
1. Let (X,A, µ) be a finite measure space, and {fk : k > 1} a sequence of square-integrable
functions with the following property: For all ε > 0 there exists an M0 ∈ N so that

∥

∥

∥
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L 2(X,µ)
< ε.

Show that the series
∑∞

k=1 fk converges a.e.

Solution:

Let Fn :=
∑n

k=1 fk. It is standard to show that the functions F ∗ := lim supn Fn and
F∗ := lim infn Fn are measurable. The claim to be shown is that the set {F ∗ > F∗}
has µ-measure zero. Note that this set is equal to the union over t ∈ N of the

Et :=
{

x ∈ X : lim sup
n

Fn > 2−t + lim inf
n

Fn

}

.

Given ε > 0, let M0 be as in the hypothesis. For any x ∈ Et, we can choose numbers
n1, n2 > M0 so that

|Fn1
(x) − Fn2

(x)| =

∣

∣

∣

∣

max{n1,n2}
∑

k=1+min{n1,n2}

fk(x)

∣

∣

∣

∣

> 2−t.

This implies that supM>M0
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By Chebyshev inequality, we can then estimate
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L 2(X,µ)

6 ε222t.

As ε > 0 is arbitrary, we conclude that µ(Et) = 0, hence µ
(

⋃∞
t=1 Et

)

= 0, by

countable subadditivity of µ.

2. Let ν be a signed measure on I := [0, 1] with |ν|(I) = 1 and ν(I) = 0. Suppose that
there is a continuous function f : I −→ [−1, 1] so that

∫

f dν = 1. Show that Lebesgue
measure is not continuous with respect to |ν|.



Solution:

We show that there is a non-empty open set U so that |ν|(U) = 0, which certainly
is more than enough for the conclusion above.

Appeal to the Jordan decomposition to write ν = ν+ + ν−, and the Hahn decompo-
sition to write I = P ∪ N , where

ν+(P ) + ν−(N) = 1 and ν+(P ) − ν−(N) = 0

so that ν+(P ) = ν−(N) = 1
2
. Turning to f , since |f | 6 1 we have

∫

f dν+ 6
1

2
and −

∫

f dν+ 6
1

2
.

But the sum of the two integrals is one, so we must have equality above, and moreover
f = ±1 a.e. (ν±).

The two measures ν± are not zero, so f must take the values ±1. In addition, f is
continuous, so U = f−1(−1

2
, 1

2
) is open and non-empty. Moreover, we must have

|ν|(U) = ν+(U) + ν−(U) = 0.

3. Let f : [0, 1] −→ [0, 1] be a Lipschitz function, so that |f(x)− f(y)| 6 C|x− y| for some
fixed constant C and all 0 6 x, y 6 1. Let A ⊂ [0, 1] be a Lebesgue measurable set.

(a) Show that |f(A)| 6 C|A|, where | · | denotes the Lebesgue measure.

(b) Show that even if C is optimal, namely C = sup06x<y61
|f(x)−f(y)|

y−x
, we need not have

equality in the first part.

Solution:

(a) Given ε > 0 select a relatively open set G ⊂ [0, 1] with |G \ A| < ε. Write
the components of G by G1, . . .. The sets f(Gk) are connected subsets of [0, 1],
hence they are clopen intervals, and moreover |f(Gk)| 6 C|Gk|. Thus, we have

|f(A)| 6 |f(G)| 6

∞
∑

k=1

|f(Gk)|

6 C
∞

∑

k=1

|Gk|

6 C(|A| + ε).

As ε > 0 was arbitrary, we conclude that |f(A)| 6 C|A|.
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(b) Take

f(x) :=

{

x 0 6 x 6
1
2

1
2

1
2

< x 6 1

Then, f is Lipschitz with constant one, and |f([1
2
, 1])| = 0.

4. Let (X,A, µ) be a finite measure space, and let fn, n > 1, be a sequence of measurable
functions on X so that fn −→ 0 a.e. and supn ‖f‖p < ∞, where 1 6 p < ∞. Show that
for all g ∈ L q with q = p

p−1
we have

lim
n→∞

∫

fn · g dµ = 0

That is, the functions fn converges to zero weakly in L p.

Solution:

We can assume that fn > 0 and let g > 0. The measure |g|qdν is absolutely contin-
uous with respect to ν. In particular, given ε > 0 we can choose δ > 0 so that

ν(F ) < δ implies

∫

F

|g|q dν < εq.

Now choose n0 so large that for the event E =
{

supn≥n0
fn > ε

}

, we have µ(E) < δ.
(This is possible as µ(X) < ∞!)

Then, we estimate using Hölder’s inequality,

∫

X\E

fng dµ 6 ε

∫

X\E

g dµ 6 εµ(X)1/p‖g‖q.

And on the other hand, we can estimate

∫

E

fng dµ 6 sup
n

‖fn‖p ·

(
∫

E

|g|q dµ

)1/q

6 ε sup
n

‖fn‖p.

These two inequalities prove the claim.

5. Let X be a normed linear space and X ′ its dual space. Consider the following statements:

(a) If X is separable, then X ′ is separable.

(b) If X ′ is separable, then X is separable.
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Which statement is true, which one is false? Prove the true statement. Give a counter-
example disproving the false statement. Explain why your example works.

Solution:

Statement (b) is true.

To show that (a) is wrong, we consider the case X = ℓ1 for which X ′ = ℓ∞. Assume
that ℓ∞ is separable. That is, assume that there exist countable many sequences

ai = {ai
n}

∞
n=1 ∈ ℓ∞ for i ∈ N

that form a dense subset in ℓ∞. Then we contruct a new sequence b = {bn}
∞
n=1 with

bn := an
n + 1 for all n.

Then b ∈ ℓ∞ but ‖b − ai‖ = 1 for all i ∈ N, so the ai are not dense.

To prove (b), assume {fn}
∞
n=1 ⊂ X ′ is dense in X ′. Then the sequence {gn}

∞
n=1 with

gn := fn/‖fn‖X′ (with fn 6= 0) is dense in the unit sphere in X ′. Note that

‖gn‖X′ = sup
{

|gn(x)| : ‖x‖X = 1
}

= 1.

Therefore, for any n ∈ N there exists an xn ∈ X with ‖xn‖X = 1 and |gn(xn)| >
1
2
.

Let now S denote the closure of the span of the {xn}
∞
n=1, which is separable (consider

linear combinations with rational coefficients). Suppose that S 6= X. Then we can
find a functional g ∈ X ′ with ‖g‖X′ = 1 and g(x) = 0 for all x ∈ S, by Hahn-Banach
theorem. In particular, we would have g(xn) = 0 for all n ∈ N. But then

1

2
6 |gn(xn)| = |gn(x) − g(xn)| 6 ‖gn − g‖X′‖xn‖X ,

which implies that ‖gn − g‖X′ >
1
2

since ‖xn‖X = 1. This is a contradicition to the
assumption that the family {gn}

∞
n=1 is dense in the unit sphere in X ′.

6. Let X be a real Banach space. Consider a countable family {xn}
∞
n=1 of elements in X

with the following properties:

(a) The linear span of {xn} is dense in X with respect to the X-norm ‖ · ‖X ;

(b) For any square-summable sequence {an}
∞
n=1 ⊂ R we have

∥

∥

∥

∥

∞
∑

n=1

anxn

∥

∥

∥

∥

X

=

√

√

√

√

∞
∑

n=1

a2
n.
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Prove that the norm ‖ · ‖X is induced by a scalar product, and thus X is a Hilbert space.
Show that {xn}

∞
n=1 must then be an orthonormal sequence.

Solution:

We denote by S the linear span of {xn}
∞
n=1 (the set of finite linear combinations of

elements in {xn}
∞
n=1). By property (b), we find that on S the norm ‖ · ‖X coincides

with the ℓ2-norm of its coefficients. Therefore the closure of S, which is X by
assumption (a), is isometrically isomorphic to the closure in ℓ2 of the set of sequences
with only finitely many nonzero terms. The latter closure is ℓ2. Hence each elements
x ∈ X can be written in the form

x =

∞
∑

n=1

anxn with {an}
∞
n=1 ∈ ℓ2,

and ‖x‖X = ‖{an}
∞
n=1‖ℓ2 . Since ℓ2 is a Hilbert space, its norm is induced by an inner

product and satisfies the parallelogram equality, and so

‖x + y‖2
X + ‖x − y‖2

X = 2
(

‖x‖2
X + ‖y‖2

X

)

for all x, y ∈ X.

We can then define the inner product using the polarization formula

〈x, y〉X :=
1

4

(

‖x + y‖2
X − ‖x − y‖2

X

)

for all x, y ∈ X. (1)

Note that we are working over the real numbers. One can then check that (1) is an
inner product and that ‖x‖2

X = 〈x, x〉X for all x ∈ X.

For any i ∈ N we denote by ei the sequence whose coefficients vanish everywhere
except for the ith entry, which is equal to one. Then we obtain that

〈xi, xi〉 =
1

4

(

‖xi + xi‖
2
X − ‖xi − xi‖

2
X

)

=
1

4

(

‖ei + ei‖
2
ℓ2 − ‖ei − ei‖

2
ℓ2

)

=
1

4

(

22 − 02
)

= 1

for all i ∈ N. Similarly, for all i, j ∈ N with i 6= j we have

〈xi, xj〉 =
1

4

(

‖xi + xj‖
2
X − ‖xi − xj‖

2
X

)

=
1

4

(

‖ei + ej‖
2
ℓ2 − ‖ei − ej‖

2
ℓ2

)

=
1

4

(

(12 + 12) − (12 + (−1)2)
)

= 0.

This proves that the {xn}
∞
n=1 form in fact an orhonormal system.
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7. Let (Ω, µ) be a measure space. For some p ∈ [1,∞) consider functions fn, f ∈ L
p(Ω, µ)

with the property that ‖fn − f‖L p −→ 0 as n → ∞.

(a) Prove that there exists a subsequence {fnk
}∞k=1 that converges pointwise a.e. to f .

(b) Show by example that it is possible that not the whole sequence converges a.e.

Solution:

(a) Convergence in the norm implies convergence in measure: for all ε > 0 we have

µ
(

{x ∈ Ω: |f(x) − fn(x)| > ε}
)

6
1

εp

∫

Ω

|f − fn|
p dµ −→ 0

as n → ∞, by Chebyshev’s inequality. For any k ∈ N we can then find nk ∈ N with

for all n > nk we have µ(Ek) 6 2−k,

where Ek := {x ∈ Ω: |f(x) − fn(x)| > 1/k}. Define Hm :=
⋃

k>m Ek so that

µ(Hm) 6

∞
∑

k=m

2−k = 21−m

for all m ∈ N. If Z :=
⋂∞

m=1 Hm, then we obtain µ(Z) = 0.

We claim that the |f(x)− fnk
(x)| −→ 0 for all x ∈ Ω\Z, which will prove the claim.

Indeed if x 6∈ Z, then x 6∈ Hm for some m. Hence x 6∈ Ek for all k > m and

|f(x) − fnk
(x)| 6 1/k for all k > m.

This implies precisely that fnk
(x) −→ f(x) for all x 6∈ Z.

(b) To prove that in general it is necessary to extract a subsequence, let p = 1 and
Ω := [0, 1], equipped with the Lebesgue measure. Then we define functions

fn(x) := 1[k2−N ,(k+1)2−N ](x) whenever n = 2N + k and k = 0, . . . , 2N − 1

for all n ∈ N. Then ‖fn‖L 1 −→ 0 as n → ∞ and so f = 0. Then the subsequence
{f2k}∞k=1 converges to zero a.e., whereas the whole sequence does not.

8. Let µ be a regular Borel measure on R
n and let V ⊂ R

n be open. Define f(x) := µ(x+V )
for all x ∈ R

n.

(a) Give an example that shows that the function f need not be continuous.

(b) Prove that f is lower semicontinuous. That is, for all α > 0

the set {x ∈ R
n : f(x) > α} is open.
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(c) Prove that if µ is the Lebesgue measure on the open unit ball, then f is continuous.

Solution:

(a) Consider µ := δ0 (Dirac measure at the origin) and V := B1(0) (open unit ball).
Then f(x) = 1 for all x ∈ R

n with |x| < 1 and f(x) = 0 otherwise.

(b) Fix a point x ∈ R
n such that γ := f(x) − α > 0. Since µ is regular, there exists

a compactly supported g ∈ C (Rn, [0, 1]) such that spt g ⊂ V and

µ(x + V ) − γ/2 6

∫

Rn

g(z − x) µ(dz),

which implies that

α + γ/2 6

∫

Rn

g(z − x) dµ(dz).

Consider now the family of translates gy := g(·− y) for y ∈ R
n. Since g is compactly

supported and continuous, it is uniformly continuous, which implies that for all ε > 0
there exists a δ > 0 such that for all y ∈ R

n with |y − x| < δ we have

|gy(z) − gx(z)| < ε for all z ∈ R
n.

In particular, we have that

‖gy − gx‖ −→ 0 as |y − x| → 0,

with ‖ · ‖ the sup-norm. In particular, we can find 1 > δ > 0 such that

∣

∣

∣

∣

∫

Rn

gy dµ −

∫

Rn

gx dµ

∣

∣

∣

∣

6 ‖gy − gx‖µ(K) 6 γ/2

for y ∈ R
n with |y−x| < δ. Here K denotes a compact set that contains B1(x)+spt g.

Since µ is a regular measure, we have µ(K) < ∞. For such y we then have

f(y) = µ(y + V ) >

∫

Rd

gy dµ > α,

which proves the claim,

(c) The Lebesgue measure is translation-invariant, therefore f is constant.
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