Analysis Comprehensive Exam Questions Fall 2008

1. (a) Let $E \subseteq \mathbb{R}$ be measurable with finite Lebesgue measure |E|. Suppose that $\{f_n\}_{n\in\mathbb{N}}$ is a bounded sequence in $L^2(E)$ and there exists a function f such that $f_n(x) \to f(x)$ for a.e. $x \in E$. Show that $||f - f_n||_1 \to 0$ as $n \to \infty$.

(b) Show that the conclusion of part (a) can fail if $|E| = \infty$.

Solution

(a) Choose $\varepsilon > 0$, and let $C = \sup_n ||f_n||_2 < \infty$. By Fatou's Lemma, we have

$$||f||_{2}^{2} = \int_{E} \lim_{n \to \infty} |f_{n}|^{2} \le \liminf_{n \to \infty} \int_{E} |f_{n}|^{2} = \liminf_{n \to \infty} ||f_{n}||_{2}^{2} \le C.$$

Hence $f \in L^2(E)$.

By Egorov's Theorem, there exists $A \subseteq E$ such that

$$|E \backslash A| < \left(\frac{\varepsilon}{4C}\right)^2$$

and $f_n \to f$ uniformly on A. Therefore, we can find an N such that

$$\|(f-f_n)\chi_A\|_{\infty} < \frac{\varepsilon}{2|E|}, \quad \text{all } n > N.$$

Then for n > N we have by Cauchy–Schwarz that

$$\begin{split} \|f - f_n\|_1 &= \int_A |f - f_n| + \int_{E \setminus A} |f - f_n| \\ &\leq |A| \, \|(f - f_n) \, \chi_A\|_\infty + \left(\int_{E \setminus A} |f - f_n|^2\right)^{1/2} \left(\int_{E \setminus A} 1\right)^{1/2} \\ &< |A| \, \frac{\varepsilon}{2|E|} + \|f - f_n\|_2 \, |E \setminus A|^{1/2} \\ &< \frac{\varepsilon}{2} + 2C \, \frac{\varepsilon}{4C} = \varepsilon. \quad \Box \end{split}$$

(b) Let $f_n = \chi_{[n,n+1]}$. Then $||f_n||_2 = 1$ for every n, and $f_n(x) \to 0$ for every x. However, f_n does not converge to the zero function in L^1 -norm, since $||f_n||_1 = 1$.

2. Let X be a Banach space and let T, S be bounded linear operators on X. Prove that:

- (a) I TS has a bounded inverse if and only if I ST has a bounded inverse.
- (b) $\sigma(TS) \setminus \{0\} = \sigma(ST) \setminus \{0\}.$

Remark: $\sigma(A)$ denotes the spectrum of A.

Solution

(a) Suppose that I-TS has a bounded inverse. In particular, I-TS is injective. Suppose that (I - ST)v = 0 for some $v \in X$. Then we have T(I - ST)v = (I - TS)Tv = 0, so Tv = 0. But this implies that v = (I - ST)v = 0. Hence also I - ST is injective.

On the other hand since I - TS is surjective we have that for every $z \in X$ there exists an $x \in X$ such that (I - TS)x = Tz. Observe that this implies that $x \in T(X)$ since x = T(Sx + z) = Ty. We thus have that T(I - ST)y = Tz, or (I - ST)y = z + v with $v \in \text{Ker}(T)$. But then, setting w = y - v, we have that (I - ST)w = z and I - ST is surjective.

Thus I - ST is a bounded bijection of X onto itself, and therefore has a bounded inverse by the Open Mapping Theorem.

(b) Suppose $\lambda \notin \sigma(TS)$ and $\lambda \neq 0$. Then $TS - \lambda I$ has a bounded inverse, so $I - \frac{T}{\lambda}S$ has a bounded inverse. By part (a) it follows that $I - S\frac{T}{\lambda}$ and thus $ST - \lambda I$ has a bounded inverse, so $\lambda \notin \sigma(ST)$.

3. Let f, g be absolutely continuous functions on [0, 1]. Show that for $x \in [0, 1]$ we have

$$\int_0^x f(t) g'(t) dt = f(x)g(x) - f(0)g(0) - \int_0^x f'(t) g(t) dt.$$

Solution

Since f, g are absolutely continuous, we know that they are differentiable almost everywhere and that $f', g' \in L^1[0, 1]$. Consequently, $f'(s) g'(t) \in L^1([0, 1]^2)$. Letting $E = \{(s, t) \in [0, x]^2 : s \leq t\}$, we compute that

$$\iint_{E} f'(s) g'(t) \, ds \, dt = \int_{0}^{x} \left(\int_{0}^{t} f'(s) \, ds \right) g'(t) \, dt$$
$$= \int_{0}^{x} \left(f(t) - f(0) \right) g'(t) \, dt$$
$$= \int_{0}^{x} f(t) g'(t) \, dt - f(0) \int_{0}^{x} g'(t) \, dt$$
$$= \int_{0}^{x} f(t) g'(t) \, dt - f(0) \left(g(x) - g(0) \right).$$

On the other hand,

$$\iint_{E} f'(s) g'(t) dt ds = \int_{0}^{x} f'(s) \left(\int_{s}^{x} g'(t) dt \right) ds$$

= $\int_{0}^{x} f'(s) \left(g(x) - g(s) \right) dt$
= $g(x) \int_{0}^{x} f'(s) ds - \int_{0}^{x} f'(s) g(s) ds$
= $g(x) \left(f(x) - f(0) \right) - \int_{0}^{x} f'(s) g(s) ds.$

Finally, Fubini's Theorem implies that these two integrals are equal, so the result follows. \Box

4. Let $f : [0,1] \to \mathbb{R}$ a bounded function whose set of discontinuities D is closed and nowhere dense.

(a) Is it true that every such f is Riemann integrable?

(b) Prove that for every such f there exists an homeomorphism $h : [0,1] \to [0,1]$ such that $f \circ h$ is Riemann integrable.

Remark: A homeomorphism is a continuous bijection that has a continuous inverse.

Solution

(a) Clearly no. Let $\{q_1, q_2, \ldots, q_n, \ldots\}$ be an ordering of the rational numbers in (0, 1) and set

$$I = \bigcup_{n} B(q_n, \varepsilon 2^{-n}),$$

where $B(x,r) = (x - r/2, x + r/2) \cap (0, 1)$. Thus $|I| \leq \varepsilon$ but I is open and dense. Thus $J = [0,1] \setminus I$ is closed and nowhere dense but with large positive measure. Observe that $f = \chi_J$ is continuous for every $x \in I$ since I is open, but it is discontinuous for every $x \in J$ since I is dense. Hence f is discontinuous on a closed nowhere dense set of positive measure and thus it is not Riemann integrable.

(b) Let D be the set of discontinuities of f and $D^c = [0, 1] \setminus D$. We can define

$$g(x) = \frac{1}{1-|D|} \int_0^x \chi_{D^c}(t) \, dt.$$

Observe that g(0) = 0, g(1) = 1, and g is continuous and strictly increasing. Indeed, if x < y, there exists an open interval $I \subset (x, y)$ such that $I \subset D^c$ since D is closed and nowhere dense. From this we have that

$$g(y) - g(x) = \frac{1}{1 - |D|} \int_x^y \chi_{D^c}(t) dt \ge |I| > 0.$$

Thus g is an invertible function and its inverse is continuous. Finally since D is closed we have that D^c is the union of countably many open interval I_i . Observe that

$$|g(I_i)| = \frac{1}{1-|D|} \int_{I_i} \chi_{D^c}(t) dt = \frac{1}{1-|D|} |I_i|,$$

so $|g(D^c)| = 1$ and |g(D)| = 0. Hence we can choose $h = g^{-1}$, for then $f \circ h$ is discontinuous on the set g(D), which has measure zero, and therefore $f \circ g$ is Riemann integrable.

5. Let X be a Banach space with norm $\|\cdot\|_X$. Assume that Y is proper subspace of X that is dense in X with respect to $\|\cdot\|_X$, and that there is another norm $\|\cdot\|_Y$ on Y with respect to which Y is a Banach space. Show that if there exists a constant C such that

$$||x||_X \leq C ||x||_Y \text{ for all } x \in Y,$$

then there exists a continuous linear functional on $(Y, \|\cdot\|_Y)$ that has no extension to a continuous linear functional on $(X, \|\cdot\|_X)$.

<u>Solution</u>

The hypotheses imply that Y is continuously embedded into X, i.e., if $i: Y \to X$ is given by i(x) = x for $x \in Y$ then i is continuous and $||i|| \leq C$. The adjoint of i is the restriction map $R: X^* \to Y^*$ given by $R(\mu) = \mu|_Y$. Hence R is bounded, with $||R|| \leq C$. That is, $||\mu|_Y||_{Y^*} \leq C ||\mu||_{X^*}$ for each $\mu \in X^*$. This can also be proved without recourse to adjoints by observing that if $x \in Y$ and $\mu \in X^*$ then

$$|\langle x, \mu|_Y \rangle| = |\langle x, \mu \rangle| \le \|\mu\|_{X^*} \|x\|_X \le C \|\mu\|_{X^*} \|x\|_Y$$

so $\|\mu\|_{Y}\|_{Y^*} \leq C \|\mu\|_{X^*}$ (we are using the linear functional notation $\langle x, \mu \rangle = \mu(x)$).

Suppose now that every continuous linear functional on $(Y, \|\cdot\|_Y)$ had an extension to a continuous linear functional on $(X, \|\cdot\|_X)$. Then R is onto. Further, if $\mu \in X^*$ and $R(\mu) = \mu|_Y = 0$, then $\mu = 0$ since μ is continuous and Y is dense in X. Therefore Ris injective. Thus $R: Y^* \to X^*$ is a bounded bijection, so the Inverse Mapping Theorem implies that R^{-1} is bounded. Combining this with the above facts, there exist c, C > 0 such that

$$\forall \mu \in X^*, \quad c \|\mu\|_{X^*} \le \|\mu|_Y\|_{Y^*} \le C \|\mu\|_{X^*}.$$

Now fix any $x \in Y$. Then by Hahn–Banach, there exists a $\nu \in Y^*$ such that $\|\nu\|_{Y^*} = 1$ and $|\langle x, \nu \rangle| = \|x\|_Y$. By hypothesis, there exists an extension of ν to a continuous linear functional on $(X, \|\cdot\|_X)$. Call this extension μ , so we have $\mu|_Y = \nu$. Then

$$\|x\|_{Y} = |\langle x, \nu \rangle| = |\langle x, \mu \rangle|$$

$$\leq \|x\|_{X} \|\mu\|_{X^{*}}$$

$$\leq \|x\|_{X} \frac{1}{c} \|\mu\|_{Y}\|_{Y^{*}}$$

$$= \|x\|_{X} \frac{1}{c} \|\nu\|_{Y^{*}}$$

$$= \frac{1}{c} \|x\|_{X}.$$

Since we also have $||x||_X \leq C ||x||_Y$, we conclude that $|| \cdot ||_X$ and $|| \cdot ||_Y$ are equivalent norms on Y. But Y is complete with respect to $|| \cdot ||_Y$, and therefore it is complete with respect to $|| \cdot ||_X$. Consequently, Y is closed with respect to $|| \cdot ||_X$. However, Y is dense in X with respect to $|| \cdot ||_X$, which implies that Y = X, a contradiction. 6. Let G be an unbounded open subset of \mathbb{R} . Prove that

 $H = \{x \in \mathbb{R} : kx \in G \text{ for infinitely many } k \in \mathbb{Z}\}$

is dense in \mathbb{R} .

Solution

If kx belongs G for infinitely many k then, for every n > 0, x belongs to

$$\bigcup_{|k|>n} G/k$$

where

$$G/k = \{ y \in \mathbb{R} : ky \in G \}.$$

Vice versa, if $x \in \bigcup_{|k|>n} G/k$ for every n > 0, then $kx \in G$ for infinitely many k. Thus

$$H = \bigcap_{n=1}^{\infty} \bigcup_{|k| > n} G/k.$$

Clearly $\bigcup_{|k|>n} G/k$ is an open set. By the Baire Category Theorem, it is therefore enough to prove that $\bigcup_{k>n} G/k$ is dense, for then H must be dense.

Let $D = (z_{-}, z_{+})$ be any open interval. If

$$D \cap \bigcup_{|k|>n} G/k = \emptyset,$$

then

$$\bigcup_{|k|>n} kD \ \cap \ G \ = \ \emptyset.$$

Without loss of generality, assume that $z_{-} > 0$. Then for k large enough we have that $(k+1)z_{-} > kz_{+}$, and hence $\bigcup_{k>n} kD$ contains a subset of the form (d, ∞) . By considering negative k we likewise conclude that $\bigcup_{k>n} kD$ contains $(-\infty, -d)$. Consequently, G cannot contain $(-\infty, -d) \cup (d, \infty)$, which contradicts the fact that G is unbounded.

7. Let μ_1 , μ_2 be bounded signed Borel measures on \mathbb{R} . Show that there exists a unique bounded signed Borel measure μ such that

$$\int f \, d\mu = \int \left(\int f(x+y) \, d\mu_1(x) \right) d\mu_2(y), \qquad f \in C_c(\mathbb{R}).$$

Show further that $\|\mu\| \leq \|\mu_1\| \|\mu_2\|$.

Note: Scalars in this problem are real.

Solution

If E is any Borel set in \mathbb{R} , then

$$\iint \chi_E(x+y) \, d|\mu_1|(x) \, d|\mu_2|(y) \leq \iint d|\mu_1|(x) \, d|\mu_2|(y) = \|\mu_1\| \, \|\mu_2\| < \infty$$

Hence, by Fubini's Theorem, we can define

$$\mu(E) = \iint \chi_E(x+y) \, d\mu_1(x) \, d\mu_2(y),$$

and we have $|\mu(E)| \le ||\mu_1|| ||\mu_2||$.

We claim that μ defined in this way is a signed Borel measure. The above work shows that $\mu(E)$ is a finite real number for every Borel set E, and we clearly have that $\mu(\emptyset) = 0$. Hence we need only show that μ is countably additive.

Suppose that E_1, E_2, \ldots are disjoint Borel sets, and let $E = \bigcup E_j$. For each x and y, we have that

$$0 \leq \sum_{j=1}^{N} \chi_{E_j}(x+y) \to \chi_E(x+y) \leq 1 \in L^1(\mu_1 \times \mu_2).$$

Therefore, by the Dominated Convergence Theorem,

$$\mu(E) = \iint \chi_E(x+y) \, d\mu_1(x) \, d\mu_2(y)$$

=
$$\lim_{j \to \infty} \iint \sum_{j=1}^N \chi_{E_j}(x+y) \, d\mu_1(x) \, d\mu_2(y)$$

=
$$\lim_{j \to \infty} \sum_{j=1}^N \iint \chi_{E_j}(x+y) \, d\mu_1(x) \, d\mu_2(y)$$

=
$$\lim_{j \to \infty} \sum_{j=1}^N \mu(E_j)$$

=
$$\sum_{j=1}^\infty \mu(E_j).$$

Therefore μ is a signed Borel measure.

If we let $\mathbb{R} = P \cup N$ be a Hahn decomposition of \mathbb{R} for μ , then

$$\|\mu\| = \|\mu\|(\mathbb{R}) = \mu(P) - \mu(N)$$

= $\iint \chi_P(x+y) d\mu_1(x) d\mu_2(y) - \iint \chi_N(x+y) d\mu_1(x) d\mu_2(y)$
 $\leq \iint \chi_P(x+y) d|\mu_1|(x) d|\mu_2|(y) + \iint \chi_N(x+y) d|\mu_1|(x) d\mu_2|(y)$
 $= \iint d|\mu_1|(x) d|\mu_2|(y) = \|\mu_1\| \|\mu_2\|.$

If $\phi = \sum_{k=1}^{n} a_k \chi_{E_k}$ is any simple function, then

$$\int \phi \, d\mu = \sum_{k=1}^{n} a_k \int \chi_{E_k} \, d\mu = \sum_{k=1}^{n} a_k \iint \chi_{E_k}(x+y) \, d\mu_1(x) \, d\mu_2(y)$$
$$= \iint \phi(x+y) \, d\mu_1(x) \, d\mu_2(y).$$

If we fix $f \in C_c(\mathbb{R})$, then there exist simple functions ϕ_k such that $|\phi_k| \leq |f|$ and $\phi_k \to f$ pointwise. Since $f \in L^1(\mu)$ and $f(x+y) \in L^1(\mu_1 \times \mu_2)$, we therefore have by the Dominated Convergence Theorem that

$$\iint f(x+y) d\mu_1(x) d\mu_2(y) = \lim_{k \to \infty} \iint \phi_k(x+y) d\mu_1(x) d\mu_2(y)$$
$$= \lim_{k \to \infty} \int \phi_k d\mu = \int f d\mu.$$

It remains only to show that μ is unique. If ν is another signed Borel measure that satisfies

$$\int f \, d\nu = \int \left(\int f(x+y) \, d\mu_1(x) \right) d\mu_2(y), \qquad f \in C_c(\mathbb{R}), \tag{1}$$

then we have $\int f d(\mu - \nu) = 0$ for every $f \in C_c(\mathbb{R})$. By the Riesz Representation Theorem, $C_c(\mathbb{R})^* = M_b(\mathbb{R})$, the space of finite signed Borel measures on \mathbb{R} . Therefore we must have $\mu = \nu$.

As the Riesz Representation Theorem for $C_c(X)$ is not part of the Comprehensive Exam syllabus, we give an alternative direct proof. As above, suppose that ν is another signed Borel measure that satisfies equation (1). Fix any open interval (a,b). Let $f_n \in C_c(\mathbb{R})$ be such that $0 \leq f_n \leq 1$ and $f_n \to \chi_{(a,b)}$ pointwise. Then by the Dominated Convergence Theorem, we have

$$\mu(a,b) = \lim_{n \to \infty} \int f_n \, d\mu = \lim_{n \to \infty} \int f_n \, d\nu = \nu(a,b).$$

This extends from open intervals to all Borel sets, so we conclude that $\mu = \nu$.

8

8. Given $1 \leq p < \infty$ and $f_n \in L^p(\mathbb{R})$, prove that $\{f_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $L^p(\mathbb{R})$ if and only if the following three conditions hold (|E| denotes Lebesgue measure).

- (a) $\{f_n\}_{n \in \mathbb{N}}$ is Cauchy in measure.
- (b) For every $\varepsilon > 0$ there exists a $\delta > 0$ such that if $|E| < \delta$ then $\int_E |f_n|^p < \varepsilon$ for every n.
- (c) For every $\varepsilon > 0$ there exists a set E with $|E| < \infty$ such that $\int_{E^{\mathbb{C}}} |f_n|^p < \varepsilon$ for every n.

Solution

 \Rightarrow . Assume that $\{f_n\}_{n\in\mathbb{N}}$ is Cauchy in $L^p(\mathbb{R})$. Since $L^p(\mathbb{R})$ is complete, there exists a function $f_0 \in L^p(\mathbb{R})$ such that $f_n \to f_0$ in L^p -norm.

(a) By Tchebyshev's inequality,

$$|\{|f_m - f_n| \ge \varepsilon\}| \le \frac{1}{\varepsilon^p} ||f_m - f_n||_p^p$$

so $\{f_n\}_{n\in\mathbb{N}}$ is Cauchy in measure.

(b) Given $\varepsilon > 0$, we have by standard arguments that for each $n \ge 0$ there exists a $\delta_n > 0$ such that if $|E| < \delta_n$ then $\int_E |f_n|^p < \varepsilon$. Since $f_n \to f_0$, there exists an N such that $||f_n - f_0||_p < \varepsilon$ for all $n \ge N$. Set

$$\delta = \min\{\delta_0, \delta_1, \dots, \delta_N\},\$$

and suppose that $|E| < \delta$. Then we have $\int_E |f_n|^p \leq \varepsilon$ for $n \leq N$, and if n > N then

$$\left(\int_{E} |f_n|^p\right)^{1/p} \leq \left(\int_{E} |f_n - f_0|^p\right)^{1/p} + \left(\int_{E} |f_0|^p\right)^{1/p} \leq \|f_n - f_0\|_p + \varepsilon < 2\varepsilon$$

Hence statement (b) holds.

(c) Choose $\varepsilon > 0$. Since for each $f \in L^p(\mathbb{R})$ we have $\int_{|x|>m} |f|^p \to 0$ as $m \to \infty$, for each $n \ge 0$ we can find a set E_n with $|E_n| < \infty$ such that

$$\int_{E_n^{\mathcal{C}}} |f_n|^p < \varepsilon^p, \quad \text{all } n \ge 0.$$

Let $E = E_0 \cup E_1 \cup \cdots \cup E_N$, where N is such that $||f_n - f_0||_p < \varepsilon$ for all $n \ge N$. Then $|E| < \infty$, and if n > N then

$$\left(\int_{E^{C}} |f_{n}|^{p}\right)^{1/p} \leq \left(\int_{E^{C}} |f_{0} - f_{n}|^{p}\right)^{1/p} + \left(\int_{E^{C}} |f_{0}|^{p}\right)^{1/p} \leq \|f_{0} - f_{n}\|_{p} + \varepsilon \leq 2\varepsilon.$$

Since $E_1, \ldots, E_N \subseteq E_0$, we also have the required inequality for $n \leq N$, so statement (c) holds.

⇐. Assume statements (a)–(c) hold and choose $\varepsilon > 0$. Let the set E be given as in statement (c). Set

$$A_{mn} = \left\{ |f_m - f_n| \ge \left(\frac{\varepsilon}{|E|}\right)^{1/p} \right\}.$$

Let δ be as given in statement (b). By statement (a), there exists an N such that $|A_{mn}| < \delta$ for all $m, n \ge N$. Hence

$$\|f_m - f_n\|_p^p \leq \int_{A_{mn}} |f_m - f_n|^p + \int_{E \setminus A_{mn}} |f_m - f_n|^p + \int_{E^{\mathbb{C}}} |f_m - f_n|^p$$

$$\leq \int_{A_{mn}} 2^p \left(|f_m|^p + |f_n|^p \right) + \int_{E \setminus A_{mn}} \frac{\varepsilon}{|E|} + \int_{E^{\mathbb{C}}} 2^p \left(|f_m|^p + |f_n|^p \right)$$

$$\leq 2^{p+1} \varepsilon + \varepsilon + 2^{p+1} \varepsilon.$$

Hence $\{f_n\}_{n\in\mathbb{N}}$ is Cauchy in $L^p(\mathbb{R})$.