1. Let (X, \mathcal{A}, μ) be a finite measure space, and $\{f_k : k \ge 1\}$ a sequence of square-integrable functions with the following property: For all $\varepsilon > 0$ there exists an $M_0 \in \mathbb{N}$ so that

$$\Big\| \sup_{M > M_0} \bigg| \sum_{k=M_0}^M f_k \bigg| \Big\|_{\mathscr{L}^2(X,\mu)} < \varepsilon.$$

Show that the series $\sum_{k=1}^{\infty} f_k$ converges a.e.

Solution:

Let $F_n := \sum_{k=1}^n f_k$. It is standard to show that the functions $F^* := \limsup_n F_n$ and $F_* := \liminf_n F_n$ are measurable. The claim to be shown is that the set $\{F^* > F_*\}$ has μ -measure zero. Note that this set is equal to the union over $t \in \mathbb{N}$ of the

$$E_t := \Big\{ x \in X \colon \limsup_n F_n > 2^{-t} + \liminf_n F_n \Big\}.$$

Given $\varepsilon > 0$, let M_0 be as in the hypothesis. For any $x \in E_t$, we can choose numbers $n_1, n_2 > M_0$ so that

$$|F_{n_1}(x) - F_{n_2}(x)| = \left|\sum_{k=1+\min\{n_1,n_2\}}^{\max\{n_1,n_2\}} f_k(x)\right| > 2^{-t}.$$

This implies that $\sup_{M>M_0} \left| \sum_{k=M_0}^M f_k(x) \right| > 2^{-t}$. By Chebyshev inequality, we can then estimate

$$\begin{aligned} \mu(E_t) &\leqslant \mu \left(\sup_{M > M_0} \left| \sum_{k=M_0}^M f_k \right| > 2^{-t} \right) \\ &\leqslant 2^{2t} \left\| \sup_{M > M_0} \left| \sum_{k=M_0}^M f_k \right| \right\|_{\mathscr{L}^2(X,\mu)}^2 \\ &\leqslant \varepsilon^2 2^{2t}. \end{aligned}$$

As $\varepsilon > 0$ is arbitrary, we conclude that $\mu(E_t) = 0$, hence $\mu\left(\bigcup_{t=1}^{\infty} E_t\right) = 0$, by countable subadditivity of μ .

2. Let ν be a signed measure on I := [0, 1] with $|\nu|(I) = 1$ and $\nu(I) = 0$. Suppose that there is a continuous function $f: I \longrightarrow [-1, 1]$ so that $\int f d\nu = 1$. Show that Lebesgue measure is not continuous with respect to $|\nu|$.

Solution:

We show that there is a non-empty open set U so that $|\nu|(U) = 0$, which certainly is more than enough for the conclusion above.

Appeal to the Jordan decomposition to write $\nu = \nu_+ + \nu_-$, and the Hahn decomposition to write $I = P \cup N$, where

$$\nu_+(P) + \nu_-(N) = 1$$
 and $\nu_+(P) - \nu_-(N) = 0$

so that $\nu_+(P) = \nu_-(N) = \frac{1}{2}$. Turning to f, since $|f| \leq 1$ we have

$$\int f \, d\nu_+ \leqslant \frac{1}{2} \quad \text{and} \quad -\int f \, d\nu_+ \leqslant \frac{1}{2}$$

But the sum of the two integrals is one, so we must have equality above, and moreover $f = \pm 1$ a.e. (ν_{\pm}) .

The two measures ν_{\pm} are not zero, so f must take the values ± 1 . In addition, f is continuous, so $U = f^{-1}(-\frac{1}{2}, \frac{1}{2})$ is open and non-empty. Moreover, we must have

$$|\nu|(U) = \nu_+(U) + \nu_-(U) = 0.$$

- 3. Let $f: [0,1] \longrightarrow [0,1]$ be a Lipschitz function, so that $|f(x) f(y)| \leq C|x-y|$ for some fixed constant C and all $0 \leq x, y \leq 1$. Let $A \subset [0,1]$ be a Lebesgue measurable set.
 - (a) Show that $|f(A)| \leq C|A|$, where $|\cdot|$ denotes the Lebesgue measure.
 - (b) Show that even if C is optimal, namely $C = \sup_{0 \le x < y \le 1} \frac{|f(x) f(y)|}{y x}$, we need not have equality in the first part.

Solution:

(a) Given $\varepsilon > 0$ select a relatively open set $G \subset [0,1]$ with $|G \setminus A| < \varepsilon$. Write the components of G by G_1, \ldots . The sets $f(G_k)$ are connected subsets of [0,1], hence they are clopen intervals, and moreover $|f(G_k)| \leq C|G_k|$. Thus, we have

$$f(A)| \leq |f(G)| \leq \sum_{k=1}^{\infty} |f(G_k)|$$
$$\leq C \sum_{k=1}^{\infty} |G_k|$$
$$\leq C(|A| + \varepsilon).$$

As $\varepsilon > 0$ was arbitrary, we conclude that $|f(A)| \leq C|A|$.

(b) Take

$$f(x) := \begin{cases} x & 0 \leqslant x \leqslant \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} < x \leqslant 1 \end{cases}$$

Then, f is Lipschitz with constant one, and $|f([\frac{1}{2}, 1])| = 0$.

4. Let (X, \mathcal{A}, μ) be a finite measure space, and let $f_n, n \ge 1$, be a sequence of measurable functions on X so that $f_n \longrightarrow 0$ a.e. and $\sup_n \|f\|_p < \infty$, where $1 \le p < \infty$. Show that for all $g \in \mathscr{L}^q$ with $q = \frac{p}{p-1}$ we have

$$\lim_{n \to \infty} \int f_n \cdot g \, d\mu = 0$$

That is, the functions f_n converges to zero weakly in \mathscr{L}^p .

Solution:

We can assume that $f_n \ge 0$ and let $g \ge 0$. The measure $|g|^q d\nu$ is absolutely continuous with respect to ν . In particular, given $\varepsilon > 0$ we can choose $\delta > 0$ so that

$$u(F) < \delta \quad \text{implies} \quad \int_F |g|^q \, d\nu < \varepsilon^q.$$

Now choose n_0 so large that for the event $E = \{ \sup_{n \ge n_0} f_n > \varepsilon \}$, we have $\mu(E) < \delta$. (This is possible as $\mu(X) < \infty$!)

Then, we estimate using Hölder's inequality,

$$\int_{X\setminus E} f_n g \, d\mu \leqslant \varepsilon \int_{X\setminus E} g \, d\mu \leqslant \varepsilon \mu(X)^{1/p} \|g\|_q.$$

And on the other hand, we can estimate

$$\int_E f_n g \, d\mu \leqslant \sup_n \|f_n\|_p \cdot \left(\int_E |g|^q \, d\mu\right)^{1/q} \leqslant \varepsilon \sup_n \|f_n\|_p.$$

These two inequalities prove the claim.

- 5. Let X be a normed linear space and X' its dual space. Consider the following statements:
 - (a) If X is separable, then X' is separable.
 - (b) If X' is separable, then X is separable.

Which statement is true, which one is false? Prove the true statement. Give a counterexample disproving the false statement. Explain why your example works.

Solution:

Statement (b) is true.

To show that (a) is wrong, we consider the case $X = \ell^1$ for which $X' = \ell^{\infty}$. Assume that ℓ^{∞} is separable. That is, assume that there exist countable many sequences

$$a^i = \{a^i_n\}_{n=1}^\infty \in \ell^\infty \text{ for } i \in \mathbb{N}$$

that form a dense subset in ℓ^{∞} . Then we contruct a new sequence $b = \{b_n\}_{n=1}^{\infty}$ with

$$b_n := a_n^n + 1$$
 for all n .

Then $b \in \ell^{\infty}$ but $||b - a^i|| = 1$ for all $i \in \mathbb{N}$, so the a_i are not dense.

To prove (b), assume $\{f_n\}_{n=1}^{\infty} \subset X'$ is dense in X'. Then the sequence $\{g_n\}_{n=1}^{\infty}$ with $g_n := f_n / ||f_n||_{X'}$ (with $f_n \neq 0$) is dense in the unit sphere in X'. Note that

$$||g_n||_{X'} = \sup\left\{|g_n(x)| \colon ||x||_X = 1\right\} = 1.$$

Therefore, for any $n \in \mathbb{N}$ there exists an $x_n \in X$ with $||x_n||_X = 1$ and $|g_n(x_n)| \ge \frac{1}{2}$. Let now S denote the closure of the span of the $\{x_n\}_{n=1}^{\infty}$, which is separable (consider linear combinations with rational coefficients). Suppose that $S \neq X$. Then we can find a functional $g \in X'$ with $||g||_{X'} = 1$ and g(x) = 0 for all $x \in S$, by Hahn-Banach

theorem. In particular, we would have $g(x_n) = 0$ for all $n \in \mathbb{N}$. But then

$$\frac{1}{2} \leq |g_n(x_n)| = |g_n(x) - g(x_n)| \leq ||g_n - g||_{X'} ||x_n||_{X_n}$$

which implies that $||g_n - g||_{X'} \ge \frac{1}{2}$ since $||x_n||_X = 1$. This is a contradicition to the assumption that the family $\{g_n\}_{n=1}^{\infty}$ is dense in the unit sphere in X'.

- 6. Let X be a real Banach space. Consider a countable family $\{x_n\}_{n=1}^{\infty}$ of elements in X with the following properties:
 - (a) The linear span of $\{x_n\}$ is dense in X with respect to the X-norm $\|\cdot\|_X$;
 - (b) For any square-summable sequence $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ we have

$$\left\|\sum_{n=1}^{\infty} a_n x_n\right\|_X = \sqrt{\sum_{n=1}^{\infty} a_n^2}.$$

Prove that the norm $\|\cdot\|_X$ is induced by a scalar product, and thus X is a Hilbert space. Show that $\{x_n\}_{n=1}^{\infty}$ must then be an orthonormal sequence.

Solution:

We denote by S the linear span of $\{x_n\}_{n=1}^{\infty}$ (the set of finite linear combinations of elements in $\{x_n\}_{n=1}^{\infty}$). By property (b), we find that on S the norm $\|\cdot\|_X$ coincides with the ℓ^2 -norm of its coefficients. Therefore the closure of S, which is X by assumption (a), is isometrically isomorphic to the closure in ℓ^2 of the set of sequences with only finitely many nonzero terms. The latter closure is ℓ^2 . Hence each elements $x \in X$ can be written in the form

$$x = \sum_{n=1}^{\infty} a_n x_n \quad \text{with } \{a_n\}_{n=1}^{\infty} \in \ell^2,$$

and $||x||_X = ||\{a_n\}_{n=1}^{\infty}||_{\ell^2}$. Since ℓ^2 is a Hilbert space, its norm is induced by an inner product and satisfies the parallelogram equality, and so

$$||x+y||_X^2 + ||x-y||_X^2 = 2\left(||x||_X^2 + ||y||_X^2\right) \quad \text{for all } x, y \in X.$$

We can then define the inner product using the polarization formula

$$\langle x, y \rangle_X := \frac{1}{4} \Big(\|x + y\|_X^2 - \|x - y\|_X^2 \Big) \text{ for all } x, y \in X.$$
 (1)

Note that we are working over the real numbers. One can then check that (1) is an inner product and that $||x||_X^2 = \langle x, x \rangle_X$ for all $x \in X$.

For any $i \in \mathbb{N}$ we denote by e^i the sequence whose coefficients vanish everywhere except for the *i*th entry, which is equal to one. Then we obtain that

$$\langle x_i, x_i \rangle = \frac{1}{4} \Big(\|x_i + x_i\|_X^2 - \|x_i - x_i\|_X^2 \Big)$$

= $\frac{1}{4} \Big(\|e_i + e_i\|_{\ell^2}^2 - \|e_i - e_i\|_{\ell^2}^2 \Big)$
= $\frac{1}{4} \Big(2^2 - 0^2 \Big) = 1$

for all $i \in \mathbb{N}$. Similarly, for all $i, j \in \mathbb{N}$ with $i \neq j$ we have

$$\langle x_i, x_j \rangle = \frac{1}{4} \Big(\|x_i + x_j\|_X^2 - \|x_i - x_j\|_X^2 \Big)$$

= $\frac{1}{4} \Big(\|e_i + e_j\|_{\ell^2}^2 - \|e_i - e_j\|_{\ell^2}^2 \Big)$
= $\frac{1}{4} \Big((1^2 + 1^2) - (1^2 + (-1)^2) \Big) = 0.$

This proves that the $\{x_n\}_{n=1}^{\infty}$ form in fact an orthonormal system.

- 7. Let (Ω, μ) be a measure space. For some $p \in [1, \infty)$ consider functions $f_n, f \in \mathscr{L}^p(\Omega, \mu)$ with the property that $||f_n f||_{\mathscr{L}^p} \longrightarrow 0$ as $n \to \infty$.
 - (a) Prove that there exists a subsequence $\{f_{n_k}\}_{k=1}^{\infty}$ that converges pointwise a.e. to f.
 - (b) Show by example that it is possible that not the whole sequence converges a.e.

Solution:

(a) Convergence in the norm implies convergence in measure: for all $\varepsilon > 0$ we have

$$\mu\Big(\{x\in\Omega\colon |f(x)-f_n(x)|\geqslant\varepsilon\}\Big)\leqslant\frac{1}{\varepsilon^p}\int_{\Omega}|f-f_n|^p\,d\mu\longrightarrow 0$$

as $n \to \infty$, by Chebyshev's inequality. For any $k \in \mathbb{N}$ we can then find $n_k \in \mathbb{N}$ with

for all $n \ge n_k$ we have $\mu(E_k) \le 2^{-k}$,

where $E_k := \{x \in \Omega : |f(x) - f_n(x)| > 1/k\}$. Define $H_m := \bigcup_{k \ge m} E_k$ so that

$$\mu(H_m) \leqslant \sum_{k=m}^{\infty} 2^{-k} = 2^{1-m}$$

for all $m \in \mathbb{N}$. If $Z := \bigcap_{m=1}^{\infty} H_m$, then we obtain $\mu(Z) = 0$.

We claim that the $|f(x) - f_{n_k}(x)| \longrightarrow 0$ for all $x \in \Omega \setminus Z$, which will prove the claim. Indeed if $x \notin Z$, then $x \notin H_m$ for some m. Hence $x \notin E_k$ for all $k \ge m$ and

$$|f(x) - f_{n_k}(x)| \leq 1/k$$
 for all $k \ge m$.

This implies precisely that $f_{n_k}(x) \longrightarrow f(x)$ for all $x \notin Z$.

(b) To prove that in general it is necessary to extract a subsequence, let p = 1 and $\Omega := [0, 1]$, equipped with the Lebesgue measure. Then we define functions

$$f_n(x) := \mathbf{1}_{[k2^{-N},(k+1)2^{-N}]}(x)$$
 whenever $n = 2^N + k$ and $k = 0, \dots, 2^N - 1$

for all $n \in \mathbb{N}$. Then $||f_n||_{\mathscr{L}^1} \longrightarrow 0$ as $n \to \infty$ and so f = 0. Then the subsequence $\{f_{2^k}\}_{k=1}^{\infty}$ converges to zero a.e., whereas the whole sequence does not.

- 8. Let μ be a regular Borel measure on \mathbb{R}^n and let $V \subset \mathbb{R}^n$ be open. Define $f(x) := \mu(x+V)$ for all $x \in \mathbb{R}^n$.
 - (a) Give an example that shows that the function f need not be continuous.
 - (b) Prove that f is lower semicontinuous. That is, for all $\alpha > 0$

the set
$$\{x \in \mathbb{R}^n \colon f(x) > \alpha\}$$
 is open.

(c) Prove that if μ is the Lebesgue measure on the open unit ball, then f is continuous.

Solution:

(a) Consider $\mu := \delta_0$ (Dirac measure at the origin) and $V := B_1(0)$ (open unit ball). Then f(x) = 1 for all $x \in \mathbb{R}^n$ with |x| < 1 and f(x) = 0 otherwise.

(b) Fix a point $x \in \mathbb{R}^n$ such that $\gamma := f(x) - \alpha > 0$. Since μ is regular, there exists a compactly supported $g \in \mathscr{C}(\mathbb{R}^n, [0, 1])$ such that spt $g \subset V$ and

$$\mu(x+V) - \gamma/2 \leqslant \int_{\mathbb{R}^n} g(z-x)\,\mu(dz),$$

which implies that

$$\alpha + \gamma/2 \leqslant \int_{\mathbb{R}^n} g(z-x) \, d\mu(dz).$$

Consider now the family of translates $g_y := g(\cdot - y)$ for $y \in \mathbb{R}^n$. Since g is compactly supported and continuous, it is uniformly continuous, which implies that for all $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $y \in \mathbb{R}^n$ with $|y - x| < \delta$ we have

$$|g_y(z) - g_x(z)| < \varepsilon$$
 for all $z \in \mathbb{R}^n$.

In particular, we have that

$$||g_y - g_x|| \longrightarrow 0$$
 as $|y - x| \to 0$,

with $\|\cdot\|$ the sup-norm. In particular, we can find $1 > \delta > 0$ such that

$$\left| \int_{\mathbb{R}^n} g_y \, d\mu - \int_{\mathbb{R}^n} g_x \, d\mu \right| \leqslant \|g_y - g_x\|\mu(K) \leqslant \gamma/2$$

for $y \in \mathbb{R}^n$ with $|y-x| < \delta$. Here K denotes a compact set that contains $B_1(x)$ +spt g. Since μ is a regular measure, we have $\mu(K) < \infty$. For such y we then have

$$f(y) = \mu(y+V) \ge \int_{\mathbb{R}^d} g_y \, d\mu > \alpha,$$

which proves the claim,

(c) The Lebesgue measure is translation-invariant, therefore f is constant.