Problem 1. The closed linear span of a subset {y;} of a normed vector space X is defined as the
intersection of all closed subspaces containing all y; (and thus the smallest such subspace).

(1) Show that the closed linear span of {y;} is the closure of the linear span Y of {y;}, which
consists of all finite linear combinations of the y;.

(2) Prove that a point z of a normed linear space X belongs to the closed linear span S of
a subset {y;} of X if and only if every bounded linear functional ¢ that vanishes on the
subset vanishes at z. That is, if and only if

ly;) =0 forall y; (1)
implies that ¢(z) = 0.
Hint: For (2), use the Hahn-Banach theorem.

Proof.
(1) Since S contains all y;, we have that Y C S. Since S is closed, we obtain Y C .

To prove the converse, note that the closure Y of the subspace Y is again a subspace. So Y is a
closed subspace containing all y;. But S is precisely the intersection of all such subspaces, and
therefore S C Y.

(2) Since /¢ is linear, assumption (1) implies that ¢(y) =0 for all y € Y. For all z € S there exists
a sequence of y™ € Y with the property that ||y"™ — z|| — 0, as a consequence of (1). Since ¢ is
continuous, this implies that £(z) = lim,,_,o £(y") = 0.

COnVerSely, Suppose lhal 4 g S, SuCh that
6 = .llf z — O 2

Consider the subspace Z of all points of the form y + az, with y € S and a € R (assuming for
simplicity that X is a real vector space). Define a linear functional ¢y: Z — R by

lbo(y + az) == a.
It follows from (2) that
ly + az| = lalllz = (=y/a)[| = |ald,
so that |[lo(y + az)| < 7|y + az| for all y € S and « € R. By the Hahn-Banach theorem, then

lo can be extended to a functional on all of X, which we denote by ¢. By construction, we have
{(y;) = 0 for all y;, but £(z) =61 #0.



Problem 2. A subspace Y in a normed real vector space X is called finite-dimensional if there
exists a number n € N (the dimension of Y') and vectors {y1,...,y,} in Y with the property that
every element x € Y has a unique representation of the form

T =01y + ...+ apy, forsuitable a; e Rwithi=1,...,n. (3)
Prove that every finite-dimensional subspace of a normed real vector space is closed.
Hint: Reduce the problem to the fact that R™ is complete.
Proof. If Y = {0}, then there is nothing to prove.
Assume therefore that n > 1. Consider the map c¢: Y — R™ defined by

claryr + .-+ anyn) = (a1, ..., ).

This map is an isomorphism because the representation (3) is unique.
Then there exist constants C7,Cs > 0 such that

n
Zazyz < Z|ai| <G| > aiyif.-
i=1

i=1
In fact, on the one hand we can use the triangle inequality to estimate

n
< Z|ai|”yi“7

so Oy := (max; ||y;]|)~! will work for the ﬁrst inequality in (4). Note that we have y; # 0 for all ¢
since otherwise the representation (3) would not be unique.
On the other hand, the map (a1, ...,a,) — ||a1y1 + ...+ apynl is continuous because

i=1

<Za1yi><2&-yz H < 1Z|az Bil.
=1 1=1
: Z|ai|=1}>0.

Therefore we obtain
= inf {
i=1

In fact, the inf of a continuous function over a compact set is attained, and the inf cannot be zero
because that would contradict that y; # 0 for all i. This implies (4) with Cy :=§~1.

We have therefore shown that a sequence {z*} in Y converges in the norm || - || if and only if
the sequence of coefficients {c(x*)} converges in the /!-norm in R™. Therefore closedness of Y is
equivalent to completeness of R™ with respect to the ¢!-norm. The latter fact is well known.
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Problem 3. Let (X,.#, 1) be a finite measure space.

(1) Prove that the map d(A, B) := [y [14 — 1p|dp defined for all A, B € .4 (with 14 the
characteristic function of A) is a pseudo-distance on the o-algebra .#. That is, the map
d satisfies all properties of a distance, except that d(A, B) = 0 does not imply A = B.
(2) Prove that the pseudo-metric space (#,d) is complete.

Proof.
(1) We have that

0<dA.B) < [ (11al+185]) di < p(4) +(B) <

forall A,B e . Z.
The symmetry d(A, B) = d(B, A) is clear from the definition.
To prove the triangle inequality, note that

A(A, B) = (A \ B) + (B A),
One can then check that
aNC=ance=(anBnc)u(anBnee) = (a\(BuO))u((AnB)\C)).
C\A=CnA= (OQACQBC) U (BﬂOﬂAC> - (C\(AUB)) U ((Bmc)\A)),
and the union is disjoint. Similar formulas hold for A and B interchanged. We find that
p(ANC) + p(C\ B) = (AN (BUC)) + (AN B)\C) + u(C\ (AU B)) + u((ANC) \ B)

= A\ B) +p((AN B\ C) +u(C\ (AUB))
because
(A\(BUC)) U ((AmC)\B) - (AnBCmOC) U (AnCmBC) — ANB°= A\ B,
and the union is disjoint. A similar formula holds with A and B interchanged. We conclude that

A(A,C) +d(B,C) = (u(A\C) +u(C\ A)) + (u(B\ C) + u(C\ B))

ZM(A\BHM(B\A)+2(u((AﬂB)\C) +u(0\<AUB>))
> d(A, B).

(2) Consider a sequence of sets {A™} in .# that is Cauchy with respect to d. Then the sequence
{14»} is Cauchy with respect to the #1(X, y)-norm, and thus 14» — f for some f € L (X, p).
Recall that strong convergence implies convergence in measure. We define a map ¢(s) := s%(1—s)?
for all s € R, which vanishes exactly for s = 0 or s = 1. Then we have that

©(1an) — ©(f) in measure.

By dominated convergence (note that 0 < 14n(z) < 1 for all x € X and n € N), we get
/ e(f)dp= lim [ ¢(1an)dp=0,
X n—00 X
and thus f(x) € {0,1} for p-a.e. x € X. This implies that f = 14 for some A € .#. Then

d(A”,A):/ |Lgn — 14|dp — 0 as n — oo,
b'e

and so (&7, d) is complete.



Problem 4. Let (X,.#, 1) be a measure space and consider a sequence of measurable functions
f™: X — R. Assume that there exists a function g € .Z1(X, 1) with the property that |f"| < g
for all n € N. Prove that then
/ liminf f™ du < hmmf/ fdp < lim sup/ fMdu < / limsup f" dp. (5)
x n—o0 n—00 X n—oo

Give an example showing that this chain of inequalities may be no longer true if there exists no
dominating function g as above.

Proof. Consider the sequence of functions A™ := f™ — g. By assumption, we have that A™ > 0 for
all n € N, and so by linearity of the integral and Fatou’s lemma we obtain

/liminff"d,u—/ gd,u:/ hmlnfh du

gliminf/ A du = (hmmf/ fr du) / gdu.

Since g € £(X, i), the last integral is finite, so we can add it on both sides to get

/hmlnff"du hmlnf/ fTdu.
b's

n—oo
The liminf is bounded above by the lim sup, which proves the second inequality in (5).
To prove the last inequality, we proceed in a similar fashion. Consider the functions k™ := — f"+g.
By assumption, we have k™ > 0 for all n € N, and so by Fatou’s lemma we obtain

/liminf(—f”)du+/ gduz/ lim inf k™ dp
b'e b'e bl

n—oo n— oo

<1iminf/ K" du = (liminf—/ f"d,u) +/ gadp.
n—oo fy n—00 X X

But now lim inf(—a™) = —limsup a™ for any sequence {a"}. Therefore
n—00 n—00
—/ limsup f" dp < —limsup/ frdu.
X n—oo n—oo JX

which proves the result. We used again that the integral over g is finite.
To prove that the dominated integrability is needed, consider the case X = R, with u equal to the
Lebesgue measure. Consider the functions f" :=nlg 1/,) for all n € N. Then we have

liminf f® = limsup f* =0 p-a.e.,

n— oo n—oo

and so

n—oo n—oo

/ liminf f"* dy = / lim sup f™ du = 0.
X X
On the other hand, we have that

/ ffdu=1 forallneN.
b's

There exists no dominating function g since such a function would have to behave like 1/x as
x — 0, which is not integrable.



Problem 5. Let |- |. denote the exterior (outer) Lebesgue measure on R™ and let B(r, x) denote
the open ball of radius r about z € R". For E C R™ we define outer density Dg(z) at = by

. |ENB(r,z)|e
D = lim ————— >~
20) = 1% 1B ).
whenever the limit exists.

(1) Show that Dg(xz) =1 for a.e. x € E.
(2) Show that E is Lebesgue measurable if and only if Dg(z) = 0 for a.e. © € E°.

Proof. Notice first that if F is Lebesgue measurable then the function xg(z) is locally integrable
and therefore, by the Lebesgue differentiation theorem, Dg(x) = xg(z) for a.e. 2 € R™. Thus

Dy(z) = 1 forae xz€F
P00 for a.e. x € R™\ E.

To prove (1) for arbitrary set E we use the fact that there exists a measurable set U such that
E C U and for every measurable set M we have

|[ENMl|.=|UnM|. ()
Although the construction of U is more or less standard we sketch it below.

Suppose first |E|. < co. For every n € N there exists an open set G,, D F with |G, \ El. < 1/n.
If U =n,G, D E, then |U| = |E|. < oo and therefore we can assume that |M| < co. Note that

[ENMle = M| = M\ (ENM)|e > [M] - [M\ UnNM)|=|UnM|
which shows that () holds since |E N M|, < |U N M].
For arbitrary E we can write E = UgE) where Ey, = E N B(0,k) has a finite exterior measure.
Hence, for every k there exists a measurable set U, D Ej such that |Ey, N M|, = |U, N M|. Then
U =liminfU, = U2 Ng>n Uy D E. If Hy = N;>1U, C Uy we have By, C Hy, C Uy, which shows
that |Ex N M|. = |Hr N M|. Letting k — oo in the last equality we obtain ().

From (*) and the definition of Dg(x) it follows that Dg(z) = Dy(z) for every z € R™ and since
Dy(x) =1 for a.e. x € U we see that Dg(z) =1 for a.e. z € E.

To prove (2) it remains to show that if Dg(x) = 0 for a.e. x € R™ \ E then E is measurable.
If we assume that E is not measurable and take U as above, then |U \ E|. > 0 and we get a
contradiction since Dg(z) =1 for a.e. z € U.



Problem 6.

(1) Let X,Y, Z be Banach spaces and let B : X xY — Z be a separately continuous bilinear
map, that is, B(z,-) € L(Y, Z) for each fixed z € X and B(-,y) € L(X, Z) for each fixed
y € Y. Prove that B is jointly continuous, that is, continuous from X x Y to Z.

(2) Is there a (nonlinear) function f : R x R — R, which is separately continuous, but not
jointly continuous?

Proof.
(1) Denote B, = B(z,+): Y — Z and BY = B(-,y) : X — Z. Then for every z € X we have

1B¥ (@) = 1|B(z, y)l| = ||Bz (@)l < [|Bzl| ||yl

which shows that
sup ||BY(z)|| < [[Be||.
llyll=1

By the uniform boundedness principle we conclude that

C = sup ||BY|| < oo.
[lyll=1

For a nonzero y € Y we put ¢’ = ﬁy and we see that

B, y)ll = llyll 1B, )|l = llyl| [1BY @)I| < Cll|l Iy,

ie. ||B(z,y)|| < C|lz||||lyl|- Clearly this inequality is also true when y = 0. The continuity of B
now follows immediately since

1B(z,y) = B(xo, yo)l| < [1B(x,y — yo)ll + [|B(x = zo, yo)l| < C ([|=[| [ly = woll + [lz — ol lvoll) -

(2) Yes. The function

0 if (x,y) = (0,0)

is continuous in each variable separately, but is not continuous at the origin.

fag) = {+ if (,y) # (0,0)



Problem 7. Let X be a real normed space. Prove that the norm is induced by an inner product
if and only if the norm satisfies the parallelogram law, i.e.

4+ o> + 11z = 1> = 2]l + [19]?) ~for every o,y € X. *)

Proof. If X is an inner product space then
e +yl1* = (@ +y,2 +y) = [le|* + |lyl* + 2(z, ),
and likewise
le = yll* = (& =y, — ) = [le|* + |lyl* - 2(z, ).
Adding these equalities we obtain (). Conversely, suppose that (%) holds. We want to show that
the map (z,y) — (x,y) from X x X — R defined by

<l’,y>:%(Hl’ﬂ/llz*IIwI\zfllyllz) (6)

is an inner product on X. Clearly (z,y) = (y,z) and (z,z) = ||z||> > 0 with equality if and if
2 = 0. Thus, it remains to prove that (x,y) is linear in z. Using the definition (6) we see that
2z+y, 2)—2(x,2) =2y, 2) = (|$+y+2||2+||Z||2)—(||$+Z||2+|Iy+ZI|2)+(|$||2+|Iy||2—|93+y|(2))-
7
On the other hand, from (%) we see that
|z +y + 221> + [lz + yl|?
2

_ |z +y+22]1% + [lz — yll?

5 .

llz +y + 2| + ||21]* =

o+ 2[* + [y + 2|1

Substituting these in the right-hand side of (7) we find
lz+ul® _ [lz—yll?

2a+9.2) — 20e.2) — 2e.y) = |l + [yl - 2 il
proving that
(x+y,2) = (x,2) + (x,y) for every z,y € X. (8)
It remains to show that
(ax,y) = afx,y) for every x,y € X and o € R. (9)

From (8) it follows (by induction) that (9) holds when « is a positive integer. Replacing by 1z
we see that if (9) holds for some a # 0, then it is true also for 1/«. Hence (9) holds for all positive
rational numbers a. The case a« = —1 follows easily from (x) thus proving (9) for all @ € Q.

We can prove now (9) by a limiting procedure if we can show that (z,y) is a continuous function
of z for every y fixed. From the triangle inequality we see that

(z,y) < % (el + [y = Nl = [lyl1*) = [l=[l Iyl

and therefore
[z, )| = (£x,y) < |z]|[|yl].

For arbitrary a € R we consider a sequence of rational numbers {r,} such that r,, — a. Note
that lim,, o (rnx,y) = (ax,y), because

[(rna, y) — (ax, y)| = [((rn — @)z, y)| < |rn — ol [|2||lyl] = 0 as n — occ.
The proof of (9) now follows by letting n — oo in (rpz,y) = rn{(x,y).



Problem 8. Let (X,.#, ) be a finite measure space and let {f,} be a sequence in LP where
1 < p < oo such that sup,, || fn||p < co. Show that if f,, — 0 a.e., then f,, — 0 weakly in LP.

Proof. Let ¢ be the conjugate exponent to p. Since L9 is the dual of LP, we must show that
J frngdu — 0 for every g € L1.

Let M = sup,, ||fnllp < c0. Fix € > 0. Since dv = |g|?dp is a finite measure on (X, .#) that is
absolutely continuous with respect to p, there exists § > 0 such that

1/q
if E € .4 and p(E) < 6, then (/ lg|? du) < €.
E

On the other hand, p(X) < oo, f,, — 0 a.e. and therefore by Egoroff’s theorem there exists E € .#
such that u(E) < § and f,, — 0 uniformly on X \ E.

Thus, there is some N such that for n > N we have
|fr(x)| < e forevery xz € X\ E.

Using the above and Holder’s inequality, we see that for n > N we have

/fngdu g/ Ifngldqu/ gl du
E X\E
1/p

1/q
<|fn||p</E|9qu> +</X\E|fn|”du> lgllq

< (M +p(X)"7lgll,) e

completing the proof.



