## Analysis Comprehensive Exam Questions

Fall 2008

1. (a) Let $E \subseteq \mathbb{R}$ be measurable with finite Lebesgue measure $|E|$. Suppose that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a bounded sequence in $L^{2}(E)$ and there exists a function $f$ such that $f_{n}(x) \rightarrow f(x)$ for a.e. $x \in E$. Show that $\left\|f-f_{n}\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$.
(b) Show that the conclusion of part (a) can fail if $|E|=\infty$.

Solution
(a) Choose $\varepsilon>0$, and let $C=\sup _{n}\left\|f_{n}\right\|_{2}<\infty$. By Fatou's Lemma, we have

$$
\|f\|_{2}^{2}=\int_{E} \lim _{n \rightarrow \infty}\left|f_{n}\right|^{2} \leq \liminf _{n \rightarrow \infty} \int_{E}\left|f_{n}\right|^{2}=\liminf _{n \rightarrow \infty}\left\|f_{n}\right\|_{2}^{2} \leq C
$$

Hence $f \in L^{2}(E)$.
By Egorov's Theorem, there exists $A \subseteq E$ such that

$$
|E \backslash A|<\left(\frac{\varepsilon}{4 C}\right)^{2}
$$

and $f_{n} \rightarrow f$ uniformly on $A$. Therefore, we can find an $N$ such that

$$
\left\|\left(f-f_{n}\right) \chi_{A}\right\|_{\infty}<\frac{\varepsilon}{2|E|}, \quad \text { all } n>N
$$

Then for $n>N$ we have by Cauchy-Schwarz that

$$
\begin{aligned}
\left\|f-f_{n}\right\|_{1} & =\int_{A}\left|f-f_{n}\right|+\int_{E \backslash A}\left|f-f_{n}\right| \\
& \leq|A|\left\|\left(f-f_{n}\right) \chi_{A}\right\|_{\infty}+\left(\int_{E \backslash A}\left|f-f_{n}\right|^{2}\right)^{1 / 2}\left(\int_{E \backslash A} 1\right)^{1 / 2} \\
& <|A| \frac{\varepsilon}{2|E|}+\left\|f-f_{n}\right\|_{2}|E \backslash A|^{1 / 2} \\
& <\frac{\varepsilon}{2}+2 C \frac{\varepsilon}{4 C}=\varepsilon . \quad \square
\end{aligned}
$$

(b) Let $f_{n}=\chi_{[n, n+1]}$. Then $\left\|f_{n}\right\|_{2}=1$ for every $n$, and $f_{n}(x) \rightarrow 0$ for every $x$. However, $f_{n}$ does not converge to the zero function in $L^{1}$-norm, since $\left\|f_{n}\right\|_{1}=1$.
2. Let $X$ be a Banach space and let $T, S$ be bounded linear operators on $X$. Prove that:
(a) $I-T S$ has a bounded inverse if and only if $I-S T$ has a bounded inverse.
(b) $\sigma(T S) \backslash\{0\}=\sigma(S T) \backslash\{0\}$.

Remark: $\sigma(A)$ denotes the spectrum of $A$.
Solution
(a) Suppose that $I-T S$ has a bounded inverse. In particular, $I-T S$ is injective. Suppose that $(I-S T) v=0$ for some $v \in X$. Then we have $T(I-S T) v=(I-T S) T v=0$, so $T v=0$. But this implies that $v=(I-S T) v=0$. Hence also $I-S T$ is injective.

On the other hand since $I-T S$ is surjective we have that for every $z \in X$ there exists an $x \in X$ such that $(I-T S) x=T z$. Observe that this implies that $x \in T(X)$ since $x=T(S x+z)=T y$. We thus have that $T(I-S T) y=T z$, or $(I-S T) y=z+v$ with $v \in \operatorname{Ker}(T)$. But then, setting $w=y-v$, we have that $(I-S T) w=z$ and $I-S T$ is surjective.

Thus $I-S T$ is a bounded bijection of $X$ onto itself, and therefore has a bounded inverse by the Open Mapping Theorem.
(b) Suppose $\lambda \notin \sigma(T S)$ and $\lambda \neq 0$. Then $T S-\lambda I$ has a bounded inverse, so $I-\frac{T}{\lambda} S$ has a bounded inverse. By part (a) it follows that $I-S \frac{T}{\lambda}$ and thus $S T-\lambda I$ has a bounded inverse, so $\lambda \notin \sigma(S T)$.
3. Let $f, g$ be absolutely continuous functions on $[0,1]$. Show that for $x \in[0,1]$ we have

$$
\int_{0}^{x} f(t) g^{\prime}(t) d t=f(x) g(x)-f(0) g(0)-\int_{0}^{x} f^{\prime}(t) g(t) d t
$$

Solution
Since $f, g$ are absolutely continuous, we know that they are differentiable almost everywhere and that $f^{\prime}, g^{\prime} \in L^{1}[0,1]$. Consequently, $f^{\prime}(s) g^{\prime}(t) \in L^{1}\left([0,1]^{2}\right)$. Letting $E=\{(s, t) \in$ $\left.[0, x]^{2}: s \leq t\right\}$, we compute that

$$
\begin{aligned}
\iint_{E} f^{\prime}(s) g^{\prime}(t) d s d t & =\int_{0}^{x}\left(\int_{0}^{t} f^{\prime}(s) d s\right) g^{\prime}(t) d t \\
& =\int_{0}^{x}(f(t)-f(0)) g^{\prime}(t) d t \\
& =\int_{0}^{x} f(t) g^{\prime}(t) d t-f(0) \int_{0}^{x} g^{\prime}(t) d t \\
& =\int_{0}^{x} f(t) g^{\prime}(t) d t-f(0)(g(x)-g(0))
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\iint_{E} f^{\prime}(s) g^{\prime}(t) d t d s & =\int_{0}^{x} f^{\prime}(s)\left(\int_{s}^{x} g^{\prime}(t) d t\right) d s \\
& =\int_{0}^{x} f^{\prime}(s)(g(x)-g(s)) d t \\
& =g(x) \int_{0}^{x} f^{\prime}(s) d s-\int_{0}^{x} f^{\prime}(s) g(s) d s \\
& =g(x)(f(x)-f(0))-\int_{0}^{x} f^{\prime}(s) g(s) d s
\end{aligned}
$$

Finally, Fubini's Theorem implies that these two integrals are equal, so the result follows.
4. Let $f:[0,1] \rightarrow \mathbb{R}$ a bounded function whose set of discontinuities $D$ is closed and nowhere dense.
(a) Is it true that every such $f$ is Riemann integrable?
(b) Prove that for every such $f$ there exists an homeomorphism $h:[0,1] \rightarrow[0,1]$ such that $f \circ h$ is Riemann integrable.
Remark: A homeomorphism is a continuous bijection that has a continuous inverse.

## Solution

(a) Clearly no. Let $\left\{q_{1}, q_{2}, \ldots, q_{n}, \ldots\right\}$ be an ordering of the rational numbers in $(0,1)$ and set

$$
I=\bigcup_{n} B\left(q_{n}, \varepsilon 2^{-n}\right)
$$

where $B(x, r)=(x-r / 2, x+r / 2) \cap(0,1)$. Thus $|I| \leq \varepsilon$ but $I$ is open and dense. Thus $J=[0,1] \backslash I$ is closed and nowhere dense but with large positive measure. Observe that $f=\chi_{J}$ is continuous for every $x \in I$ since $I$ is open, but it is discontinuous for every $x \in J$ since $I$ is dense. Hence $f$ is discontinuous on a closed nowhere dense set of positive measure and thus it is not Riemann integrable.
(b) Let $D$ be the set of discontinuities of $f$ and $D^{c}=[0,1] \backslash D$. We can define

$$
g(x)=\frac{1}{1-|D|} \int_{0}^{x} \chi_{D^{c}}(t) d t
$$

Observe that $g(0)=0, g(1)=1$, and $g$ is continuous and strictly increasing. Indeed, if $x<y$, there exists an open interval $I \subset(x, y)$ such that $I \subset D^{c}$ since $D$ is closed and nowhere dense. From this we have that

$$
g(y)-g(x)=\frac{1}{1-|D|} \int_{x}^{y} \chi_{D^{c}}(t) d t \geq|I|>0
$$

Thus $g$ is an invertible function and its inverse is continuous. Finally since $D$ is closed we have that $D^{c}$ is the union of countably many open interval $I_{i}$. Observe that

$$
\left|g\left(I_{i}\right)\right|=\frac{1}{1-|D|} \int_{I_{i}} \chi_{D^{c}}(t) d t=\frac{1}{1-|D|}\left|I_{i}\right|
$$

so $\left|g\left(D^{c}\right)\right|=1$ and $|g(D)|=0$. Hence we can choose $h=g^{-1}$, for then $f \circ h$ is discontinuous on the set $g(D)$, which has measure zero, and therefore $f \circ g$ is Riemann integrable.
5. Let $X$ be a Banach space with norm $\|\cdot\|_{X}$. Assume that $Y$ is proper subspace of $X$ that is dense in $X$ with respect to $\|\cdot\|_{X}$, and that there is another norm $\|\cdot\|_{Y}$ on $Y$ with respect to which $Y$ is a Banach space. Show that if there exists a constant $C$ such that

$$
\|x\|_{X} \leq C\|x\|_{Y} \quad \text { for all } x \in Y
$$

then there exists a continuous linear functional on $\left(Y,\|\cdot\|_{Y}\right)$ that has no extension to a continuous linear functional on $\left(X,\|\cdot\|_{X}\right)$.

## Solution

The hypotheses imply that $Y$ is continuously embedded into $X$, i.e., if $i: Y \rightarrow X$ is given by $i(x)=x$ for $x \in Y$ then $i$ is continuous and $\|i\| \leq C$. The adjoint of $i$ is the restriction map $R: X^{*} \rightarrow Y^{*}$ given by $R(\mu)=\left.\mu\right|_{Y}$. Hence $R$ is bounded, with $\|R\| \leq C$. That is, $\left\|\left.\mu\right|_{Y}\right\|_{Y^{*}} \leq C\|\mu\|_{X^{*}}$ for each $\mu \in X^{*}$. This can also be proved without recourse to adjoints by observing that if $x \in Y$ and $\mu \in X^{*}$ then

$$
\left|\left\langle x,\left.\mu\right|_{Y}\right\rangle\right|=|\langle x, \mu\rangle| \leq\|\mu\|_{X^{*}}\|x\|_{X} \leq C\|\mu\|_{X^{*}}\|x\|_{Y}
$$

so $\left\|\left.\mu\right|_{Y}\right\|_{Y^{*}} \leq C\|\mu\|_{X^{*}}$ (we are using the linear functional notation $\langle x, \mu\rangle=\mu(x)$ ).
Suppose now that every continuous linear functional on $\left(Y,\|\cdot\|_{Y}\right)$ had an extension to a continuous linear functional on $\left(X,\|\cdot\|_{X}\right)$. Then $R$ is onto. Further, if $\mu \in X^{*}$ and $R(\mu)=\left.\mu\right|_{Y}=0$, then $\mu=0$ since $\mu$ is continuous and $Y$ is dense in $X$. Therefore $R$ is injective. Thus $R: Y^{*} \rightarrow X^{*}$ is a bounded bijection, so the Inverse Mapping Theorem implies that $R^{-1}$ is bounded. Combining this with the above facts, there exist $c, C>0$ such that

$$
\forall \mu \in X^{*}, \quad c\|\mu\|_{X^{*}} \leq\left\|\left.\mu\right|_{Y}\right\|_{Y^{*}} \leq C\|\mu\|_{X^{*}}
$$

Now fix any $x \in Y$. Then by Hahn-Banach, there exists a $\nu \in Y^{*}$ such that $\|\nu\|_{Y^{*}}=1$ and $|\langle x, \nu\rangle|=\|x\|_{Y}$. By hypothesis, there exists an extension of $\nu$ to a continuous linear functional on $\left(X,\|\cdot\|_{X}\right)$. Call this extension $\mu$, so we have $\left.\mu\right|_{Y}=\nu$. Then

$$
\begin{aligned}
\|x\|_{Y}=|\langle x, \nu\rangle| & =|\langle x, \mu\rangle| \\
& \leq\|x\|_{X}\|\mu\|_{X^{*}} \\
& \leq\|x\|_{X} \frac{1}{c}\left\|\left.\mu\right|_{Y}\right\|_{Y^{*}} \\
& =\|x\|_{X} \frac{1}{c}\|\nu\|_{Y^{*}} \\
& =\frac{1}{c}\|x\|_{X} .
\end{aligned}
$$

Since we also have $\|x\|_{X} \leq C\|x\|_{Y}$, we conclude that $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$ are equivalent norms on $Y$. But $Y$ is complete with respect to $\|\cdot\|_{Y}$, and therefore it is complete with respect to $\|\cdot\|_{X}$. Consequently, $Y$ is closed with respect to $\|\cdot\|_{X}$. However, $Y$ is dense in $X$ with respect to $\|\cdot\|_{X}$, which implies that $Y=X$, a contradiction.
6. Let $G$ be an unbounded open subset of $\mathbb{R}$. Prove that

$$
H=\{x \in \mathbb{R}: k x \in G \text { for infinitely many } k \in \mathbb{Z}\}
$$

is dense in $\mathbb{R}$.
Solution
If $k x$ belongs $G$ for infinitely many $k$ then, for every $n>0, x$ belongs to

$$
\bigcup_{|k|>n} G / k
$$

where

$$
G / k=\{y \in \mathbb{R}: k y \in G\} .
$$

Vice versa, if $x \in \bigcup_{|k|>n} G / k$ for every $n>0$, then $k x \in G$ for infinitely many $k$. Thus

$$
H=\bigcap_{n=1}^{\infty} \bigcup_{|k|>n} G / k
$$

Clearly $\cup_{|k|>n} G / k$ is an open set. By the Baire Category Theorem, it is therefore enough to prove that $\cup_{k>n} G / k$ is dense, for then $H$ must be dense.

Let $D=\left(z_{-}, z_{+}\right)$be any open interval. If

$$
D \cap \bigcup_{|k|>n} G / k=\emptyset
$$

then

$$
\bigcup_{|k|>n} k D \cap G=\emptyset
$$

Without loss of generality, assume that $z_{-}>0$. Then for $k$ large enough we have that $(k+1) z_{-}>k z_{+}$, and hence $\bigcup_{k>n} k D$ contains a subset of the form $(d, \infty)$. By considering negative $k$ we likewise conclude that $\bigcup_{k>n} k D$ contains $(-\infty,-d)$. Consequently, $G$ cannot contain $(-\infty,-d) \cup(d, \infty)$, which contradicts the fact that $G$ is unbounded.
7. Let $\mu_{1}, \mu_{2}$ be bounded signed Borel measures on $\mathbb{R}$. Show that there exists a unique bounded signed Borel measure $\mu$ such that

$$
\int f d \mu=\int\left(\int f(x+y) d \mu_{1}(x)\right) d \mu_{2}(y), \quad f \in C_{c}(\mathbb{R})
$$

Show further that $\|\mu\| \leq\left\|\mu_{1}\right\|\left\|\mu_{2}\right\|$.
Note: Scalars in this problem are real.

## Solution

If $E$ is any Borel set in $\mathbb{R}$, then

$$
\iint \chi_{E}(x+y) d\left|\mu_{1}\right|(x) d\left|\mu_{2}\right|(y) \leq \iint d\left|\mu_{1}\right|(x) d\left|\mu_{2}\right|(y)=\left\|\mu_{1}\right\|\left\|\mu_{2}\right\|<\infty
$$

Hence, by Fubini's Theorem, we can define

$$
\mu(E)=\iint \chi_{E}(x+y) d \mu_{1}(x) d \mu_{2}(y)
$$

and we have $|\mu(E)| \leq\left\|\mu_{1}\right\|\left\|\mu_{2}\right\|$.
We claim that $\mu$ defined in this way is a signed Borel measure. The above work shows that $\mu(E)$ is a finite real number for every Borel set $E$, and we clearly have that $\mu(\emptyset)=0$. Hence we need only show that $\mu$ is countably additive.

Suppose that $E_{1}, E_{2}, \ldots$ are disjoint Borel sets, and let $E=\cup E_{j}$. For each $x$ and $y$, we have that

$$
0 \leq \sum_{j=1}^{N} \chi_{E_{j}}(x+y) \rightarrow \chi_{E}(x+y) \leq 1 \in L^{1}\left(\mu_{1} \times \mu_{2}\right)
$$

Therefore, by the Dominated Convergence Theorem,

$$
\begin{aligned}
\mu(E) & =\iint \chi_{E}(x+y) d \mu_{1}(x) d \mu_{2}(y) \\
& =\lim _{j \rightarrow \infty} \iint \sum_{j=1}^{N} \chi_{E_{j}}(x+y) d \mu_{1}(x) d \mu_{2}(y) \\
& =\lim _{j \rightarrow \infty} \sum_{j=1}^{N} \iint \chi_{E_{j}}(x+y) d \mu_{1}(x) d \mu_{2}(y) \\
& =\lim _{j \rightarrow \infty} \sum_{j=1}^{N} \mu\left(E_{j}\right) \\
& =\sum_{j=1}^{\infty} \mu\left(E_{j}\right) .
\end{aligned}
$$

Therefore $\mu$ is a signed Borel measure.

If we let $\mathbb{R}=P \cup N$ be a Hahn decomposition of $\mathbb{R}$ for $\mu$, then

$$
\begin{aligned}
\|\mu\|=|\mu|(\mathbb{R}) & =\mu(P)-\mu(N) \\
& =\iint \chi_{P}(x+y) d \mu_{1}(x) d \mu_{2}(y)-\iint \chi_{N}(x+y) d \mu_{1}(x) d \mu_{2}(y) \\
& \leq \iint \chi_{P}(x+y) d\left|\mu_{1}\right|(x) d\left|\mu_{2}\right|(y)+\iint \chi_{N}(x+y) d\left|\mu_{1}\right|(x) d \mu_{2} \mid(y) \\
& =\iint d\left|\mu_{1}\right|(x) d\left|\mu_{2}\right|(y)=\left\|\mu_{1}\right\|\left\|\mu_{2}\right\|
\end{aligned}
$$

If $\phi=\sum_{k=1}^{n} a_{k} \chi_{E_{k}}$ is any simple function, then

$$
\begin{aligned}
\int \phi d \mu=\sum_{k=1}^{n} a_{k} \int \chi_{E_{k}} d \mu & =\sum_{k=1}^{n} a_{k} \iint \chi_{E_{k}}(x+y) d \mu_{1}(x) d \mu_{2}(y) \\
& =\iint \phi(x+y) d \mu_{1}(x) d \mu_{2}(y)
\end{aligned}
$$

If we fix $f \in C_{c}(\mathbb{R})$, then there exist simple functions $\phi_{k}$ such that $\left|\phi_{k}\right| \leq|f|$ and $\phi_{k} \rightarrow f$ pointwise. Since $f \in L^{1}(\mu)$ and $f(x+y) \in L^{1}\left(\mu_{1} \times \mu_{2}\right)$, we therefore have by the Dominated Convergence Theorem that

$$
\begin{aligned}
\iint f(x+y) d \mu_{1}(x) d \mu_{2}(y) & =\lim _{k \rightarrow \infty} \iint \phi_{k}(x+y) d \mu_{1}(x) d \mu_{2}(y) \\
& =\lim _{k \rightarrow \infty} \int \phi_{k} d \mu=\int f d \mu
\end{aligned}
$$

It remains only to show that $\mu$ is unique. If $\nu$ is another signed Borel measure that satisfies

$$
\begin{equation*}
\int f d \nu=\int\left(\int f(x+y) d \mu_{1}(x)\right) d \mu_{2}(y), \quad f \in C_{c}(\mathbb{R}) \tag{1}
\end{equation*}
$$

then we have $\int f d(\mu-\nu)=0$ for every $f \in C_{c}(\mathbb{R})$. By the Riesz Representation Theorem, $C_{c}(\mathbb{R})^{*}=M_{b}(\mathbb{R})$, the space of finite signed Borel measures on $\mathbb{R}$. Therefore we must have $\mu=\nu$.

As the Riesz Representation Theorem for $C_{c}(X)$ is not part of the Comprehensive Exam syllabus, we give an alternative direct proof. As above, suppose that $\nu$ is another signed Borel measure that satisfies equation (1). Fix any open interval $(a, b)$. Let $f_{n} \in C_{c}(\mathbb{R})$ be such that $0 \leq f_{n} \leq 1$ and $f_{n} \rightarrow \chi_{(a, b)}$ pointwise. Then by the Dominated Convergence Theorem, we have

$$
\mu(a, b)=\lim _{n \rightarrow \infty} \int f_{n} d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \nu=\nu(a, b)
$$

This extends from open intervals to all Borel sets, so we conclude that $\mu=\nu$.
8. Given $1 \leq p<\infty$ and $f_{n} \in L^{p}(\mathbb{R})$, prove that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $L^{p}(\mathbb{R})$ if and only if the following three conditions hold $(|E|$ denotes Lebesgue measure).
(a) $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy in measure.
(b) For every $\varepsilon>0$ there exists a $\delta>0$ such that if $|E|<\delta$ then $\int_{E}\left|f_{n}\right|^{p}<\varepsilon$ for every $n$.
(c) For every $\varepsilon>0$ there exists a set $E$ with $|E|<\infty$ such that $\int_{E^{\mathrm{C}}}\left|f_{n}\right|^{p}<\varepsilon$ for every $n$.

Solution
$\Rightarrow$. Assume that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy in $L^{p}(\mathbb{R})$. Since $L^{p}(\mathbb{R})$ is complete, there exists a function $f_{0} \in L^{p}(\mathbb{R})$ such that $f_{n} \rightarrow f_{0}$ in $L^{p}$-norm.
(a) By Tchebyshev's inequality,

$$
\left|\left\{\left|f_{m}-f_{n}\right| \geq \varepsilon\right\}\right| \leq \frac{1}{\varepsilon^{p}}\left\|f_{m}-f_{n}\right\|_{p}^{p}
$$

so $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy in measure.
(b) Given $\varepsilon>0$, we have by standard arguments that for each $n \geq 0$ there exists a $\delta_{n}>0$ such that if $|E|<\delta_{n}$ then $\int_{E}\left|f_{n}\right|^{p}<\varepsilon$. Since $f_{n} \rightarrow f_{0}$, there exists an $N$ such that $\left\|f_{n}-f_{0}\right\|_{p}<\varepsilon$ for all $n \geq N$. Set

$$
\delta=\min \left\{\delta_{0}, \delta_{1}, \ldots, \delta_{N}\right\}
$$

and suppose that $|E|<\delta$. Then we have $\int_{E}\left|f_{n}\right|^{p} \leq \varepsilon$ for $n \leq N$, and if $n>N$ then

$$
\left(\int_{E}\left|f_{n}\right|^{p}\right)^{1 / p} \leq\left(\int_{E}\left|f_{n}-f_{0}\right|^{p}\right)^{1 / p}+\left(\int_{E}\left|f_{0}\right|^{p}\right)^{1 / p} \leq\left\|f_{n}-f_{0}\right\|_{p}+\varepsilon<2 \varepsilon
$$

Hence statement (b) holds.
(c) Choose $\varepsilon>0$. Since for each $f \in L^{p}(\mathbb{R})$ we have $\int_{|x|>m}|f|^{p} \rightarrow 0$ as $m \rightarrow \infty$, for each $n \geq 0$ we can find a set $E_{n}$ with $\left|E_{n}\right|<\infty$ such that

$$
\int_{E_{n}^{\mathrm{C}}}\left|f_{n}\right|^{p}<\varepsilon^{p}, \quad \text { all } n \geq 0
$$

Let $E=E_{0} \cup E_{1} \cup \cdots \cup E_{N}$, where $N$ is such that $\left\|f_{n}-f_{0}\right\|_{p}<\varepsilon$ for all $n \geq N$. Then $|E|<\infty$, and if $n>N$ then

$$
\left(\int_{E^{\mathrm{C}}}\left|f_{n}\right|^{p}\right)^{1 / p} \leq\left(\int_{E^{\mathrm{C}}}\left|f_{0}-f_{n}\right|^{p}\right)^{1 / p}+\left(\int_{E^{\mathrm{C}}}\left|f_{0}\right|^{p}\right)^{1 / p} \leq\left\|f_{0}-f_{n}\right\|_{p}+\varepsilon \leq 2 \varepsilon
$$

Since $E_{1}, \ldots, E_{N} \subseteq E_{0}$, we also have the required inequality for $n \leq N$, so statement (c) holds.
$\Leftarrow$. Assume statements (a)-(c) hold and choose $\varepsilon>0$. Let the set $E$ be given as in statement (c). Set

$$
A_{m n}=\left\{\left|f_{m}-f_{n}\right| \geq\left(\frac{\varepsilon}{|E|}\right)^{1 / p}\right\}
$$

Let $\delta$ be as given in statement (b). By statement (a), there exists an $N$ such that $\left|A_{m n}\right|<\delta$ for all $m, n \geq N$. Hence

$$
\begin{aligned}
\left\|f_{m}-f_{n}\right\|_{p}^{p} & \leq \int_{A_{m n}}\left|f_{m}-f_{n}\right|^{p}+\int_{E \backslash A_{m n}}\left|f_{m}-f_{n}\right|^{p}+\int_{E^{\mathrm{C}}}\left|f_{m}-f_{n}\right|^{p} \\
& \leq \int_{A_{m n}} 2^{p}\left(\left|f_{m}\right|^{p}+\left|f_{n}\right|^{p}\right)+\int_{E \backslash A_{m n}} \frac{\varepsilon}{|E|}+\int_{E^{\mathrm{C}}} 2^{p}\left(\left|f_{m}\right|^{p}+\left|f_{n}\right|^{p}\right) \\
& \leq 2^{p+1} \varepsilon+\varepsilon+2^{p+1} \varepsilon .
\end{aligned}
$$

Hence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy in $L^{p}(\mathbb{R})$.

