1. Let (X, \mathcal{A}, μ) be a finite measure space, and $\left\{f_{k}: k \geqslant 1\right\}$ a sequence of square-integrable functions with the following property: For all $\varepsilon>0$ there exists an $M_{0} \in \mathbb{N}$ so that

$$
\left\|\sup _{M>M_{0}}\left|\sum_{k=M_{0}}^{M} f_{k}\right|\right\|_{\mathscr{L}^{2}(X, \mu)}<\varepsilon .
$$

Show that the series $\sum_{k=1}^{\infty} f_{k}$ converges a.e.

Solution:

Let $F_{n}:=\sum_{k=1}^{n} f_{k}$. It is standard to show that the functions $F^{*}:=\lim \sup _{n} F_{n}$ and $F_{*}:=\lim \inf _{n} F_{n}$ are measurable. The claim to be shown is that the set $\left\{F^{*}>F_{*}\right\}$ has μ-measure zero. Note that this set is equal to the union over $t \in \mathbb{N}$ of the

$$
E_{t}:=\left\{x \in X: \limsup _{n} F_{n}>2^{-t}+\liminf _{n} F_{n}\right\}
$$

Given $\varepsilon>0$, let M_{0} be as in the hypothesis. For any $x \in E_{t}$, we can choose numbers $n_{1}, n_{2}>M_{0}$ so that

$$
\left|F_{n_{1}}(x)-F_{n_{2}}(x)\right|=\left|\sum_{k=1+\min \left\{n_{1}, n_{2}\right\}}^{\max \left\{n_{1}, n_{2}\right\}} f_{k}(x)\right|>2^{-t}
$$

This implies that $\sup _{M>M_{0}}\left|\sum_{k=M_{0}}^{M} f_{k}(x)\right|>2^{-t}$.
By Chebyshev inequality, we can then estimate

$$
\begin{aligned}
\mu\left(E_{t}\right) & \leqslant \mu\left(\sup _{M>M_{0}}\left|\sum_{k=M_{0}}^{M} f_{k}\right|>2^{-t}\right) \\
& \leqslant 2^{2 t}\left\|\sup _{M>M_{0}}\left|\sum_{k=M_{0}}^{M} f_{k}\right|\right\|_{\mathscr{L}^{2}(X, \mu)}^{2} \\
& \leqslant \varepsilon^{2} 2^{2 t}
\end{aligned}
$$

As $\varepsilon>0$ is arbitrary, we conclude that $\mu\left(E_{t}\right)=0$, hence $\mu\left(\bigcup_{t=1}^{\infty} E_{t}\right)=0$, by countable subadditivity of μ.
2. Let ν be a signed measure on $I:=[0,1]$ with $|\nu|(I)=1$ and $\nu(I)=0$. Suppose that there is a continuous function $f: I \longrightarrow[-1,1]$ so that $\int f d \nu=1$. Show that Lebesgue measure is not continuous with respect to $|\nu|$.

Solution:

We show that there is a non-empty open set U so that $|\nu|(U)=0$, which certainly is more than enough for the conclusion above.
Appeal to the Jordan decomposition to write $\nu=\nu_{+}+\nu_{-}$, and the Hahn decomposition to write $I=P \cup N$, where

$$
\nu_{+}(P)+\nu_{-}(N)=1 \quad \text { and } \quad \nu_{+}(P)-\nu_{-}(N)=0
$$

so that $\nu_{+}(P)=\nu_{-}(N)=\frac{1}{2}$. Turning to f, since $|f| \leqslant 1$ we have

$$
\int f d \nu_{+} \leqslant \frac{1}{2} \quad \text { and } \quad-\int f d \nu_{+} \leqslant \frac{1}{2}
$$

But the sum of the two integrals is one, so we must have equality above, and moreover $f= \pm 1$ a.e. $\left(\nu_{ \pm}\right)$.
The two measures $\nu_{ \pm}$are not zero, so f must take the values ± 1. In addition, f is continuous, so $U=f^{-1}\left(-\frac{1}{2}, \frac{1}{2}\right)$ is open and non-empty. Moreover, we must have

$$
|\nu|(U)=\nu_{+}(U)+\nu_{-}(U)=0
$$

3. Let $f:[0,1] \longrightarrow[0,1]$ be a Lipschitz function, so that $|f(x)-f(y)| \leqslant C|x-y|$ for some fixed constant C and all $0 \leqslant x, y \leqslant 1$. Let $A \subset[0,1]$ be a Lebesgue measurable set.
(a) Show that $|f(A)| \leqslant C|A|$, where $|\cdot|$ denotes the Lebesgue measure.
(b) Show that even if C is optimal, namely $C=\sup _{0 \leqslant x<y \leqslant 1} \frac{|f(x)-f(y)|}{y-x}$, we need not have equality in the first part.

Solution:

(a) Given $\varepsilon>0$ select a relatively open set $G \subset[0,1]$ with $|G \backslash A|<\varepsilon$. Write the components of G by G_{1}, \ldots The sets $f\left(G_{k}\right)$ are connected subsets of $[0,1]$, hence they are clopen intervals, and moreover $\left|f\left(G_{k}\right)\right| \leqslant C\left|G_{k}\right|$. Thus, we have

$$
\begin{aligned}
|f(A)| \leqslant|f(G)| & \leqslant \sum_{k=1}^{\infty}\left|f\left(G_{k}\right)\right| \\
& \leqslant C \sum_{k=1}^{\infty}\left|G_{k}\right| \\
& \leqslant C(|A|+\varepsilon) .
\end{aligned}
$$

As $\varepsilon>0$ was arbitrary, we conclude that $|f(A)| \leqslant C|A|$.
(b) Take

$$
f(x):= \begin{cases}x & 0 \leqslant x \leqslant \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}<x \leqslant 1\end{cases}
$$

Then, f is Lipschitz with constant one, and $\left|f\left(\left[\frac{1}{2}, 1\right]\right)\right|=0$.
4. Let (X, \mathcal{A}, μ) be a finite measure space, and let $f_{n}, n \geqslant 1$, be a sequence of measurable functions on X so that $f_{n} \longrightarrow 0$ a.e. and $\sup _{n}\|f\|_{p}<\infty$, where $1 \leqslant p<\infty$. Show that for all $g \in \mathscr{L}^{q}$ with $q=\frac{p}{p-1}$ we have

$$
\lim _{n \rightarrow \infty} \int f_{n} \cdot g d \mu=0
$$

That is, the functions f_{n} converges to zero weakly in \mathscr{L}^{p}.

Solution:

We can assume that $f_{n} \geqslant 0$ and let $g \geqslant 0$. The measure $|g|^{q} d \nu$ is absolutely continuous with respect to ν. In particular, given $\varepsilon>0$ we can choose $\delta>0$ so that

$$
\nu(F)<\delta \quad \text { implies } \quad \int_{F}|g|^{q} d \nu<\varepsilon^{q} .
$$

Now choose n_{0} so large that for the event $E=\left\{\sup _{n \geq n_{0}} f_{n}>\varepsilon\right\}$, we have $\mu(E)<\delta$. (This is possible as $\mu(X)<\infty!$)
Then, we estimate using Hölder's inequality,

$$
\int_{X \backslash E} f_{n} g d \mu \leqslant \varepsilon \int_{X \backslash E} g d \mu \leqslant \varepsilon \mu(X)^{1 / p}\|g\|_{q} .
$$

And on the other hand, we can estimate

$$
\int_{E} f_{n} g d \mu \leqslant \sup _{n}\left\|f_{n}\right\|_{p} \cdot\left(\int_{E}|g|^{q} d \mu\right)^{1 / q} \leqslant \varepsilon \sup _{n}\left\|f_{n}\right\|_{p}
$$

These two inequalities prove the claim.
5. Let X be a normed linear space and X^{\prime} its dual space. Consider the following statements:
(a) If X is separable, then X^{\prime} is separable.
(b) If X^{\prime} is separable, then X is separable.

Which statement is true, which one is false? Prove the true statement. Give a counterexample disproving the false statement. Explain why your example works.

Solution:

Statement (b) is true.
To show that (a) is wrong, we consider the case $X=\ell^{1}$ for which $X^{\prime}=\ell^{\infty}$. Assume that ℓ^{∞} is separable. That is, assume that there exist countable many sequences

$$
a^{i}=\left\{a_{n}^{i}\right\}_{n=1}^{\infty} \in \ell^{\infty} \quad \text { for } i \in \mathbb{N}
$$

that form a dense subset in ℓ^{∞}. Then we contruct a new sequence $b=\left\{b_{n}\right\}_{n=1}^{\infty}$ with

$$
b_{n}:=a_{n}^{n}+1 \quad \text { for all } n .
$$

Then $b \in \ell^{\infty}$ but $\left\|b-a^{i}\right\|=1$ for all $i \in \mathbb{N}$, so the a_{i} are not dense.
To prove (b), assume $\left\{f_{n}\right\}_{n=1}^{\infty} \subset X^{\prime}$ is dense in X^{\prime}. Then the sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$ with $g_{n}:=f_{n} /\left\|f_{n}\right\|_{X^{\prime}}\left(\right.$ with $\left.f_{n} \neq 0\right)$ is dense in the unit sphere in X^{\prime}. Note that

$$
\left\|g_{n}\right\|_{X^{\prime}}=\sup \left\{\left|g_{n}(x)\right|:\|x\|_{X}=1\right\}=1
$$

Therefore, for any $n \in \mathbb{N}$ there exists an $x_{n} \in X$ with $\left\|x_{n}\right\|_{X}=1$ and $\left|g_{n}\left(x_{n}\right)\right| \geqslant \frac{1}{2}$.
Let now S denote the closure of the span of the $\left\{x_{n}\right\}_{n=1}^{\infty}$, which is separable (consider linear combinations with rational coefficients). Suppose that $S \neq X$. Then we can find a functional $g \in X^{\prime}$ with $\|g\|_{X^{\prime}}=1$ and $g(x)=0$ for all $x \in S$, by Hahn-Banach theorem. In particular, we would have $g\left(x_{n}\right)=0$ for all $n \in \mathbb{N}$. But then

$$
\frac{1}{2} \leqslant\left|g_{n}\left(x_{n}\right)\right|=\left|g_{n}(x)-g\left(x_{n}\right)\right| \leqslant\left\|g_{n}-g\right\|_{X^{\prime}}\left\|x_{n}\right\|_{X}
$$

which implies that $\left\|g_{n}-g\right\|_{X^{\prime}} \geqslant \frac{1}{2}$ since $\left\|x_{n}\right\|_{X}=1$. This is a contradicition to the assumption that the family $\left\{g_{n}\right\}_{n=1}^{\infty}$ is dense in the unit sphere in X^{\prime}.
6. Let X be a real Banach space. Consider a countable family $\left\{x_{n}\right\}_{n=1}^{\infty}$ of elements in X with the following properties:
(a) The linear span of $\left\{x_{n}\right\}$ is dense in X with respect to the X-norm $\|\cdot\|_{X}$;
(b) For any square-summable sequence $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}$ we have

$$
\left\|\sum_{n=1}^{\infty} a_{n} x_{n}\right\|_{X}=\sqrt{\sum_{n=1}^{\infty} a_{n}^{2}} .
$$

Prove that the norm $\|\cdot\|_{X}$ is induced by a scalar product, and thus X is a Hilbert space. Show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ must then be an orthonormal sequence.

Solution:

We denote by S the linear span of $\left\{x_{n}\right\}_{n=1}^{\infty}$ (the set of finite linear combinations of elements in $\left\{x_{n}\right\}_{n=1}^{\infty}$). By property (b), we find that on S the norm $\|\cdot\|_{X}$ coincides with the ℓ^{2}-norm of its coefficients. Therefore the closure of S, which is X by assumption (a), is isometrically isomorphic to the closure in ℓ^{2} of the set of sequences with only finitely many nonzero terms. The latter closure is ℓ^{2}. Hence each elements $x \in X$ can be written in the form

$$
x=\sum_{n=1}^{\infty} a_{n} x_{n} \quad \text { with }\left\{a_{n}\right\}_{n=1}^{\infty} \in \ell^{2}
$$

and $\|x\|_{X}=\left\|\left\{a_{n}\right\}_{n=1}^{\infty}\right\|_{\ell^{2}}$. Since ℓ^{2} is a Hilbert space, its norm is induced by an inner product and satisfies the parallelogram equality, and so

$$
\|x+y\|_{X}^{2}+\|x-y\|_{X}^{2}=2\left(\|x\|_{X}^{2}+\|y\|_{X}^{2}\right) \quad \text { for all } x, y \in X
$$

We can then define the inner product using the polarization formula

$$
\begin{equation*}
\langle x, y\rangle_{X}:=\frac{1}{4}\left(\|x+y\|_{X}^{2}-\|x-y\|_{X}^{2}\right) \quad \text { for all } x, y \in X . \tag{1}
\end{equation*}
$$

Note that we are working over the real numbers. One can then check that (1) is an inner product and that $\|x\|_{X}^{2}=\langle x, x\rangle_{X}$ for all $x \in X$.
For any $i \in \mathbb{N}$ we denote by e^{i} the sequence whose coefficients vanish everywhere except for the i th entry, which is equal to one. Then we obtain that

$$
\begin{aligned}
\left\langle x_{i}, x_{i}\right\rangle & =\frac{1}{4}\left(\left\|x_{i}+x_{i}\right\|_{X}^{2}-\left\|x_{i}-x_{i}\right\|_{X}^{2}\right) \\
& =\frac{1}{4}\left(\left\|e_{i}+e_{i}\right\|_{\ell^{2}}^{2}-\left\|e_{i}-e_{i}\right\|_{\ell^{2}}^{2}\right) \\
& =\frac{1}{4}\left(2^{2}-0^{2}\right)=1
\end{aligned}
$$

for all $i \in \mathbb{N}$. Similarly, for all $i, j \in \mathbb{N}$ with $i \neq j$ we have

$$
\begin{aligned}
\left\langle x_{i}, x_{j}\right\rangle & =\frac{1}{4}\left(\left\|x_{i}+x_{j}\right\|_{X}^{2}-\left\|x_{i}-x_{j}\right\|_{X}^{2}\right) \\
& =\frac{1}{4}\left(\left\|e_{i}+e_{j}\right\|_{\ell^{2}}^{2}-\left\|e_{i}-e_{j}\right\|_{\ell^{2}}^{2}\right) \\
& =\frac{1}{4}\left(\left(1^{2}+1^{2}\right)-\left(1^{2}+(-1)^{2}\right)\right)=0 .
\end{aligned}
$$

This proves that the $\left\{x_{n}\right\}_{n=1}^{\infty}$ form in fact an orhonormal system.
7. Let (Ω, μ) be a measure space. For some $p \in[1, \infty)$ consider functions $f_{n}, f \in \mathscr{L}^{p}(\Omega, \mu)$ with the property that $\left\|f_{n}-f\right\|_{\mathscr{L}^{p}} \longrightarrow 0$ as $n \rightarrow \infty$.
(a) Prove that there exists a subsequence $\left\{f_{n_{k}}\right\}_{k=1}^{\infty}$ that converges pointwise a.e. to f.
(b) Show by example that it is possible that not the whole sequence converges a.e.

Solution:

(a) Convergence in the norm implies convergence in measure: for all $\varepsilon>0$ we have

$$
\mu\left(\left\{x \in \Omega:\left|f(x)-f_{n}(x)\right| \geqslant \varepsilon\right\}\right) \leqslant \frac{1}{\varepsilon^{p}} \int_{\Omega}\left|f-f_{n}\right|^{p} d \mu \longrightarrow 0
$$

as $n \rightarrow \infty$, by Chebyshev's inequality. For any $k \in \mathbb{N}$ we can then find $n_{k} \in \mathbb{N}$ with

$$
\text { for all } n \geqslant n_{k} \text { we have } \mu\left(E_{k}\right) \leqslant 2^{-k} \text {, }
$$

where $E_{k}:=\left\{x \in \Omega:\left|f(x)-f_{n}(x)\right|>1 / k\right\}$. Define $H_{m}:=\bigcup_{k \geqslant m} E_{k}$ so that

$$
\mu\left(H_{m}\right) \leqslant \sum_{k=m}^{\infty} 2^{-k}=2^{1-m}
$$

for all $m \in \mathbb{N}$. If $Z:=\bigcap_{m=1}^{\infty} H_{m}$, then we obtain $\mu(Z)=0$.
We claim that the $\left|f(x)-f_{n_{k}}(x)\right| \longrightarrow 0$ for all $x \in \Omega \backslash Z$, which will prove the claim. Indeed if $x \notin Z$, then $x \notin H_{m}$ for some m. Hence $x \notin E_{k}$ for all $k \geqslant m$ and

$$
\left|f(x)-f_{n_{k}}(x)\right| \leqslant 1 / k \quad \text { for all } k \geqslant m
$$

This implies precisely that $f_{n_{k}}(x) \longrightarrow f(x)$ for all $x \notin Z$.
(b) To prove that in general it is necessary to extract a subsequence, let $p=1$ and $\Omega:=[0,1]$, equipped with the Lebesgue measure. Then we define functions

$$
f_{n}(x):=\mathbf{1}_{\left[k 2^{-N},(k+1) 2^{-N}\right]}(x) \quad \text { whenever } n=2^{N}+k \text { and } k=0, \ldots, 2^{N}-1
$$

for all $n \in \mathbb{N}$. Then $\left\|f_{n}\right\|_{\mathscr{L}^{1}} \longrightarrow 0$ as $n \rightarrow \infty$ and so $f=0$. Then the subsequence $\left\{f_{2^{k}}\right\}_{k=1}^{\infty}$ converges to zero a.e., whereas the whole sequence does not.
8. Let μ be a regular Borel measure on \mathbb{R}^{n} and let $V \subset \mathbb{R}^{n}$ be open. Define $f(x):=\mu(x+V)$ for all $x \in \mathbb{R}^{n}$.
(a) Give an example that shows that the function f need not be continuous.
(b) Prove that f is lower semicontinuous. That is, for all $\alpha>0$
the set $\left\{x \in \mathbb{R}^{n}: f(x)>\alpha\right\}$ is open.
(c) Prove that if μ is the Lebesgue measure on the open unit ball, then f is continuous.

Solution:

(a) Consider $\mu:=\delta_{0}$ (Dirac measure at the origin) and $V:=B_{1}(0)$ (open unit ball). Then $f(x)=1$ for all $x \in \mathbb{R}^{n}$ with $|x|<1$ and $f(x)=0$ otherwise.
(b) Fix a point $x \in \mathbb{R}^{n}$ such that $\gamma:=f(x)-\alpha>0$. Since μ is regular, there exists a compactly supported $g \in \mathscr{C}\left(\mathbb{R}^{n},[0,1]\right)$ such that $\operatorname{spt} g \subset V$ and

$$
\mu(x+V)-\gamma / 2 \leqslant \int_{\mathbb{R}^{n}} g(z-x) \mu(d z)
$$

which implies that

$$
\alpha+\gamma / 2 \leqslant \int_{\mathbb{R}^{n}} g(z-x) d \mu(d z)
$$

Consider now the family of translates $g_{y}:=g(\cdot-y)$ for $y \in \mathbb{R}^{n}$. Since g is compactly supported and continuous, it is uniformly continuous, which implies that for all $\varepsilon>0$ there exists a $\delta>0$ such that for all $y \in \mathbb{R}^{n}$ with $|y-x|<\delta$ we have

$$
\left|g_{y}(z)-g_{x}(z)\right|<\varepsilon \quad \text { for all } z \in \mathbb{R}^{n} .
$$

In particular, we have that

$$
\left\|g_{y}-g_{x}\right\| \longrightarrow 0 \quad \text { as }|y-x| \rightarrow 0
$$

with $\|\cdot\|$ the sup-norm. In particular, we can find $1>\delta>0$ such that

$$
\left|\int_{\mathbb{R}^{n}} g_{y} d \mu-\int_{\mathbb{R}^{n}} g_{x} d \mu\right| \leqslant\left\|g_{y}-g_{x}\right\| \mu(K) \leqslant \gamma / 2
$$

for $y \in \mathbb{R}^{n}$ with $|y-x|<\delta$. Here K denotes a compact set that contains $B_{1}(x)+\operatorname{spt} g$. Since μ is a regular measure, we have $\mu(K)<\infty$. For such y we then have

$$
f(y)=\mu(y+V) \geqslant \int_{\mathbb{R}^{d}} g_{y} d \mu>\alpha
$$

which proves the claim,
(c) The Lebesgue measure is translation-invariant, therefore f is constant.

