School of Mathematics
Algebra Comprehensive Exam
Fall 2011
Solve any 5 of the following 8 problems. Indicate clearly which 5 problems you would like to be graded.

1. Let A be an $n \times n$ matrix with coefficients in the complex numbers. Prove that if there is an integer $m>1$ such that $A^{m}=A$ then A is diagonalizable.
Solution: Let T be a matrix so that $J=T A T^{-1}$ is in Jordan form. We need to prove that J is diagonal. Note that

$$
J^{m}=\left(T A T^{-1}\right)^{m}=T A^{m} T^{-1}=T A T^{-1}=J
$$

The Jordan blocks of J^{m} are the powers of the blocks of J, so it will suffice to prove that if B is a Jordan block and $B^{m}=B$, then B is diagonal (and so 1×1). Suppose on the contrary that $n>1$ and B is an $n \times n$ Jordan block with eigenvalue λ. We will show that $B^{m} \neq B$ for all $m>1$. First, an easy induction argument shows that for $m>1$,

$$
B^{m}=\left(\begin{array}{ccc}
\lambda^{m} & m \lambda^{m-1} & \cdots \\
0 & \lambda^{m} & \cdots \\
\cdots & &
\end{array}\right)
$$

If $\lambda^{m}=\lambda$ then either $\lambda=0$ and the $(1,2)$ entry of B^{m} is 0 , or $\lambda^{m-1}=1$ and the $(1,2)$ entry is m. In both cases, the $(1,2)$ entry is not 1 and so $B^{m} \neq B$ for all $m>1$.
2. Let V be the vector space of polynomials of degree ≤ 3 with complex coefficients. Let $v_{i}=(x-1)^{i}$ so that v_{0}, \ldots, v_{3} forms a basis of V. Let f_{0}, \ldots, f_{3} be the dual basis of the dual vector space V^{*}. Consider the element F of V^{*} defined by

$$
F(p(x))=\int_{-1}^{1} p(x) d x
$$

Write F in terms of f_{0}, \ldots, f_{3}.
Solution: Straightforward calculation shows that $F\left(v_{0}\right)=2, F\left(v_{1}\right)=-2, F\left(v_{2}\right)=8 / 3$, and $F\left(v_{3}\right)=-4$. Thus

$$
F=2 f_{0}-2 f_{1}+(8 / 3) f_{2}-4 f_{3}
$$

3. Let G be a finite group, and N a normal subgroup of G. Suppose that N has the property that the natural homomorphism $N \rightarrow \operatorname{Aut}(N)$ (sending an element to its action by conjugation) is an isomorphism. Show that there exists a subgroup H of G so that $G=N \times H$.
Solution: Let g_{1}, \ldots, g_{n} be a set of coset representatives for G / N. For each i, define an automorphism $s\left(g_{i}\right)$ of N by the formula $s\left(g_{i}\right)(n)=g_{i}^{-1} n g_{i}$. (Here we use that N is a normal subgroup of G.) By hypothesis, there is a unique element n_{i} of N such that $s\left(g_{i}\right)(n)=n_{i}^{-1} n n_{i}$ for all $n \in N$. Let $t\left(g_{i}\right)=g_{i} n_{i}^{-1}$. Then $t\left(g_{i}\right)$ is in the coset $g_{i} N$ and it is the unique element of this coset which centralizes N. It follows that t defines a homomorphism $G / N \rightarrow G$. Letting H be the image of this homomorphism, we have $G \cong N \times H$.
4. Let G be the abelian group with generators x, y, and z and relations

$$
2 x-3 y+4 z=2 x+2 y+2 z=6 x-4 y+10 z=0
$$

What is the rank of G ? What is the structure of the torsion subgroup of G ?

Solution: By hypothesis, G is the cokernel of the homomorphism $\mathbf{Z}^{3} \rightarrow \mathbf{Z}^{3}$ given by the matrix

$$
\left(\begin{array}{ccc}
2 & -3 & 4 \\
2 & 2 & 2 \\
6 & -4 & 10
\end{array}\right)
$$

A sequence of elementary integer row and column operations (equivalently, changing basis in the domain and range) yields the matrix

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

It follows that $G \cong \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}$. It has rank 1 and its torsion subgroup is cyclic of order 2 .
5. Let R be the subring of $\mathbf{Z}[x]$ consisting of polynomials where the coefficients of x and x^{2} are zero.
a) Show that $\mathbf{Q}(x)$ is the field of fractions of R.
b) Compute the integral closure of R in $\mathbf{Q}(x)$. (Recall that the integral closure of R in $\mathbf{Q}(x)$ is defined to be the set of elements of $\mathbf{Q}(x)$ which are roots of a monic polynomial with coefficients in R. You may use the standard fact that the integral closure of R in $\mathbf{Q}(x)$ is a subring of $\mathbf{Q}(x)$.)
Solution: (a) Let F be the field of fractions of R. It is clear that $F \subset \mathbf{Q}(x)$. On the other hand, if $r=f(x) / g(x) \in \mathbf{Q}(x)$ is a ratio of polynomials, then writing

$$
r=\frac{x^{3} f(x)}{x^{3} g(x)}
$$

shows that r is a ratio of elements of R. This proves that $R=\mathbf{Q}(x)$.
(b) Let S be the integral closure of R in $\mathbf{Q}(x)$. The polynomial $T^{3}-x^{3}$ is monic with coefficients in R and has x as a root, so $x \in S$. Since S is a ring containing R, we have $\mathbf{Z}[x] \subset S$. It is a standard result that $\mathbf{Z}[x]$ is integrally closed, so we have $S=\mathbf{Z}[x]$.
6. Let R be the ring $(\mathbf{Z} / 20 \mathbf{Z})[x]$. List the prime and maximal ideals of R.

Solution: Note that by the chinese remainder theorem,

$$
R \cong(\mathbf{Z} / 4 \mathbf{Z})[x] \oplus(\mathbf{Z} / 5 \mathbf{Z})[x]
$$

Note also that $(2,0) \in R$ is nilpotent, so contained in every prime ideal. Thus the prime ideals of R are in bijection (via inverse image) with the prime ideals of the quotient

$$
S=(\mathbf{Z} / 2 \mathbf{Z})[x] \oplus(\mathbf{Z} / 5 \mathbf{Z})[x]
$$

of R by the ideal generated by $(2,0)$.
If $M \subset S$ is a maximal ideal, the quotient S / M must be a finite field (since S is finitely generated) necessarily of characteristic 2 or 5 . It follows that M has the form $f(\mathbf{Z} / 2 \mathbf{Z})[x] \oplus(\mathbf{Z} / 5 \mathbf{Z})[x]$ or $(\mathbf{Z} / 2 \mathbf{Z})[x] \oplus g(\mathbf{Z} / 5 \mathbf{Z})[x]$ where f (resp. g) is an irreducible monic polynomial in $(\mathbf{Z} / 2 \mathbf{Z})[x]$ (resp. $(\mathbf{Z} / 5 \mathbf{Z})[x])$. The ideals of S which are prime but not maximal are $\{0\} \oplus(\mathbf{Z} / 5 \mathbf{Z})[x]$ and $(\mathbf{Z} / 2 \mathbf{Z})[x] \oplus\{0\}$.
7. Let F be an infinite field and let K be a finite extension of F. Assume there are only finitely many subfields L so that $F \subset L \subset K$. Show that K is a primitive extension of F, that is, $K=F(\theta)$, where $\theta \in K$.

Solution: Consider K as a vector space over F. Since F is infinite, K is not the union of any finite collection of proper subspaces. This implies that there is an element $\theta \in K$ which does not lie in any field L with $F \subset L \subset K$ with $L \neq K$. It is then immediate that $K=F(\theta)$.
8. Let p be a prime number and let \mathbf{F}_{p} be the field of p elements. Find the number of monic irreducible polynomials of degree 6 with coefficients in \mathbf{F}_{p}.
Solution: If f is a monic irreducible in $\mathbf{F}_{p}[x]$ of degree 6 , then each root of f in $\overline{\mathbf{F}}_{p}$ generates $\mathbf{F}_{p^{6}}$ over \mathbf{F}_{p}. Conversely, given an element $x \in \mathbf{F}_{p^{6}}$ which does not lie in any smaller field, the minimal polynomial of x over \mathbf{F}_{p} is monic irreducible of degree 6 . The number of elements in $\mathbf{F}_{p^{6}}$ not contained in a smaller field is $p^{6}-p^{3}-p^{2}+p$ and so the number of monic irreducible polynomials of degree 6 in $\mathbf{F}_{p}[x]$ is

$$
\frac{p^{6}-p^{3}-p^{2}+p}{6}
$$

