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Solve any 5 of the following 8 problems. Indicate clearly which 5 problems you would like to be graded.

1. Let A be an n × n matrix with coefficients in the complex numbers. Prove that if there is an integer
m > 1 such that Am = A then A is diagonalizable.
Solution: Let T be a matrix so that J = TAT−1 is in Jordan form. We need to prove that J is
diagonal. Note that

Jm = (TAT−1)m = TAmT−1 = TAT−1 = J.

The Jordan blocks of Jm are the powers of the blocks of J , so it will suffice to prove that if B is a
Jordan block and Bm = B, then B is diagonal (and so 1× 1). Suppose on the contrary that n > 1
and B is an n×n Jordan block with eigenvalue λ. We will show that Bm 6= B for all m > 1. First,
an easy induction argument shows that for m > 1,

Bm =

λm mλm−1 · · ·
0 λm · · ·
· · ·

 .

If λm = λ then either λ = 0 and the (1, 2) entry of Bm is 0, or λm−1 = 1 and the (1, 2) entry is m.
In both cases, the (1, 2) entry is not 1 and so Bm 6= B for all m > 1.

2. Let V be the vector space of polynomials of degree ≤ 3 with complex coefficients. Let vi = (x− 1)i so
that v0, . . . , v3 forms a basis of V . Let f0, . . . , f3 be the dual basis of the dual vector space V ∗. Consider
the element F of V ∗ defined by

F (p(x)) =

∫ 1

−1

p(x) dx.

Write F in terms of f0, . . . , f3.
Solution: Straightforward calculation shows that F (v0) = 2, F (v1) = −2, F (v2) = 8/3, and
F (v3) = −4. Thus

F = 2f0 − 2f1 + (8/3)f2 − 4f3.

3. Let G be a finite group, and N a normal subgroup of G. Suppose that N has the property that
the natural homomorphism N → Aut(N) (sending an element to its action by conjugation) is an
isomorphism. Show that there exists a subgroup H of G so that G = N ×H.
Solution: Let g1, . . . , gn be a set of coset representatives for G/N . For each i, define an auto-
morphism s(gi) of N by the formula s(gi)(n) = g−1

i ngi. (Here we use that N is a normal subgroup
of G.) By hypothesis, there is a unique element ni of N such that s(gi)(n) = n−1

i nni for all n ∈ N .
Let t(gi) = gin

−1
i . Then t(gi) is in the coset giN and it is the unique element of this coset which

centralizes N . It follows that t defines a homomorphism G/N → G. Letting H be the image of
this homomorphism, we have G ∼= N ×H.

4. Let G be the abelian group with generators x, y, and z and relations

2x− 3y + 4z = 2x+ 2y + 2z = 6x− 4y + 10z = 0.

What is the rank of G? What is the structure of the torsion subgroup of G?



Solution: By hypothesis, G is the cokernel of the homomorphism Z3 → Z3 given by the matrix 2 −3 4
2 2 2
6 −4 10

 .

A sequence of elementary integer row and column operations (equivalently, changing basis in the
domain and range) yields the matrix  0 0 0

0 1 0
0 0 2

 .

It follows that G ∼= Z⊕ Z/2Z. It has rank 1 and its torsion subgroup is cyclic of order 2.

5. Let R be the subring of Z[x] consisting of polynomials where the coefficients of x and x2 are zero.
a) Show that Q(x) is the field of fractions of R.
b) Compute the integral closure of R in Q(x). (Recall that the integral closure of R in Q(x) is defined

to be the set of elements of Q(x) which are roots of a monic polynomial with coefficients in R. You
may use the standard fact that the integral closure of R in Q(x) is a subring of Q(x).)

Solution: (a) Let F be the field of fractions of R. It is clear that F ⊂ Q(x). On the other hand,
if r = f(x)/g(x) ∈ Q(x) is a ratio of polynomials, then writing

r =
x3f(x)

x3g(x)

shows that r is a ratio of elements of R. This proves that R = Q(x).
(b) Let S be the integral closure of R in Q(x). The polynomial T 3−x3 is monic with coefficients

in R and has x as a root, so x ∈ S. Since S is a ring containing R, we have Z[x] ⊂ S. It is a
standard result that Z[x] is integrally closed, so we have S = Z[x].

6. Let R be the ring (Z/20Z)[x]. List the prime and maximal ideals of R.
Solution: Note that by the chinese remainder theorem,

R ∼= (Z/4Z)[x]⊕ (Z/5Z)[x].

Note also that (2, 0) ∈ R is nilpotent, so contained in every prime ideal. Thus the prime ideals of
R are in bijection (via inverse image) with the prime ideals of the quotient

S = (Z/2Z)[x]⊕ (Z/5Z)[x]

of R by the ideal generated by (2, 0).
If M ⊂ S is a maximal ideal, the quotient S/M must be a finite field (since S is finitely

generated) necessarily of characteristic 2 or 5. It follows thatM has the form f(Z/2Z)[x]⊕(Z/5Z)[x]
or (Z/2Z)[x] ⊕ g(Z/5Z)[x] where f (resp. g) is an irreducible monic polynomial in (Z/2Z)[x]
(resp. (Z/5Z)[x]). The ideals of S which are prime but not maximal are {0} ⊕ (Z/5Z)[x] and
(Z/2Z)[x]⊕ {0}.

7. Let F be an infinite field and let K be a finite extension of F . Assume there are only finitely many
subfields L so that F ⊂ L ⊂ K. Show that K is a primitive extension of F , that is, K = F (θ), where
θ ∈ K.



Solution: Consider K as a vector space over F . Since F is infinite, K is not the union of any
finite collection of proper subspaces. This implies that there is an element θ ∈ K which does not
lie in any field L with F ⊂ L ⊂ K with L 6= K. It is then immediate that K = F (θ).

8. Let p be a prime number and let Fp be the field of p elements. Find the number of monic irreducible
polynomials of degree 6 with coefficients in Fp.
Solution: If f is a monic irreducible in Fp[x] of degree 6, then each root of f in Fp generates Fp6

over Fp. Conversely, given an element x ∈ Fp6 which does not lie in any smaller field, the minimal
polynomial of x over Fp is monic irreducible of degree 6. The number of elements in Fp6 not
contained in a smaller field is p6 − p3 − p2 + p and so the number of monic irreducible polynomials
of degree 6 in Fp[x] is

p6 − p3 − p2 + p

6
.


