
Analysis Comprehensive Exam Questions
Fall 2008

1. (a) Let E ⊆ R be measurable with finite Lebesgue measure |E|. Suppose that {fn}n∈N

is a bounded sequence in L2(E) and there exists a function f such that fn(x) → f(x) for
a.e. x ∈ E. Show that ‖f − fn‖1 → 0 as n → ∞.

(b) Show that the conclusion of part (a) can fail if |E| = ∞.

Solution
(a) Choose ε > 0, and let C = supn ‖fn‖2 < ∞. By Fatou’s Lemma, we have

‖f‖2
2 =

∫

E

lim
n→∞

|fn|
2 ≤ lim inf

n→∞

∫

E

|fn|
2 = lim inf

n→∞
‖fn‖

2
2 ≤ C.

Hence f ∈ L2(E).
By Egorov’s Theorem, there exists A ⊆ E such that

|E\A| <

(

ε

4C

)2

and fn → f uniformly on A. Therefore, we can find an N such that

‖(f − fn) χA‖∞ <
ε

2|E|
, all n > N.

Then for n > N we have by Cauchy–Schwarz that

‖f − fn‖1 =

∫

A

|f − fn| +

∫

E\A

|f − fn|

≤ |A| ‖(f − fn) χA‖∞ +

(
∫

E\A

|f − fn|
2

)1/2 (
∫

E\A

1

)1/2

< |A|
ε

2|E|
+ ‖f − fn‖2 |E\A|1/2

<
ε

2
+ 2C

ε

4C
= ε. �

(b) Let fn = χ[n,n+1]. Then ‖fn‖2 = 1 for every n, and fn(x) → 0 for every x. However,
fn does not converge to the zero function in L1-norm, since ‖fn‖1 = 1. �

1



2

2. Let X be a Banach space and let T , S be bounded linear operators on X. Prove that:

(a) I − TS has a bounded inverse if and only if I − ST has a bounded inverse.

(b) σ(TS)\{0} = σ(ST )\{0}.

Remark: σ(A) denotes the spectrum of A.

Solution
(a) Suppose that I−TS has a bounded inverse. In particular, I−TS is injective. Suppose

that (I − ST )v = 0 for some v ∈ X. Then we have T (I − ST )v = (I − TS)Tv = 0, so
Tv = 0. But this implies that v = (I − ST )v = 0. Hence also I − ST is injective.

On the other hand since I − TS is surjective we have that for every z ∈ X there exists
an x ∈ X such that (I − TS)x = Tz. Observe that this implies that x ∈ T (X) since
x = T (Sx + z) = Ty. We thus have that T (I − ST )y = Tz, or (I − ST )y = z + v with
v ∈ Ker(T ). But then, setting w = y − v, we have that (I − ST )w = z and I − ST is
surjective.

Thus I − ST is a bounded bijection of X onto itself, and therefore has a bounded inverse
by the Open Mapping Theorem.

(b) Suppose λ /∈ σ(TS) and λ 6= 0. Then TS − λI has a bounded inverse, so I − T
λ
S has

a bounded inverse. By part (a) it follows that I − S T
λ

and thus ST − λI has a bounded
inverse, so λ /∈ σ(ST ). �
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3. Let f , g be absolutely continuous functions on [0, 1]. Show that for x ∈ [0, 1] we have
∫ x

0

f(t) g′(t) dt = f(x)g(x) − f(0)g(0) −

∫ x

0

f ′(t) g(t) dt.

Solution
Since f , g are absolutely continuous, we know that they are differentiable almost every-

where and that f ′, g′ ∈ L1[0, 1]. Consequently, f ′(s) g′(t) ∈ L1
(

[0, 1]2
)

. Letting E = {(s, t) ∈
[0, x]2 : s ≤ t}, we compute that

∫∫

E

f ′(s) g′(t) ds dt =

∫ x

0

(
∫ t

0

f ′(s) ds

)

g′(t) dt

=

∫ x

0

(

f(t) − f(0)
)

g′(t) dt

=

∫ x

0

f(t) g′(t) dt− f(0)

∫ x

0

g′(t) dt

=

∫ x

0

f(t) g′(t) dt− f(0)
(

g(x) − g(0)
)

.

On the other hand,
∫∫

E

f ′(s) g′(t) dt ds =

∫ x

0

f ′(s)

(
∫ x

s

g′(t) dt

)

ds

=

∫ x

0

f ′(s)
(

g(x) − g(s)
)

dt

= g(x)

∫ x

0

f ′(s) ds −

∫ x

0

f ′(s) g(s) ds

= g(x)
(

f(x) − f(0)
)

−

∫ x

0

f ′(s) g(s) ds.

Finally, Fubini’s Theorem implies that these two integrals are equal, so the result follows. �
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4. Let f : [0, 1] → R a bounded function whose set of discontinuities D is closed and
nowhere dense.

(a) Is it true that every such f is Riemann integrable?

(b) Prove that for every such f there exists an homeomorphism h : [0, 1] → [0, 1] such
that f ◦ h is Riemann integrable.

Remark: A homeomorphism is a continuous bijection that has a continuous inverse.

Solution
(a) Clearly no. Let {q1, q2, . . . , qn, . . .} be an ordering of the rational numbers in (0, 1) and

set
I =

⋃

n

B(qn, ε2−n),

where B(x, r) = (x − r/2, x + r/2) ∩ (0, 1). Thus |I| ≤ ε but I is open and dense. Thus
J = [0, 1]\I is closed and nowhere dense but with large positive measure. Observe that
f = χJ is continuous for every x ∈ I since I is open, but it is discontinuous for every x ∈ J
since I is dense. Hence f is discontinuous on a closed nowhere dense set of positive measure
and thus it is not Riemann integrable.

(b) Let D be the set of discontinuities of f and Dc = [0, 1]\D. We can define

g(x) =
1

1 − |D|

∫ x

0

χDc(t) dt.

Observe that g(0) = 0, g(1) = 1, and g is continuous and strictly increasing. Indeed, if
x < y, there exists an open interval I ⊂ (x, y) such that I ⊂ Dc since D is closed and
nowhere dense. From this we have that

g(y)− g(x) =
1

1 − |D|

∫ y

x

χDc(t) dt ≥ |I| > 0.

Thus g is an invertible function and its inverse is continuous. Finally since D is closed we
have that Dc is the union of countably many open interval Ii. Observe that

|g(Ii)| =
1

1 − |D|

∫

Ii

χDc(t) dt =
1

1 − |D|
|Ii|,

so |g(Dc)| = 1 and |g(D)| = 0. Hence we can choose h = g−1, for then f ◦ h is discontinuous
on the set g(D), which has measure zero, and therefore f ◦ g is Riemann integrable. �
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5. Let X be a Banach space with norm ‖ · ‖X . Assume that Y is proper subspace of X
that is dense in X with respect to ‖ · ‖X , and that there is another norm ‖ · ‖Y on Y with
respect to which Y is a Banach space. Show that if there exists a constant C such that

‖x‖X ≤ C ‖x‖Y for all x ∈ Y,

then there exists a continuous linear functional on (Y, ‖ · ‖Y ) that has no extension to a
continuous linear functional on (X, ‖ · ‖X).

Solution
The hypotheses imply that Y is continuously embedded into X, i.e., if i : Y → X is given

by i(x) = x for x ∈ Y then i is continuous and ‖i‖ ≤ C. The adjoint of i is the restriction
map R : X∗ → Y ∗ given by R(µ) = µ|Y . Hence R is bounded, with ‖R‖ ≤ C. That is,
‖µ|Y ‖Y ∗ ≤ C ‖µ‖X∗ for each µ ∈ X∗. This can also be proved without recourse to adjoints
by observing that if x ∈ Y and µ ∈ X∗ then

|〈x, µ|Y 〉| = |〈x, µ〉| ≤ ‖µ‖X∗ ‖x‖X ≤ C ‖µ‖X∗ ‖x‖Y ,

so ‖µ|Y ‖Y ∗ ≤ C ‖µ‖X∗ (we are using the linear functional notation 〈x, µ〉 = µ(x)).
Suppose now that every continuous linear functional on (Y, ‖ · ‖Y ) had an extension to

a continuous linear functional on (X, ‖ · ‖X). Then R is onto. Further, if µ ∈ X∗ and
R(µ) = µ|Y = 0, then µ = 0 since µ is continuous and Y is dense in X. Therefore R
is injective. Thus R : Y ∗ → X∗ is a bounded bijection, so the Inverse Mapping Theorem
implies that R−1 is bounded. Combining this with the above facts, there exist c, C > 0 such
that

∀µ ∈ X∗, c ‖µ‖X∗ ≤ ‖µ|Y ‖Y ∗ ≤ C ‖µ‖X∗.

Now fix any x ∈ Y . Then by Hahn–Banach, there exists a ν ∈ Y ∗ such that ‖ν‖Y ∗ = 1
and |〈x, ν〉| = ‖x‖Y . By hypothesis, there exists an extension of ν to a continuous linear
functional on (X, ‖ · ‖X). Call this extension µ, so we have µ|Y = ν. Then

‖x‖Y = |〈x, ν〉| = |〈x, µ〉|

≤ ‖x‖X ‖µ‖X∗

≤ ‖x‖X
1

c
‖µ|Y ‖Y ∗

= ‖x‖X
1

c
‖ν‖Y ∗

=
1

c
‖x‖X .

Since we also have ‖x‖X ≤ C ‖x‖Y , we conclude that ‖ · ‖X and ‖ · ‖Y are equivalent norms
on Y . But Y is complete with respect to ‖ · ‖Y , and therefore it is complete with respect
to ‖ · ‖X . Consequently, Y is closed with respect to ‖ · ‖X . However, Y is dense in X with
respect to ‖ · ‖X , which implies that Y = X, a contradiction. �
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6. Let G be an unbounded open subset of R. Prove that

H = {x ∈ R : kx ∈ G for infinitely many k ∈ Z}

is dense in R.

Solution
If kx belongs G for infinitely many k then, for every n > 0, x belongs to

⋃

|k|>n

G/k

where
G/k = {y ∈ R : ky ∈ G}.

Vice versa, if x ∈
⋃

|k|>n G/k for every n > 0, then kx ∈ G for infinitely many k. Thus

H =
∞
⋂

n=1

⋃

|k|>n

G/k.

Clearly ∪|k|>nG/k is an open set. By the Baire Category Theorem, it is therefore enough to
prove that ∪k>nG/k is dense, for then H must be dense.

Let D = (z−, z+) be any open interval. If

D ∩
⋃

|k|>n

G/k = ∅,

then
⋃

|k|>n

kD ∩ G = ∅.

Without loss of generality, assume that z− > 0. Then for k large enough we have that
(k + 1)z− > kz+, and hence

⋃

k>n kD contains a subset of the form (d,∞). By considering
negative k we likewise conclude that

⋃

k>n kD contains (−∞,−d). Consequently, G cannot
contain (−∞,−d) ∪ (d,∞), which contradicts the fact that G is unbounded. �
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7. Let µ1, µ2 be bounded signed Borel measures on R. Show that there exists a unique
bounded signed Borel measure µ such that

∫

f dµ =

∫
(

∫

f(x + y) dµ1(x)

)

dµ2(y), f ∈ Cc(R).

Show further that ‖µ‖ ≤ ‖µ1‖ ‖µ2‖.
Note: Scalars in this problem are real.

Solution
If E is any Borel set in R, then

∫∫

χE(x + y) d|µ1|(x) d|µ2|(y) ≤

∫∫

d|µ1|(x) d|µ2|(y) = ‖µ1‖ ‖µ2‖ < ∞.

Hence, by Fubini’s Theorem, we can define

µ(E) =

∫∫

χE(x + y) dµ1(x) dµ2(y),

and we have |µ(E)| ≤ ‖µ1‖ ‖µ2‖.
We claim that µ defined in this way is a signed Borel measure. The above work shows

that µ(E) is a finite real number for every Borel set E, and we clearly have that µ(∅) = 0.
Hence we need only show that µ is countably additive.

Suppose that E1, E2, . . . are disjoint Borel sets, and let E = ∪Ej . For each x and y, we
have that

0 ≤
N

∑

j=1

χEj
(x + y) → χE(x + y) ≤ 1 ∈ L1(µ1 × µ2).

Therefore, by the Dominated Convergence Theorem,

µ(E) =

∫∫

χE(x + y) dµ1(x) dµ2(y)

= lim
j→∞

∫∫ N
∑

j=1

χEj
(x + y) dµ1(x) dµ2(y)

= lim
j→∞

N
∑

j=1

∫∫

χEj
(x + y) dµ1(x) dµ2(y)

= lim
j→∞

N
∑

j=1

µ(Ej)

=

∞
∑

j=1

µ(Ej).

Therefore µ is a signed Borel measure.
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If we let R = P ∪ N be a Hahn decomposition of R for µ, then

‖µ‖ = |µ|(R) = µ(P ) − µ(N)

=

∫∫

χP (x + y) dµ1(x) dµ2(y) −

∫∫

χN(x + y) dµ1(x) dµ2(y)

≤

∫∫

χP (x + y) d|µ1|(x) d|µ2|(y) +

∫∫

χN (x + y) d|µ1|(x) dµ2|(y)

=

∫∫

d|µ1|(x) d|µ2|(y) = ‖µ1‖ ‖µ2‖.

If φ =
∑n

k=1 ak χEk
is any simple function, then

∫

φ dµ =
n

∑

k=1

ak

∫

χEk
dµ =

n
∑

k=1

ak

∫∫

χEk
(x + y) dµ1(x) dµ2(y)

=

∫∫

φ(x + y) dµ1(x) dµ2(y).

If we fix f ∈ Cc(R), then there exist simple functions φk such that |φk| ≤ |f | and φk → f
pointwise. Since f ∈ L1(µ) and f(x+ y) ∈ L1(µ1 ×µ2), we therefore have by the Dominated
Convergence Theorem that

∫∫

f(x + y) dµ1(x) dµ2(y) = lim
k→∞

∫∫

φk(x + y) dµ1(x) dµ2(y)

= lim
k→∞

∫

φk dµ =

∫

f dµ.

It remains only to show that µ is unique. If ν is another signed Borel measure that satisfies
∫

f dν =

∫
(

∫

f(x + y) dµ1(x)

)

dµ2(y), f ∈ Cc(R), (1)

then we have
∫

f d(µ − ν) = 0 for every f ∈ Cc(R). By the Riesz Representation Theorem,
Cc(R)∗ = Mb(R), the space of finite signed Borel measures on R. Therefore we must have
µ = ν.

As the Riesz Representation Theorem for Cc(X) is not part of the Comprehensive Exam
syllabus, we give an alternative direct proof. As above, suppose that ν is another signed
Borel measure that satisfies equation (1). Fix any open interval (a, b). Let fn ∈ Cc(R) be
such that 0 ≤ fn ≤ 1 and fn → χ(a,b) pointwise. Then by the Dominated Convergence
Theorem, we have

µ(a, b) = lim
n→∞

∫

fn dµ = lim
n→∞

∫

fn dν = ν(a, b).

This extends from open intervals to all Borel sets, so we conclude that µ = ν. �
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8. Given 1 ≤ p < ∞ and fn ∈ Lp(R), prove that {fn}n∈N is a Cauchy sequence in Lp(R)
if and only if the following three conditions hold (|E| denotes Lebesgue measure).

(a) {fn}n∈N is Cauchy in measure.

(b) For every ε > 0 there exists a δ > 0 such that if |E| < δ then
∫

E
|fn|

p < ε for every n.

(c) For every ε > 0 there exists a set E with |E| < ∞ such that
∫

EC |fn|
p < ε for every n.

Solution
⇒. Assume that {fn}n∈N is Cauchy in Lp(R). Since Lp(R) is complete, there exists a

function f0 ∈ Lp(R) such that fn → f0 in Lp-norm.

(a) By Tchebyshev’s inequality,

|{|fm − fn| ≥ ε}| ≤
1

εp
‖fm − fn‖

p
p,

so {fn}n∈N is Cauchy in measure.

(b) Given ε > 0, we have by standard arguments that for each n ≥ 0 there exists a
δn > 0 such that if |E| < δn then

∫

E
|fn|

p < ε. Since fn → f0, there exists an N such that
‖fn − f0‖p < ε for all n ≥ N . Set

δ = min{δ0, δ1, . . . , δN},

and suppose that |E| < δ. Then we have
∫

E
|fn|

p ≤ ε for n ≤ N , and if n > N then

(
∫

E

|fn|
p

)1/p

≤

(
∫

E

|fn − f0|
p

)1/p

+

(
∫

E

|f0|
p

)1/p

≤ ‖fn − f0‖p + ε < 2ε.

Hence statement (b) holds.

(c) Choose ε > 0. Since for each f ∈ Lp(R) we have
∫

|x|>m
|f |p → 0 as m → ∞, for each

n ≥ 0 we can find a set En with |En| < ∞ such that
∫

EC
n

|fn|
p < εp, all n ≥ 0.

Let E = E0 ∪ E1 ∪ · · · ∪ EN , where N is such that ‖fn − f0‖p < ε for all n ≥ N . Then
|E| < ∞, and if n > N then

(
∫

EC

|fn|
p

)1/p

≤

(
∫

EC

|f0 − fn|
p

)1/p

+

(
∫

EC

|f0|
p

)1/p

≤ ‖f0 − fn‖p + ε ≤ 2ε.

Since E1, . . . , EN ⊆ E0, we also have the required inequality for n ≤ N , so statement (c)
holds.

⇐. Assume statements (a)–(c) hold and choose ε > 0. Let the set E be given as in
statement (c). Set

Amn =

{

|fm − fn| ≥

(

ε

|E|

)1/p}

.
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Let δ be as given in statement (b). By statement (a), there exists an N such that |Amn| < δ
for all m, n ≥ N . Hence

‖fm − fn‖
p
p ≤

∫

Amn

|fm − fn|
p +

∫

E\Amn

|fm − fn|
p +

∫

EC

|fm − fn|
p

≤

∫

Amn

2p (|fm|
p + |fn|

p) +

∫

E\Amn

ε

|E|
+

∫

EC

2p (|fm|
p + |fn|

p)

≤ 2p+1 ε + ε + 2p+1 ε.

Hence {fn}n∈N is Cauchy in Lp(R). �


