Algebra Comprehensive Exam — Fall 2009 —

- (1) (a) Let F_p denote the field with p elements, and for a field F let PSL_n(F) be the quotient of SL_n(F) (the group of n × n matrices with coefficients in F and having determinant 1) by {±I}. Show that |PSL₂(F₇)| = 168.
 - (b) How many elements of order 7 are there in $PSL_2(\mathbb{F}_7)$? (You may assume the known fact that $PSL_2(\mathbb{F}_7)$ is a simple group.)

Solution. (a) The group $\operatorname{GL}_2(\mathbb{F}_7)$ has $(7^2 - 1)(7^2 - 7) = 48 \cdot 42$ elements, since to give an element of $\operatorname{GL}_2(\mathbb{F})$ is to give a nonzero element v of \mathbb{F}^2 and an element $w \in \mathbb{F}^2$ not in the span of v. The group $\operatorname{SL}_2(\mathbb{F}_7)$ has $48 \cdot 42/6 = 168 \cdot 2$ elements, since the determinant gives a surjective homomorphism from $\operatorname{GL}_2(\mathbb{F})$ to \mathbb{F}^* with kernel $\operatorname{SL}_2(\mathbb{F})$. Finally, we have $|\operatorname{PGL}_2(\mathbb{F})| = |\operatorname{GL}_2(\mathbb{F})|/2$.

(b) The argument applies to any simple group G of order 168. The number n_7 of 7-Sylow subgroups of G is 1 mod 7 and divides 24. Since G is simple, $n_7 > 1$. Thus $n_7 = 8$. Any two 7-Sylow subgroups intersect only in the identity, and each contains 6 elements of order 7. Thus G contains 48 elements of order 7.

(2) Let G be a group whose group of automorphisms is cyclic. Prove that G is abelian.

Solution. Consider the map $\phi: G \to Aut(G)$ given by $\phi(g)(h) = ghg^{-1}$. This is a well defined homomorphism $(\phi(g_1g_2)(h) = (g_1g_2)h(g_2^{-1}g_1^{-1}) = \phi(g_1)(g_2hg_2^{-1}) = \phi(g_1) \circ \phi(g_2)(h))$. Moreover, ker $\phi = Z(G)$. Indeed, if $g \in Z(G)$ then $\phi(g)(h) = h$ so $\phi(g)$ is the identity automorphism. Conversely if $g \in \ker \phi$ then $\phi(g)(h) = ghg^{-1} = h$ for all h. In other words gh = hg for all $h \in G$ thus $g \in Z(G)$. Thus the first isomorphism theorem says that G/Z(G) is isomorphic to a subgroup of Aut(G), a cyclic group. Thus G/Z(G) is cyclic. But it is well-known that if G/Z is cyclic then G is abelian. (Proof: Suppose G/Z is cyclic with generator yZ. So every element of G/Z is of the form $(yZ)^n$ for some n. Thus every element of G is of the form $y^n a$ for some $a \in Z$. Given two elements g and h in G, write $g = y^n a$ and $h = y^m b$. We have $gh = y^n ay^m b = y^n y^m ab = y^m y^n ab = y^m by^n a = hg$, where the second and fourth equality follow by $a, b \in Z$. So G is abelian.)

- (3) Let R be an integral domain and let a be a non-zero non-unit of R.
 - (a) Prove that the ideal (a, x) in the polynomial ring R[x] is not principal.
 - (b) Use part (a) to show that if K is a field, then the polynomial ring K[x, y] is not a PID.

Solution. (a) If (a, x) is a principal ideal then there is some $p(x) \in R[x]$ such that (p(x)) = (a, x). Since $a \in (a, x) = (p(x))$ there is some q(x) such that q(x)p(x) = a. Since R is an integral domain, we know that

$$0 = \deg(a) = \deg(q(x)p(x)) = \deg(q(x)) + \deg(p(x)).$$

Thus p(x) has degree 0, and so p(x) = p for some $p \in R$. Now since $x \in (a, x) = (p(x))$, there is some r(x) such that r(x)p = x. Arguing with degrees again, we see that $r(x) = r_1 x + r_0$ and so $r_1p = 1$ and $r_0p = 0$. Thus p is a unit in R (and therefore in R[x] as well). Thus (a, x) = (p) = R[x] and $1 \in (a, x)$. So there are polynomials b(x) and c(x) such that

$$b(x)a + c(x)x = 1.$$

There is no constant term in c(x)x, so a times the constant term b_0 in b(x) is 1, that is $ab_0 = 1$ and a is a unit in R, contradicting the choice of a.

(b) Note that K[x] is an integral domain (since K is) and that x in not a unit in K[x], since if p(x) were an inverse to x we would have 1 = xp(x) but then $0 = \deg 1 = \deg(x) + \deg(p(x)) = 1 + \deg(p(x))$, which is impossible. Thus from part (a), we know that (x, y) is a non-principal ideal in $(K[x])[y] \cong K[x, y]$.

(4) Let m, n be positive integers with $n \mid m$. Prove that the natural surjective ring homomorphism $\mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ induces a surjective homomorphism $(\mathbb{Z}/m\mathbb{Z})^* \to (\mathbb{Z}/n\mathbb{Z})^*$ of unit groups.

Solution. The map which sends $a + m\mathbb{Z}$ to $a + n\mathbb{Z}$ is well-defined because $n \mid m$, and it is obviously surjective and a homomorphism. Restricting to $(\mathbb{Z}/m\mathbb{Z})^*$ gives a homomorphism $(\mathbb{Z}/m\mathbb{Z})^* \to (\mathbb{Z}/n\mathbb{Z})^*$ of unit groups. We need to show that this homomorphism is surjective. Suppose $\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^*$ is a unit. Then $a \in \mathbb{Z}$ and (a, n) = 1. We want to prove that there exists $x \in \mathbb{Z}$ such that $x \equiv a \pmod{n}$ and (x, m) = 1. Let p_1, \ldots, p_k be the primes dividing m but not n; by the Chinese Remainder Theorem, we can solve the simultaneous congruences $x \equiv 1 \pmod{p_1 \cdots p_k}$ and $x \equiv a \pmod{n}$, and any solution to this congruence will be relatively prime to m.

 \square

(5) Let F be a field and $p(x) \in F[x]$ a polynomial. Prove there is a field extension F' of F in which p(x) has a root (note we are not assuming p(x) is irreducible). (In this problem you must construct the field F', you cannot cite a theorem for its existence.)

Solution. We can assume p(x) is monic. Write $p(x) = p_1(x) \dots p_k(x)$ where the p_i are monic irreducible. If any of the p_i are linear then p(x) has a root in F so take the extension to be F' = F. Otherwise all the p_i have degree greater than one. Let $K = F[x]/(p_1)$. Since p_1 is irreducible (p_1) is a maximal ideal so K is a field and F naturally a subfield of K (just the constants in F[x] projected into K). Let $\theta = x + (p_1)$ in K. Now $p_1(\theta) = p_1(x) + (p_1) = (p_1) = 0$ (in K). So θ is a root of p_1 and hence of p in K.

(6) Let $p(x) = x^3 - 2$ and let F be the smallest subfield of \mathbb{C} in which p(x) factors into linear factors. Determine $[F : \mathbb{Q}]$, and find a basis for F as a vector space over \mathbb{Q} .

Solution. Let $\alpha = \sqrt[3]{2}$ and let $F' = \mathbb{Q}(\alpha)$. Since p is irreducible over \mathbb{Q} , we see that $[F':\mathbb{Q}] = 3$. Now let α' be a second root of p over \mathbb{C} . Let $F'' = F(\alpha') = \mathbb{Q}(\alpha, \alpha')$. If F'' = F' then $\alpha \in F'$ but we know the other two roots of p are complex so this is not possible. Thus [F'':F'] = 2 or 3, but $p(x) = (x - \alpha)q(x)$ for some quadratic polynomial q(x). We know that q(x) is irreducible over F' (or it would have a root and F'' would then be F'). Since α' is a root of q(x) we know [F'':F'] = 2. The polynomial p(x) factors completely over F'', and is clearly the smallest subfield of \mathbb{C} with this property. So F = F'' and $[F:\mathbb{Q}] = 6$. We can take a basis for F to be $1, \alpha, \alpha^2, \alpha', \alpha' \alpha, \alpha' \alpha^2$.

- (7) If λ is an eigenvalue of an $n \times n$ matrix A with complex coefficients, and $p(x) \in \mathbb{C}[x]$ is any polynomial, show that $p(\lambda)$ is an eigenvalue of p(A). Is every eigenvalue of p(A) of the form $p(\lambda)$ for some eigenvalue λ of A?

Solution. Replacing A by a similar matrix, we may assume (by Schur's theorem, or by the Jordan Canonical Form) that A is upper triangular. In this case, a simple computation shows that p(A) is upper triangular, and that the i^{th} diagonal element of p(A) is $p(a_{ii})$.

Since the eigenvalues of an upper triangular matrix are just the diagonal entries, we have shown that the eigenvalues of p(A) are exactly the complex numbers of the form $p(\lambda)$, where λ is an eigenvalue of A.

(8) Let V be a finite-dimensional complex vector space, and let S, T be diagonalizable linear transformations from V to itself. Prove that S and T are simultaneously diagonalizable if and only if ST = TS.

Solution. If S and T are simultaneously diagonalizable, then there is a basis B for V with respect to which $[S]_B$ and $[T]_B$ are both diagonal matrices. Since diagonal matrices commute, it follows that S and T commute.

Conversely, suppose S and T commute. If v is an eigenvector for S, then $S(Tv) = T(Sv) = \lambda Tv$, so Tv is also an eigenvector for S (with the same eigenvalue). In other words, each λ -eigenspace V_{λ} of S is invariant under T. Fix λ , and let T_{λ} be the restriction of T to V_{λ} . Then T_{λ} is diagonalizable, since T is. (This follows, for example, from the fact that a linear transformation over \mathbb{C} is diagonalizable iff its minimal polynomial is squarefree; note that the minimal polynomial of T_{λ} divides the minimal polynomial of T.) Thus V_{λ} has a basis of eigenvectors for T, which are also eigenvectors for S. Concatening the resulting bases for each eigenvalue λ of S, we see that there is a basis for $V = \oplus V_{\lambda}$ consisting of eigenvectors for both S and T. This is precisely what it means for S and T to be simultaneously diagonalizable.