
Algebra Comprehensive Exam
— Fall 2009 —

(1) (a) Let Fp denote the field with p elements, and for a field F let PSLn(F) be the quotient
of SLn(F) (the group of n × n matrices with coefficients in F and having determinant
1) by {±I}. Show that |PSL2(F7)| = 168.

(b) How many elements of order 7 are there in PSL2(F7)? (You may assume the known
fact that PSL2(F7) is a simple group.)

Solution. (a) The group GL2(F7) has (72 − 1)(72 − 7) = 48 · 42 elements, since to give
an element of GL2(F) is to give a nonzero element v of F2 and an element w ∈ F2 not in
the span of v. The group SL2(F7) has 48 · 42/6 = 168 · 2 elements, since the determinant
gives a surjective homomorphism from GL2(F) to F∗ with kernel SL2(F). Finally, we have
|PGL2(F)| = |GL2(F)|/2.

(b) The argument applies to any simple group G of order 168. The number n7 of 7-Sylow
subgroups of G is 1 mod 7 and divides 24. Since G is simple, n7 > 1. Thus n7 = 8. Any
two 7-Sylow subgroups intersect only in the identity, and each contains 6 elements of order
7. Thus G contains 48 elements of order 7.

�

(2) Let G be a group whose group of automorphisms is cyclic. Prove that G is abelian.

Solution. Consider the map φ : G → Aut(G) given by φ(g)(h) = ghg−1. This is a well
defined homomorphism (φ(g1g2)(h) = (g1g2)h(g−1

2 g−1
1 ) = φ(g1)(g2hg−1

2 ) = φ(g1) ◦ φ(g2)(h)).
Moreover, ker φ = Z(G). Indeed, if g ∈ Z(G) then φ(g)(h) = h so φ(g) is the identity
automorphism. Conversely if g ∈ ker φ then φ(g)(h) = ghg−1 = h for all h. In other words
gh = hg for all h ∈ G thus g ∈ Z(G). Thus the first isomorphism theorem says that G/Z(G)
is isomorphic to a subgroup of Aut(G), a cyclic group. Thus G/Z(G) is cyclic. But it is
well-known that if G/Z is cyclic then G is abelian. (Proof: Suppose G/Z is cyclic with
generator yZ. So every element of G/Z is of the form (yZ)n for some n. Thus every element
of G is of the form yna for some a ∈ Z. Given two elements g and h in G, write g = yna
and h = ymb. We have gh = ynaymb = ynymab = ymynab = ymbyna = hg, where the second
and fourth equality follow by a, b ∈ Z. So G is abelian.) �

(3) Let R be an integral domain and let a be a non-zero non-unit of R.
(a) Prove that the ideal (a, x) in the polynomial ring R[x] is not principal.
(b) Use part (a) to show that if K is a field, then the polynomial ring K[x, y] is not a PID.

Solution. (a) If (a, x) is a principal ideal then there is some p(x) ∈ R[x] such that (p(x)) =
(a, x). Since a ∈ (a, x) = (p(x)) there is some q(x) such that q(x)p(x) = a. Since R is an
integral domain, we know that

0 = deg(a) = deg(q(x)p(x)) = deg(q(x)) + deg(p(x)).

Thus p(x) has degree 0, and so p(x) = p for some p ∈ R. Now since x ∈ (a, x) = (p(x)), there
is some r(x) such that r(x)p = x. Arguing with degrees again, we see that r(x) = r1x + r0

and so r1p = 1 and r0p = 0. Thus p is a unit in R (and therefore in R[x] as well). Thus
(a, x) = (p) = R[x] and 1 ∈ (a, x). So there are polynomials b(x) and c(x) such that

b(x)a + c(x)x = 1.

There is no constant term in c(x)x, so a times the constant term b0 in b(x) is 1, that is
ab0 = 1 and a is a unit in R, contradicting the choice of a.
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(b) Note that K[x] is an integral domain (since K is) and that x in not a unit in K[x],
since if p(x) were an inverse to x we would have 1 = xp(x) but then 0 = deg 1 = deg(x) +
deg(p(x)) = 1 + deg(p(x)), which is impossible. Thus from part (a), we know that (x, y) is
a non-principal ideal in (K[x])[y] ∼= K[x, y].

�

(4) Let m, n be positive integers with n | m. Prove that the natural surjective ring homomor-
phism Z/mZ → Z/nZ induces a surjective homomorphism (Z/mZ)∗ → (Z/nZ)∗ of unit
groups.

Solution. The map which sends a + mZ to a + nZ is well-defined because n | m, and it is
obviously surjective and a homomorphism. Restricting to (Z/mZ)∗ gives a homomorphism
(Z/mZ)∗ → (Z/nZ)∗ of unit groups. We need to show that this homomorphism is surjective.
Suppose a ∈ (Z/nZ)∗ is a unit. Then a ∈ Z and (a, n) = 1. We want to prove that there
exists x ∈ Z such that x ≡ a (mod n) and (x, m) = 1. Let p1, . . . , pk be the primes
dividing m but not n; by the Chinese Remainder Theorem, we can solve the simultaneous
congruences x ≡ 1 (mod p1 · · · pk) and x ≡ a (mod n), and any solution to this congruence
will be relatively prime to m.

�

(5) Let F be a field and p(x) ∈ F [x] a polynomial. Prove there is a field extension F ′ of F in
which p(x) has a root (note we are not assuming p(x) is irreducible). (In this problem you
must construct the field F ′, you cannot cite a theorem for its existence.)

Solution. We can assume p(x) is monic. Write p(x) = p1(x) . . . pk(x) where the pi are
monic irreducible. If any of the pi are linear then p(x) has a root in F so take the extension
to be F ′ = F. Otherwise all the pi have degree greater than one. Let K = F [x]/(p1). Since
p1 is irreducible (p1) is a maximal ideal so K is a field and F naturally a subfield of K (just
the constants in F [x] projected into K). Let θ = x + (p1) in K. Now p1(θ) = p1(x) + (p1) =
(p1) = 0 (in K). So θ is a root of p1 and hence of p in K.

�

(6) Let p(x) = x3 − 2 and let F be the smallest subfield of C in which p(x) factors into linear
factors. Determine [F : Q], and find a basis for F as a vector space over Q.

Solution. Let α = 3
√

2 and let F ′ = Q(α). Since p is irreducible over Q, we see that
[F ′ : Q] = 3. Now let α′ be a second root of p over C. Let F ′′ = F (α′) = Q(α, α′). If F ′′ = F ′

then α ∈ F ′ but we know the other two roots of p are complex so this is not possible. Thus
[F ′′ : F ′] = 2 or 3, but p(x) = (x − α)q(x) for some quadratic polynomial q(x). We know
that q(x) is irreducible over F ′ (or it would have a root and F ′′ would then be F ′). Since
α′ is a root of q(x) we know [F ′′ : F ′] = 2. The polynomial p(x) factors completely over F ′′,
and is clearly the smallest subfield of C with this property. So F = F ′′ and [F : Q] = 6. We
can take a basis for F to be 1, α, α2, α′, α′α, α′α2.

�

(7) If λ is an eigenvalue of an n× n matrix A with complex coefficients, and p(x) ∈ C[x] is any
polynomial, show that p(λ) is an eigenvalue of p(A). Is every eigenvalue of p(A) of the form
p(λ) for some eigenvalue λ of A?

Solution. Replacing A by a similar matrix, we may assume (by Schur’s theorem, or by the
Jordan Canonical Form) that A is upper triangular. In this case, a simple computation
shows that p(A) is upper triangular, and that the ith diagonal element of p(A) is p(aii).
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Since the eigenvalues of an upper triangular matrix are just the diagonal entries, we have
shown that the eigenvalues of p(A) are exactly the complex numbers of the form p(λ), where
λ is an eigenvalue of A.

�

(8) Let V be a finite-dimensional complex vector space, and let S, T be diagonalizable linear
transformations from V to itself. Prove that S and T are simultaneously diagonalizable if
and only if ST = TS.

Solution. If S and T are simultaneously diagonalizable, then there is a basis B for V
with respect to which [S]B and [T ]B are both diagonal matrices. Since diagonal matrices
commute, it follows that S and T commute.

Conversely, suppose S and T commute. If v is an eigenvector for S, then S(Tv) = T (Sv) =
λTv, so Tv is also an eigenvector for S (with the same eigenvalue). In other words, each
λ-eigenspace Vλ of S is invariant under T . Fix λ, and let Tλ be the restriction of T to Vλ.
Then Tλ is diagonalizable, since T is. (This follows, for example, from the fact that a linear
transformation over C is diagonalizable iff its minimal polynomial is squarefree; note that
the minimal polynomial of Tλ divides the minimal polynomial of T .) Thus Vλ has a basis of
eigenvectors for T , which are also eigenvectors for S. Concatening the resulting bases for each
eigenvalue λ of S, we see that there is a basis for V = ⊕Vλ consisting of eigenvectors for both
S and T . This is precisely what it means for S and T to be simultaneously diagonalizable.
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