
Algebra Comprehensive Exam
— Fall 2010 —

Instructions: Complete five of the six problems below, and circle their numbers exactly in the box
below–the uncircled problems will not be graded.
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(1) (a) Compute the number of p-Sylow subgroups of the alternating group A5. Justify your
answer.

(b) How many elements of order 5, 3, 4 and 2 does A5 have? Justify your answer.

Solution. (a) |A5| = 60 = 3.2.5, so A5 has nontrivial p-Sylow subgroups for p = 2, 3, 5.
Every 5-Sylow subgroup has order 5, and the number of 5-Sylow subgroups is 1 + 5p which
divides 60/5 = 12 so it is 1 or 6. Every 5-cycle generates a 5-Sylow subgroup, so there is
more than one 5-Sylow, so their number is 6.

Likewise, a 3-Sylow subgroup has order 3, and there are 1,4 or 10 3-Sylow subgroups. By
inspection (eg looking at 3-cycles (abc)) the number is more than 4, so it is 10.

For i ∈ {1, 2, 3, 4, 5} let {a, b, c, d} denote its complement in {1, 2, 3, 4, 5} and consider the
subgroup Vi = {1, (ab)(cd), (ac)(bd), (ad)(bc)}. Every 2-Sylow subgroup has order 4, so each
Vi is a 4-Sylow subgroup. It is easy to see that the conjugates of V1 are Vi for i = 1, 2, 3, 4, 5.
Since all 2-Sylow subgroups are conjugate, it follows there are exactly 5 2-Sylow subgroups.

(b) Every element of order 5 belongs to a 5-Sylow subgroup. These subgroups are cyclic
of order 5, and any two of them intersect trivially. So, there are 6.(5 − 1) = 24 elements of
order 5.

Likewise, there are 10.(3 − 1) = 20 elements of order 3.
Likewise, there are 5.(4−1) = 15 elements of order 2. An element of order 4 would belong

to a 2-Sylow subgroup, but all those 2-Sylow subgroups have no element of order 4. So,
there are no elements of order 4. �

(2) Let X denote the graph which consists of the 1-skeleton of a 3-dimensional cube [0, 1]3. I.e.,
X contains the vertices and the edges of [0, 1]3. An automorphism f of the graph X is a
bijection of the vertices of X that sends edges of X to edges of X. The set of automorphisms
of X is a finite group G, under composition.
(a) How many elements does G have? Justify your answer.
(b) Prove that G is not a simple group.

Solution. (a) Consider the action of G on the set of vertices of X. Let a be a vertex of
X, and let {b, c, d} denote its 3 neighbors. Let H denote the subgroup of G which consists
of all automorphisms f that fix a. G acts transitively on the set of vertices of X and the
stabilizer of {a} is H . Since X has 8 vertices, it follows that |G| = 8|H|. Now, every 3-cycle
or 2-cycle of {b, c, d} can be realized by an element of H thus, H has 6 elements and in fact
is isomorphic to S3. So, |G| = 48.

(b) The number of 3-Sylow subgroups of G is 1 + 3k and divides 16, so it is 1 or 4. If
there are 4 3-Sylow subgroups, then the action of G on the set of 3-Sylow subgroups gives
a nontrivial homomorphism G → S4 so it has nontrivial kernel K. �

(3) Let G be a finite group of n elements and let r be the nuber of conjugacy classes of G. Show
that the cardinality of the set

X = {(a, b) ∈ G × G|ab = ba}
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is nr.

Solution. For fixed a ∈ G, the number of b such that (a, b) ∈ X is |C(a)| where C(a) are all
elements that commute with a. Now sum over a. We get |X| =

∑
a∈G |C(a)|. Now break the

above sum over conjugacy classes, observing that if a and a′ are conjugate (ie a = g−1a′g),
then C(a) = g−1C(a′)g. If N(a) is the conjugacy class of a, we have X =

∑
|C(a)||N(a)|

where we sum over conjugacy classes. Now |C(a)||N(a)| = |G| = n. The result follows. �

(4) If ω = e2πi/3, prove that the ring R = Z[ω] is a Euclidean domain, by using the norm
d(x) = xx̄ for x ∈ C.

Solution. We need to show that for every x, y ∈ R with x 6= 0 there exist t, r ∈ R such
that y = tx + r and r = 0 or d(r) < d(x). First, assume that x is a positive natural number
n. Then y = a + ωb for integers a, b. Set a = un + u1 and b = vn + v1 where u1, v1 satisfy
|u1| ≤ n/2 and |v1| ≤ n/2. Then, compute d(r) and confirm OK.

Now, assume x is arbitrary. Then, divide yx̄ by xx̄ as above ie yx̄ = txx̄ + r and write
y = tx + r0 where r0 = y − tx. Then, d(r0) < d(x) or r0 = 0. �

(5) Give an example of a commutative ring with unit element which is a unique factorization
domain but not a principal ideal domain.

Solution. Let R = C[x, y]. By a theorem that states S is a unique factorization domain
implies S[x] is, it follows R is a unique factorization domain. It is not a principal ideal
domain because the ideal (x, y) is not principal (show that). �

(6) Let A be a symmetric n × n matrix such that A2 = J + pI, where J is the n × n matrix
with all entries equal to 1, I is the n× n identity matrix, and p ≥ 0 is a real number. What
are the possible eigenvalues of A?

Solution. Let ~x be an eigenvector of A2 corresponding to the eigenvalue λ. Then

λ~x = A2~x = (J + pI)~x = J~x + p~x,

so J~x = (λ − p)~x. Thus, λ is an eigenvalue of A2 iff λ − p is an eigenvalue of J .
Clearly, n is an eigenvalue of J (with eigenvector (1, . . . , 1)). Now J is a symmetric matrix

with rank 1; so all other eigenvalues of J are 0. Thus the eigenvalues of A2 are n + p (with
multiplicity 1) and p (with multiplicity n − 1). Hence, the possible eigenvalues of A are
±√

n + p and ±√
p.
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