
Problem 1. The closed linear span of a subset {yj} of a normed vector space X is defined as the
intersection of all closed subspaces containing all yj (and thus the smallest such subspace).

(1) Show that the closed linear span of {yj} is the closure of the linear span Y of {yj}, which
consists of all finite linear combinations of the yj .

(2) Prove that a point z of a normed linear space X belongs to the closed linear span S of
a subset {yj} of X if and only if every bounded linear functional ℓ that vanishes on the
subset vanishes at z. That is, if and only if

ℓ(yj) = 0 for all yj (1)

implies that ℓ(z) = 0.

Hint: For (2), use the Hahn-Banach theorem.

Proof.

(1) Since S contains all yj , we have that Y ⊂ S. Since S is closed, we obtain Ȳ ⊂ S.

To prove the converse, note that the closure Ȳ of the subspace Y is again a subspace. So Ȳ is a
closed subspace containing all yj . But S is precisely the intersection of all such subspaces, and
therefore S ⊂ Ȳ .

(2) Since ℓ is linear, assumption (1) implies that ℓ(y) = 0 for all y ∈ Y . For all z ∈ S there exists
a sequence of yn ∈ Y with the property that ∥yn − z∥ −→ 0, as a consequence of (1). Since ℓ is
continuous, this implies that ℓ(z) = limn→∞ ℓ(yn) = 0.

Conversely, suppose that z ∕∈ S, such that

� := inf
y∈S
∥z − y∥ > 0. (2)

Consider the subspace Z of all points of the form y + �z, with y ∈ S and � ∈ ℝ (assuming for
simplicity that X is a real vector space). Define a linear functional ℓ0 : Z −→ ℝ by

ℓ0(y + �z) := �.

It follows from (2) that
∥y + �z∥ = ∣�∣ ∥z − (−y/�)∥ ⩾ ∣�∣�,

so that ∣ℓ0(y + �z)∣ ⩽ �−1∥y + �z∥ for all y ∈ S and � ∈ ℝ. By the Hahn-Banach theorem, then
ℓ0 can be extended to a functional on all of X, which we denote by ℓ. By construction, we have
ℓ(yj) = 0 for all yj , but ℓ(z) = �−1 ∕= 0.



Problem 2. A subspace Y in a normed real vector space X is called finite-dimensional if there
exists a number n ∈ ℕ (the dimension of Y ) and vectors {y1, . . . , yn} in Y with the property that
every element x ∈ Y has a unique representation of the form

x = �1y1 + . . .+ �nyn for suitable �i ∈ ℝ with i = 1, . . . , n. (3)

Prove that every finite-dimensional subspace of a normed real vector space is closed.
Hint: Reduce the problem to the fact that ℝn is complete.

Proof. If Y = {0}, then there is nothing to prove.
Assume therefore that n ⩾ 1. Consider the map c : Y −→ ℝn defined by

c(�1y1 + . . .+ �nyn) := (�1, . . . , �n).

This map is an isomorphism because the representation (3) is unique.
Then there exist constants C1, C2 > 0 such that

C1

∥∥∥∥ n∑
i=1

�iyi

∥∥∥∥ ⩽
n∑
i=1

∣�i∣ ⩽ C2

∥∥∥∥ n∑
i=1

�iyi

∥∥∥∥. (4)

In fact, on the one hand we can use the triangle inequality to estimate∥∥∥∥ n∑
i=1

�iyi

∥∥∥∥ ⩽
n∑
i=1

∣�i∣∥yi∥,

so C1 := (maxi ∥yi∥)−1 will work for the first inequality in (4). Note that we have yi ∕= 0 for all i
since otherwise the representation (3) would not be unique.
On the other hand, the map (�1, . . . , �n) 7→ ∥�1y1 + . . .+ �nyn∥ is continuous because∥∥∥∥∥

( n∑
i=1

�iyi

)
−
( n∑
i=1

�iyi

)∥∥∥∥∥ =

∥∥∥∥ n∑
i=1

(�1 − �i)yi
∥∥∥∥ ⩽ C−11

n∑
i=1

∣�i − �i∣.

Therefore we obtain

� := inf

{∥∥∥∥ n∑
i=1

�iyi

∥∥∥∥ :

n∑
i=1

∣�i∣ = 1

}
> 0.

In fact, the inf of a continuous function over a compact set is attained, and the inf cannot be zero
because that would contradict that yi ∕= 0 for all i. This implies (4) with C2 := �−1.
We have therefore shown that a sequence {xk} in Y converges in the norm ∥ ⋅ ∥ if and only if
the sequence of coefficients {c(xk)} converges in the ℓ1-norm in ℝn. Therefore closedness of Y is
equivalent to completeness of ℝn with respect to the ℓ1-norm. The latter fact is well known.



Problem 3. Let (X,M , �) be a finite measure space.

(1) Prove that the map d(A,B) :=
∫
X
∣1A − 1B ∣ d� defined for all A,B ∈ M (with 1A the

characteristic function of A) is a pseudo-distance on the �-algebra M . That is, the map
d satisfies all properties of a distance, except that d(A,B) = 0 does not imply A = B.

(2) Prove that the pseudo-metric space (M , d) is complete.

Proof.

(1) We have that

0 ⩽ d(A,B) ⩽
∫
X

(
∣1A∣+ ∣1B ∣

)
d� ⩽ �(A) + �(B) <∞

for all A,B ∈M .
The symmetry d(A,B) = d(B,A) is clear from the definition.
To prove the triangle inequality, note that

d(A,B) = �(A ∖B) + �(B ∖A).

One can then check that

A ∖ C = A ∩ Cc =
(
A ∩Bc ∩ Cc

)
∪
(
A ∩B ∩ Cc

)
=
(
A ∖ (B ∪ C)

)
∪
(

(A ∩B) ∖ C)
)
,

C ∖A = C ∩Ac =
(
C ∩Ac ∩Bc

)
∪
(
B ∩ C ∩Ac

)
=
(
C ∖ (A ∪B)

)
∪
(

(B ∩ C) ∖A)
)
,

and the union is disjoint. Similar formulas hold for A and B interchanged. We find that

�(A ∖ C) + �(C ∖B) = �
(
A ∖ (B ∪ C)

)
+ �

(
(A ∩B) ∖ C

)
+ �

(
C ∖ (A ∪B)

)
+ �

(
(A ∩ C) ∖B

)
= �(A ∖B) + �

(
(A ∩B) ∖ C

)
+ �

(
C ∖ (A ∪B)

)
because(

A ∖ (B ∪ C)
)
∪
(

(A ∩ C) ∖B
)

=
(
A ∩Bc ∩ Cc

)
∪
(
A ∩ C ∩Bc

)
= A ∩Bc = A ∖B,

and the union is disjoint. A similar formula holds with A and B interchanged. We conclude that

d(A,C) + d(B,C) =
(
�(A ∖ C) + �(C ∖A)

)
+
(
�(B ∖ C) + �(C ∖B)

)
= �(A ∖B) + �(B ∖A) + 2

(
�
(

(A ∩B) ∖ C
)

+ �
(
C ∖ (A ∪B)

))
⩾ d(A,B).

(2) Consider a sequence of sets {An} in M that is Cauchy with respect to d. Then the sequence
{1An} is Cauchy with respect to the L 1(X,�)-norm, and thus 1An −→ f for some f ∈ L 1(X,�).
Recall that strong convergence implies convergence in measure. We define a map '(s) := s2(1−s)2
for all s ∈ ℝ, which vanishes exactly for s = 0 or s = 1. Then we have that

'(1An) −→ '(f) in measure.

By dominated convergence (note that 0 ⩽ 1An(x) ⩽ 1 for all x ∈ X and n ∈ ℕ), we get∫
X

'(f) d� = lim
n→∞

∫
X

'(1An) d� = 0,

and thus f(x) ∈ {0, 1} for �-a.e. x ∈ X. This implies that f = 1A for some A ∈M . Then

d(An, A) =

∫
X

∣1An − 1A∣ d� −→ 0 as n→∞,

and so (A , d) is complete.



Problem 4. Let (X,M , �) be a measure space and consider a sequence of measurable functions
fn : X −→ ℝ. Assume that there exists a function g ∈ L 1(X,�) with the property that ∣fn∣ ⩽ g
for all n ∈ ℕ. Prove that then∫

X

lim inf
n→∞

fn d� ⩽ lim inf
n→∞

∫
X

fn d� ⩽ lim sup
n→∞

∫
X

fn d� ⩽
∫
X

lim sup
n→∞

fn d�. (5)

Give an example showing that this chain of inequalities may be no longer true if there exists no
dominating function g as above.

Proof. Consider the sequence of functions ℎn := fn− g. By assumption, we have that ℎn ⩾ 0 for
all n ∈ ℕ, and so by linearity of the integral and Fatou’s lemma we obtain∫

X

lim inf
n→∞

fn d�−
∫
X

g d� =

∫
X

lim inf
n→∞

ℎn d�

⩽ lim inf
n→∞

∫
X

ℎn d� =

(
lim inf
n→∞

∫
X

fn d�

)
−
∫
X

g d�.

Since g ∈ L 1(X,�), the last integral is finite, so we can add it on both sides to get∫
X

lim inf
n→∞

fn d� ⩽ lim inf
n→∞

∫
X

fn d�.

The lim inf is bounded above by the lim sup, which proves the second inequality in (5).
To prove the last inequality, we proceed in a similar fashion. Consider the functions kn := −fn+g.
By assumption, we have kn ⩾ 0 for all n ∈ ℕ, and so by Fatou’s lemma we obtain∫

X

lim inf
n→∞

(−fn) d�+

∫
X

g d� =

∫
X

lim inf
n→∞

kn d�

⩽ lim inf
n→∞

∫
X

kn d� =

(
lim inf
n→∞

−
∫
X

fn d�

)
+

∫
X

g d�.

But now lim inf
n→∞

(−an) = − lim sup
n→∞

an for any sequence {an}. Therefore

−
∫
X

lim sup
n→∞

fn d� ⩽ − lim sup
n→∞

∫
X

fn d�.

which proves the result. We used again that the integral over g is finite.
To prove that the dominated integrability is needed, consider the case X = ℝ, with � equal to the
Lebesgue measure. Consider the functions fn := n1(0,1/n) for all n ∈ ℕ. Then we have

lim inf
n→∞

fn = lim sup
n→∞

fn = 0 �-a.e.,

and so ∫
X

lim inf
n→∞

fn d� =

∫
X

lim sup
n→∞

fn d� = 0.

On the other hand, we have that ∫
X

fn d� = 1 for all n ∈ ℕ.

There exists no dominating function g since such a function would have to behave like 1/x as
x→ 0, which is not integrable.



Problem 5. Let ∣ ⋅ ∣e denote the exterior (outer) Lebesgue measure on ℝn and let B(r, x) denote
the open ball of radius r about x ∈ ℝn. For E ⊂ ℝn we define outer density DE(x) at x by

DE(x) = lim
r→0

∣E ∩B(r, x)∣e
∣B(r, x)∣e

,

whenever the limit exists.

(1) Show that DE(x) = 1 for a.e. x ∈ E.
(2) Show that E is Lebesgue measurable if and only if DE(x) = 0 for a.e. x ∈ Ec.

Proof. Notice first that if E is Lebesgue measurable then the function �E(x) is locally integrable
and therefore, by the Lebesgue differentiation theorem, DE(x) = �E(x) for a.e. x ∈ ℝn. Thus

DE(x) =

{
1 for a.e. x ∈ E
0 for a.e. x ∈ ℝn ∖ E.

To prove (1) for arbitrary set E we use the fact that there exists a measurable set U such that
E ⊂ U and for every measurable set M we have

∣E ∩M ∣e = ∣U ∩M ∣. (∗)
Although the construction of U is more or less standard we sketch it below.

Suppose first ∣E∣e <∞. For every n ∈ ℕ there exists an open set Gn ⊃ E with ∣Gn ∖ E∣e < 1/n.
If U = ∩nGn ⊃ E, then ∣U ∣ = ∣E∣e <∞ and therefore we can assume that ∣M ∣ <∞. Note that

∣E ∩M ∣e ≥ ∣M ∣ − ∣M ∖ (E ∩M)∣e ≥ ∣M ∣ − ∣M ∖ (U ∩M)∣ = ∣U ∩M ∣,
which shows that (∗) holds since ∣E ∩M ∣e ≤ ∣U ∩M ∣.
For arbitrary E we can write E = ∪kEk where Ek = E ∩ B(0, k) has a finite exterior measure.
Hence, for every k there exists a measurable set Uk ⊃ Ek such that ∣Ek ∩M ∣e = ∣Uk ∩M ∣. Then
U = lim inf Un = ∪∞n=1 ∩k≥n Uk ⊃ E. If Hk = ∩j≥kUk ⊂ Uk we have Ek ⊂ Hk ⊂ Uk which shows
that ∣Ek ∩M ∣e = ∣Hk ∩M ∣. Letting k →∞ in the last equality we obtain (∗).
From (∗) and the definition of DE(x) it follows that DE(x) = DU (x) for every x ∈ ℝn and since
DU (x) = 1 for a.e. x ∈ U we see that DE(x) = 1 for a.e. x ∈ E.

To prove (2) it remains to show that if DE(x) = 0 for a.e. x ∈ ℝn ∖ E then E is measurable.
If we assume that E is not measurable and take U as above, then ∣U ∖ E∣e > 0 and we get a
contradiction since DE(x) = 1 for a.e. x ∈ U .



Problem 6.

(1) Let X,Y, Z be Banach spaces and let B : X×Y −→ Z be a separately continuous bilinear
map, that is, B(x, ⋅) ∈ L(Y, Z) for each fixed x ∈ X and B(⋅, y) ∈ L(X,Z) for each fixed
y ∈ Y . Prove that B is jointly continuous, that is, continuous from X × Y to Z.

(2) Is there a (nonlinear) function f : ℝ × ℝ −→ ℝ, which is separately continuous, but not
jointly continuous?

Proof.
(1) Denote Bx = B(x, ⋅) : Y → Z and By = B(⋅, y) : X → Z. Then for every x ∈ X we have

∣∣By(x)∣∣ = ∣∣B(x, y)∣∣ = ∣∣Bx(y)∣∣ ≤ ∣∣Bx∣∣ ∣∣y∣∣,
which shows that

sup
∣∣y∣∣=1

∣∣By(x)∣∣ ≤ ∣∣Bx∣∣.

By the uniform boundedness principle we conclude that

C = sup
∣∣y∣∣=1

∣∣By∣∣ <∞.

For a nonzero y ∈ Y we put y′ = 1
∣∣y∣∣y and we see that

∣B(x, y)∣∣ = ∣∣y∣∣ ∣∣B(x, y′)∣∣ = ∣∣y∣∣ ∣∣By
′
(x)∣∣ ≤ C∣∣x∣∣ ∣∣y∣∣,

i.e. ∣∣B(x, y)∣∣ ≤ C∣∣x∣∣ ∣∣y∣∣. Clearly this inequality is also true when y = 0. The continuity of B
now follows immediately since

∣∣B(x, y)−B(x0, y0)∣∣ ≤ ∣∣B(x, y − y0)∣∣+ ∣∣B(x− x0, y0)∣∣ ≤ C (∣∣x∣∣ ∣∣y − y0∣∣+ ∣∣x− x0∣∣ ∣∣y0∣∣) .

(2) Yes. The function

f(x, y) =

{
xy

x2+y2 if (x, y) ∕= (0, 0)

0 if (x, y) = (0, 0)

is continuous in each variable separately, but is not continuous at the origin.



Problem 7. Let X be a real normed space. Prove that the norm is induced by an inner product
if and only if the norm satisfies the parallelogram law, i.e.

∣∣x+ y∣∣2 + ∣∣x− y∣∣2 = 2(∣∣x∣∣2 + ∣∣y∣∣2) for every x, y ∈ X. (∗)

Proof. If X is an inner product space then

∣∣x+ y∣∣2 = ⟨x+ y, x+ y⟩ = ∣∣x∣∣2 + ∣∣y∣∣2 + 2⟨x, y⟩,
and likewise

∣∣x− y∣∣2 = ⟨x− y, x− y⟩ = ∣∣x∣∣2 + ∣∣y∣∣2 − 2⟨x, y⟩.
Adding these equalities we obtain (∗). Conversely, suppose that (∗) holds. We want to show that
the map (x, y) 7→ ⟨x, y⟩ from X ×X −→ ℝ defined by

⟨x, y⟩ =
1

2
(∣∣x+ y∣∣2 − ∣∣x∣∣2 − ∣∣y∣∣2) (6)

is an inner product on X. Clearly ⟨x, y⟩ = ⟨y, x⟩ and ⟨x, x⟩ = ∣∣x∣∣2 ≥ 0 with equality if and if
x = 0. Thus, it remains to prove that ⟨x, y⟩ is linear in x. Using the definition (6) we see that

2⟨x+y, z⟩−2⟨x, z⟩−2⟨y, z⟩ = (∣∣x+y+z∣∣2+∣∣z∣∣2)−(∣∣x+z∣∣2+∣∣y+z∣∣2)+(∣∣x∣∣2+∣∣y∣∣2−∣∣x+y∣∣2).
(7)

On the other hand, from (∗) we see that

∣∣x+ y + z∣∣2 + ∣∣z∣∣2 =
∣∣x+ y + 2z∣∣2 + ∣∣x+ y∣∣2

2

∣∣x+ z∣∣2 + ∣∣y + z∣∣2 =
∣∣x+ y + 2z∣∣2 + ∣∣x− y∣∣2

2
.

Substituting these in the right-hand side of (7) we find

2⟨x+ y, z⟩ − 2⟨x, z⟩ − 2⟨x, y⟩ = ∣∣x∣∣2 + ∣∣y∣∣2 − ∣∣x+ y∣∣2

2
− ∣∣x− y∣∣

2

2
= 0,

proving that
⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨x, y⟩ for every x, y ∈ X. (8)

It remains to show that

⟨�x, y⟩ = �⟨x, y⟩ for every x, y ∈ X and � ∈ ℝ. (9)

From (8) it follows (by induction) that (9) holds when � is a positive integer. Replacing x by 1
�x

we see that if (9) holds for some � ∕= 0, then it is true also for 1/�. Hence (9) holds for all positive
rational numbers �. The case � = −1 follows easily from (∗) thus proving (9) for all � ∈ ℚ.

We can prove now (9) by a limiting procedure if we can show that ⟨x, y⟩ is a continuous function
of x for every y fixed. From the triangle inequality we see that

⟨x, y⟩ ≤ 1

2

(
(∣∣x∣∣+ ∣∣y∣∣)2 − ∣∣x∣∣2 − ∣∣y∣∣2

)
= ∣∣x∣∣ ∣∣y∣∣,

and therefore
∣⟨x, y⟩∣ = ⟨±x, y⟩ ≤ ∣∣x∣∣ ∣∣y∣∣.

For arbitrary � ∈ ℝ we consider a sequence of rational numbers {rn} such that rn → �. Note
that limn→∞⟨rnx, y⟩ = ⟨�x, y⟩, because

∣⟨rnx, y⟩ − ⟨�x, y⟩∣ = ∣⟨(rn − �)x, y⟩∣ ≤ ∣rn − �∣ ∣∣x∣∣ ∣∣y∣∣ → 0 as n→∞.

The proof of (9) now follows by letting n→∞ in ⟨rnx, y⟩ = rn⟨x, y⟩.



Problem 8. Let (X,M , �) be a finite measure space and let {fn} be a sequence in Lp where
1 < p <∞ such that supn ∣∣fn∣∣p <∞. Show that if fn → 0 a.e., then fn → 0 weakly in Lp.

Proof. Let q be the conjugate exponent to p. Since Lq is the dual of Lp, we must show that∫
fng d�→ 0 for every g ∈ Lq.

Let M = supn ∣∣fn∣∣p < ∞. Fix � > 0. Since d� = ∣g∣q d� is a finite measure on (X,M ) that is
absolutely continuous with respect to �, there exists � > 0 such that

if E ∈M and �(E) < �, then

(∫
E

∣g∣q d�
)1/q

< �.

On the other hand, �(X) <∞, fn → 0 a.e. and therefore by Egoroff’s theorem there exists E ∈M
such that �(E) < � and fn → 0 uniformly on X ∖ E.

Thus, there is some N such that for n ≥ N we have

∣fn(x)∣ < � for every x ∈ X ∖ E.

Using the above and Hölder’s inequality, we see that for n ≥ N we have∣∣∣∣∫ fng d�

∣∣∣∣ ≤ ∫
E

∣fng∣ d�+

∫
X∖E
∣fng∣ d�

≤ ∣∣fn∣∣p
(∫

E

∣g∣q d�
)1/q

+

(∫
X∖E
∣fn∣p d�

)1/p

∣∣g∣∣q

≤
(
M + �(X)1/p ∣∣g∣∣q

)
�,

completing the proof.


