$
\mathbb{F}_{p} \subseteq H \subseteq K
$$

We will now try to show that $\left[H: \mathbb{F}_{p}\right]=r s$: We begin by noting that this degree divides $r s$, so is either $1, r, s$ or $r s$, since r and s are distinct primes. It cannot be 1 , since it would mean that $\alpha+\beta \in \mathbb{F}_{p}$, which would therefore mean $\mathbb{F}_{p}[\alpha]=\mathbb{F}_{p}[\beta]$.

Suppose the degree is r. Then, since there is only one degree r extension of \mathbb{F}_{p} (it is the unique field fixed by the r th power of the Frobenius automorphism), we would be forced to conclude

$$
F=H
$$

so, $\alpha+\beta \in F$, which implies $\beta \in F$. So, G is a proper subfield of F, which easily implies $G=\mathbb{F}_{p}$, contradiction.

We similarly reach a contradiction if we suppose the degree was s. It follows therefore that the degree of H is $r s$, and we are done.
(6) Let G be the set $\mathbb{Z}_{3} \times \mathbb{Z}_{7}$, with the following addition operation \oplus :

$$
(a, b) \oplus(c, d)=\left(a+c \quad(\bmod 3), b \cdot 2^{c}+d \quad(\bmod 7)\right)
$$

(a) Show that this makes G into a group.
(b) Show that this group G is non-abelian.
(c) Expalin why the following $*$ is not an operation on $\mathbb{Z}_{3} \times \mathbb{Z}_{5}$:

$$
(a, b) *(c, d)=\left(a+c \quad(\bmod 3), b \cdot 2^{c}+d \quad(\bmod 5)\right)
$$

Solution. (a) The identity of this group will be $(0,0)$: We have that

$$
(a, b) \oplus(0,0)=\left(a, b \cdot 2^{0}+0\right)=(a, b)
$$

Likewise, $(0,0) \oplus(a, b)=(a, b)$.
Let's check associativity:

$$
\begin{aligned}
((a, b) \oplus(c, d)) \oplus(e, f) & =\left(a+b \quad(\bmod 3), b \cdot 2^{c}+d \quad(\bmod 7)\right) \oplus(e, f) \\
& =\left((a+b)+e \quad(\bmod 3),\left(b \cdot 2^{c}+d\right) 2^{e}+f(\bmod 7)\right) \\
& =\left(a+b+c \quad(\bmod 3), b \cdot 2^{c+e}+d \cdot 2^{e}+f \quad(\bmod 7)\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
(a, b) \oplus((c, d) \oplus(e, f)) & =(a, b) \oplus\left(c+e \quad(\bmod 3), d \cdot 2^{e}+f(\bmod 7)\right) \\
& =\left(a+(c+e)(\bmod 3), b \cdot 2^{c+e}+d \cdot 2^{e}+f \quad(\bmod 7)\right)
\end{aligned}
$$

Clearly, then, we have that associativity holds. Note the following subtle point: When we computed 2^{c+e} in this last line, we note that the value of $c+e$ was only defined modulo $3-$ that's ok, though, because 2 is cyclic of order 3 under multiplication modulo 7 (so, there is no issue here with 2^{c+e} being well-defined).

We need to check for inverses: We claim that the inverse of (a, b) is the element $(-a,-b$. $\left.2^{-a}\right)$. This is easily seen to hold, as

$$
(a, b) \oplus\left(-a,-b \cdot 2^{-a}\right)=\left(0 \quad(\bmod 3), b \cdot 2^{-a}-b \cdot 2^{-a} \quad(\bmod 7)\right)=(0,0)
$$

Lastly, we should point out that \oplus is well-defined, and the main reason is that the powers of 2 form a cyclic group of order 3 under multiplication modulo 7 - this is what allows us to write $2^{a}(\bmod 7)$, as its value is the same regardless of which element of the residue class a $(\bmod 3)$ we choose for the exponent of 2 .

It is worth pointing out that the group you are being asked to prove is actually a semidirect product in disguise.
(b) To show G is non-abelian, consider the pair

$$
(1,1) \oplus(0,1)=(1,2), \text { yet }(0,1) \oplus(1,1)=(1,3)
$$

(c) The reason * is not an operation is that it is not well-defined. More specifically, the exponentiation $2^{c}(\bmod 5)$ does not make sense. For example, suppose $c \equiv 1(\bmod 3)$.

Then, if we were to use $c=1$ we would have $2^{c} \equiv 2(\bmod 5)$, but if we were to use $c=6$ we would have $2^{6} \equiv 4(\bmod 5)$.
(7) Let R be a commutative ring, and let I be an ideal of R. We define the "radical of I " to be the set

$$
\operatorname{Rad}(I):=\left\{x \in R: \text { there exists } m \geq 1 \text { such that } x^{m} \in I\right\} .
$$

(a) Show that $\operatorname{rad}(I)$ is an ideal of R.
(b) Compute the radical of the ideal $I:=108 \mathbb{Z} \subset \mathbb{Z}$.

Solution. (a) Suppose that $\alpha, \beta \in \operatorname{Rad}(I)$. Then, there exists $r, s \geq 1$ such that $\alpha^{r}, \beta^{s} \in I$. By closure properties of I we have that upon letting $m=\max (r, s), \alpha^{m}, \beta^{m} \in I$. To show that $\alpha+\beta \in \operatorname{Rad}(I)$, observe that by the binomial theorem for commutative rings,

$$
(\alpha+\beta)^{2 m}=\sum_{j=0}^{2 m}\binom{2 m}{j} \alpha^{j} \beta^{2 m-j}
$$

Every single term of this sum involves either a power of α that is $\geq m$, or a power of β that is $\geq m$. So, in each term, one of the factors belongs to I, which therefore means the term itself belongs to I (by the multiplicative property of ideals), and therefore the whole sum belongs to I, by the sum-closure property of ideals. We have thus shown $(\alpha+\beta)^{2 m} \in I$, whence $\alpha+\beta$ is in $\operatorname{Rad}(I)$.

Lastly, suppose $t \in R$ and $\alpha \in \operatorname{Rad}(I)$. Since $\alpha^{r} \in I$ for some r, by multiplicative property of ideals we have $(t \alpha)^{r}=t^{r} \alpha^{r} \in I$, whence $t \alpha \in \operatorname{Rad}(I)$. This completes the proof that the radical is an ideal.
(b) We factor $108=2^{2} 3^{3}$. It is clear that the radical of $108 \mathbb{Z}$ contains $6 \mathbb{Z}$. Furthermore, every element of the radical must be divisible by 2 and 3 , so equals $6 \mathbb{Z}$.

In general, for $d \geq 1$, the radical of the ideal $d \mathbb{Z}$ is $d^{\prime} \mathbb{Z}$, where d^{\prime} is the product of all the distinct primes dividing d.

