Analysis Comprehensive Exam Questions
Fall 2011

1. Let f € L?(0,00) be given.
(a) Prove that

</Om F(®) dt)2 < 2\/E/Om\/¥f(t)2dt.

(b) Given part (a), prove that || F||12(0,00) < 2 f||£2(0,00), Where
1 xX
F(z) = —/ f(t)dt.
T Jo

Solution
(a) Using Holder’s inequality we have

(/Ow f(t)dt)2 = </Om tiit%f(t)dt)Q < /Ow t%dt/()wt%ﬁ(t)dt — Qﬁfox ViF(1)2dt.

(1) By (2 o
F(z) < ﬁ/o Vi)t
Set
D={(t,2)R*|0<t<z<oo} and g(t,x)= 27\;59@(15,a:)fQ(t).

We conclude that

) o0 :(:2—\/% ) B
[ F72(0,00) < /0 (/0 ﬁ3f (t)dt)dz = /R2g(t,x)dtdx.

As ¢ is nonnegative we may apply Tonelli’s theorem to obtain that

R
[e'¢) ) S
:/0 2Vtf (t)(/t de)dt

X
% 2
= 2V F2(t)dt —dx
| 2virwa
= 4| f1122(0,00)-



2. Let X be a compact metric space, and let --- C X,, C X,,_1 C --- X5 C X7 be a nested
sequence of closed nonempty subsets of X.
(a) Show that S := N, X, is nonempty.

(b) Suppose that none of the X, is contained in the disjoint union of two nonempty open
sets. Show that S cannot be contained in the disjoint union of two nonempty open sets
(hence S is connected).

Solution
(a) Denote by X¢ the complement of X,,. I if Y was empty, {X¢}22, would be an open
cover of X. As X is compact, we may a finite subcover { X, }¥_ | where n; < ny--- ,ny are

positive integers. This would imply that such that ) = N*_, X,,. = X,,, # 0 which yields a
contradiction.

(b) Suppose on the contrary that S C U UV where U and V are open, non empty and
disjoint. Then the sets F,, = X, \ (U U V) are closed and {F},}>° is a nested family whose
intersection is empty. Thus, by (a) there exists ng such that F,,, is empty. This yields a
contradiction.
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3. Let U: H — H be a unitary mapping on a Hilbert space H. Let I be the identity map
on H, set M = ker(U — I), let P be the orthogonal projection of H onto M, and for each

integer N > 0 define
=
_ k
&_N;U’

where we take U = I. Show that Sy — P strongly, i.e., for each f € H we have Sy f — Pf
as N — oo.

Hint: Show that M+ = range(U — I). Consider f € M and f € range(U — I) first.

Solution
We have
Uf-r=0 <+ f=U"f=0,
SO
ker(U — I) =ker(U™* — I) = ker(U* — I).
Therefore

M+ =ker(U — I)* = ker(U* — I)* = range((U* — I)*) = range(U — I).

If fe M=ker(U—I),then Uf = f and therefore Sy f = f for every N. Hence Sy f — Pf
in this case.

If f €range(U — I), then f = Ug — g for some g € H. Therefore

N-1 N-1
1 1 UNg g
g _ Uk _ Uk—i-l Uk - J_ I

e 1Tl Nlgll _ 219l
9 9 9
< — — .
ISvfll< ==+ == =0
Suppose f € M+ = range(U — I), and fix £ > 0. Then there exists some g € range(U — I)

such that ||f — g|| < e. Hence
ISl < I1Sngll + 1158 (f = 9l

N-1
1
< [|Snall + N Z IU*(f = 9l
k=0

= [[Sngll +[If = gl

< [|Sngll +e.
Consequently
limsup ||Sy f|| < limsup ||Sng| +¢ =¢.
N—oo N—oo
Since ¢ is arbitrary, it follows that Sy f — 0 as N — oo.

Finally, given an arbitrary vector f € H, we have f = g + h where ¢ = Pf € M and
h € M+. Therefore, by combining the cases above we see that

SNf:SNg—l—SNhngLO:Pf. O



4. Let X be a complete metric space. Prove that if Uy, Us,,... are open, dense subsets
of X, then NU,, is dense in X.

Solution
The sets E, = US = X \ U, are closed and have empty interiors.
If NU,, is not dense in X, then we can find some f € X and r > 0 such that

B.(f) C (fj v,) = f_j E,.

The closed ball

Y = Br/2(f)

is a closed subset of X and hence is a complete metric space (using the metric on X). We
have

Y=J(E.nY)
n=1
Each set E, NY is closed in Y, and its complement in Y is
Y\ (E,.NY)=YnNU,.

Since U, is dense in X, the set Y N U, is dense in Y. Hence the interior of E, N'Y must be
empty. Therefore we have written Y as a countable union of closed sets that each have empty
interiors. The Baire Category Theorem says that a complete metric space is nonmeager in
itself, so this is a contradiction.



5. Given f:R — R and y € R, define f¥(x) = f(x —y).

(a)
(b) Show that if f € LP(R) and 1 < p < oo, then limy_o || f¥ — f||Lrr) = 0.
(c) Either prove or give a counterexample: if f € L>(R), then limy_o || f¥ — f| o) = 0.

Show that if f is continuous and has compact support, then lim,_o || f¥ — f|ze®) = 0.

Solution
(a) Suppose f is continuous its support is contained in [—r,r] and r > 1. Note that if
ly| < 1 then f¥(x) — f(z) = f(xr —y) — f(z) = 0 unless |z| < 2r. Hence, if € € (0,1)

I(€) := ﬁlp 1f¥ — fllee@ = sup{|f(z —y) — f(z)| | x € [-2r,2r], [y < €}
y|<e z,y

But, f is uniformly continuous on [—4r,4r] and so,
lim sup{|f(z —y) — f(2)| | v € [-2r,2r], [y[ < €} = 0.
Y

e—0t
This proves that lim. o+ sup, <. || f¥ — f||z=@®) Which proves (a).

(b) Suppose f € LP(R). For each integer n > 1 we may find g, : R — R continuous with
compact support such that ||f — gu||Lr) < 1/n. We use the triangle inequality to obtain
that

Y = fller@ < 1Y = gnllr@ + lgn — gnllr@) + lgn — Fllr@).
A simple change of variables reveal that ||f¥ — ¢¥||rr@) = ||gn — f||Lr@®) < 1/n and so,

2
17 = fllre < llgn = gnlleew) + (1)
Assume that g, is supported by [—r, + 1,7, — 1] and |y| < 1. Then ¢¥ — g, is supported by
[—7p, 7] and so,
Yy ) 1 Y
g = guller@) = 1195 — gnller=rara) < (2r)71lgn = gnllLoom)-
This, together with (a) implies

. . 1
lim sup 195 = gnllr) < lim S(l)lp(an)p 9% = gnllo@) = 0. (2)
Yy— Yy—

We combine (1) and (2) to conclude that
hmsélp I1fY = fllee@) < 2/n.
y—)
Since n is arbitrary we have that 0 < limsup, o ||fY — f|lzr@®) < 0 and so, lim,_o[|f¥ —
Fller@) = 0.

(c) Let f = x(0,1)- In other words, f(z) = 1if z € (0,1) and f(z) = 0 if z ¢ (0,1). For
O0<y<landze(0,y), fY(x) — f(x) = —1. Hence,

1FY = fllooe@y = 1Y = fllzeoy = 1.
This proves that we don’t have lim,_o || fY — f||ze®) = 0.



6. Assume f is absolutely continuous on an interval [a,b], and there is a continuous
function g such that f’ = g a.e. Show that f is differentiable at all points of [a,b], and
f'(x) = g(z) for all z € [a,b].

Solution
First proof. Since g is continuous, every point is a Lebesgue point of g. Suppose that
x € (a,b). If |h] is small enough, then we have  + h € (a, b) as well, so we can compute that

= lim / dt Fund. Thm. Calculus
h—0 h
. !’
= }lll_)r% h/ since ' = g a.e.
h
= }lli 1 flz+ i)z /() since f is absolutely continuous.

Therefore f is differentiable at all points in (a,b), and f'(x) = g(x) for = € (a,b). a similar
proof works at the endpoints x = a and x = b if we take appropriate limits from the left or
right.

Second proof. Since g is continuous, its antiderivative F(x f g(t) dt is absolutely
continuous, differentiable at all points, and satisfies F'(x) = g( ) for every x € |a,b]. Hence
(F—f) =F — f =g—g=0ae. An absolutely continuous function whose derivative is
zero almost everywhere must be a constant. Therefore F'— f is constant, so f = F'4+c and f
is differentiable at all points. Also f'(x) = F'(x) = g(x) for all z € [a, b].
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7. Let Y be a dense subspace of a normed linear space X, and let Z be a Banach space.
Let L: Y — Z be a bounded linear operator.

(a) Prove that there exists a unique bounded linear operator L: X — Z whose restriction
to Y is L. Prove that ||L] = ||L]].

(b) Prove that if L: Y — range(L) is a topological isomorphism (L is a bijection and L,
L~! are both continuous) then L: X — range(L) is also a topological isomorphism.

Solution

(a) Fix any f € X. Since Y is dense in X, there exist g, € Y such that g, — f. Since L
is bounded, we have ||Lg,, — Lgn|l < ||L|| [|gm — gnll- But {gn}nen is Cauchy in X, so this
implies that {Lg, }nen is Cauchy in Z. Since Z is a Banach space, we conclude that there
exists an h € Z such that Lg, — h. Define zf = h.

To see that L is well-defined, suppose that we also had ¢/, — f for some ¢/, € Y. Then
\Lgl,— Lgn|| < ||L| ||g,—gnl|| — 0. Since Lg,, — h, it follows that Lg!, = Lg,,+(Lg,,—Lg,) —
h +0 = h. Thus Lis well-defined, and similarly it is linear.

To see that L is an extension of L, suppose that g € Y is fixed. If we set g, = g, then
gn — g and Lg, — Lg, so by definition we have Lg = Lg. Hence the restriction of L to Y is
L. Consequently,

LI = sup [Lfl = sup |Lfl= sup [Lf]=IL].
fex, |1fl=1 rev.|fl=1 fev, lifl=1

Now suppose that f € X. Then there exist g, € Y such that g, — f and Lg,, — Zf, SO
L1 = tim [Lgall < tim 2] lgul = LI 1£].

Hencel|Z|| < ||L]]. Combining this with the opposite inequality derived above, we conclude
that || L[| = [|L]- N

Finally, we must show that L is unique. Suppose that A € B(X,Y") also satisfied Aly = L
Then Af = Lf for all f € Y. Since Y is dense, this extends by continuity to all f € X,
which implies that A = L.

(b) Suppose that L: Y — range(Y) is a topological isomorphism. We already know that
L: X — range(L) is bounded. We need to show that L is injective, that L=!: range(L) — X
is bounded, and that range(L) = range(L).

Fix any f € X. Then there exist g, € Y such that g, — f and Lg, — zf Since L is a
topological isomorphism, [|g,|| = [|[L™ Lg,|| < ||L7] || Lgn||- Hence

gn | /1l

ILf|l = lim ||Lg,| > lim :
A A

Consequently, L is injective and for any h € range(L) we have
IL7 ) < (IL7HILE R = L7 2]
Therefore L™ : range(L) — X is bounded.



It remains only to show that the range of L is the closure of the range of L. If f € X, then
by definition there exist g, € Y such that g, — f and Lg, — Lf. Hence Lf € range(L), so
range(L) C range(L).

On the other hand, suppose that h € range(L). Then there exist g, € Y such that Lg,, — h.
Since L~ is bounded and L extends L, we conclude that g, = L™ (Lg,) — L~'(h). Hence

f=L"%(h), so f € range(L).
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8. Assume that £ C R? is Lebesgue measurable and m(E) > 0, where m denotes
Lebesgue measure. Show that there exists a point x € E such that for every 6 > 0 we
have m(E N Bs(x)) > 0. Here, Bs(x) denotes the open ball with center x and radius 6.

Solution
Suppose on the contrary that for every x € E there exists 0, > 0 such that m(ENDB;, (x)) =
0. Set
F:={Bs(z) |z € E,0 < <min{d,,1}}.
By Vitali’s Covering Lemma there exists G, a countable family of disjoint balls in F, such
that R
UperB C UpegB

where ég(l’) = Bss(z). As E C UgerB we have E C UBegB and so,

m(E) <> m(B)=0.

Beg
This contradicts the fact that m(E) > 0.



