
Analysis Comprehensive Exam Questions
Fall 2011

1. Let f ∈ L2(0,∞) be given.

(a) Prove that (∫ x

0

f(t) dt

)2

≤ 2
√

x

∫ x

0

√
t f(t)2 dt.

(b) Given part (a), prove that ‖F‖L2(0,∞) ≤ 2 ‖f‖L2(0,∞), where

F (x) =
1

x

∫ x

0

f(t)dt.

Solution
(a) Using Hölder’s inequality we have

(∫ x

0

f(t)dt

)2

=

(∫ x

0

1

t
1

4

t
1

4 f(t)dt

)2

≤
∫ x

0

1

t
1

2

dt

∫ x

0

t
1

2 f 2(t)dt = 2
√

x

∫ x

0

√
tf(t)2dt.

(b) By (a)

F 2(x) ≤ 2
√

x
3

∫ x

0

√
tf 2(t)dt.

Set

D = {(t, x)R2 | 0 < t ≤ x < ∞} and g(t, x) =
2
√

t
√

x
3 χD(t, x)f 2(t).

We conclude that

||F ||2L2(0,∞) ≤
∫ ∞

0

(∫ x

0

2
√

t
√

x
3f 2(t)dt

)
dx =

∫

R2

g(t, x)dtdx.

As g is nonnegative we may apply Tonelli’s theorem to obtain that

||F ||2L2(0,∞) ≤
∫

R2

g(t, x)dxdt

=

∫ ∞

0

2
√

tf 2(t)
(∫ ∞

t

1
√

x
3 dx

)
dt

=

∫ ∞

0

2
√

tf 2(t)dt
2√
t
dx

= 4||f ||2L2(0,∞).
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2. Let X be a compact metric space, and let · · · ⊂ Xn ⊂ Xn−1 ⊂ · · ·X2 ⊂ X1 be a nested
sequence of closed nonempty subsets of X.

(a) Show that S := ∩∞
n=1Xn is nonempty.

(b) Suppose that none of the Xn is contained in the disjoint union of two nonempty open
sets. Show that S cannot be contained in the disjoint union of two nonempty open sets
(hence S is connected).

Solution
(a) Denote by Xc

n the complement of Xn. I if Y was empty, {Xc
n}∞n=1 would be an open

cover of X. As X is compact, we may a finite subcover {Xni
}k

i=1 where n1 < n2 · · · , nk are
positive integers. This would imply that such that ∅ = ∩k

i=1Xni
= Xnk

6= ∅ which yields a
contradiction.

(b) Suppose on the contrary that S ⊂ U ∪ V where U and V are open, non empty and
disjoint. Then the sets Fn = Xn \ (U ∪ V ) are closed and {Fn}∞n=1 is a nested family whose
intersection is empty. Thus, by (a) there exists n0 such that Fn0

is empty. This yields a
contradiction.
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3. Let U : H → H be a unitary mapping on a Hilbert space H. Let I be the identity map
on H, set M = ker(U − I), let P be the orthogonal projection of H onto M, and for each
integer N > 0 define

SN =
1

N

N−1∑

k=0

Uk,

where we take U0 = I. Show that SN → P strongly, i.e., for each f ∈ H we have SNf → Pf
as N → ∞.

Hint: Show that M⊥ = range(U − I). Consider f ∈ M and f ∈ range(U − I) first.

Solution
We have

Uf − f = 0 ⇐⇒ f − U−1f = 0,

so
ker(U − I) = ker(U−1 − I) = ker(U∗ − I).

Therefore

M⊥ = ker(U − I)⊥ = ker(U∗ − I)⊥ = range((U∗ − I)∗) = range(U − I).

If f ∈ M = ker(U−I), then Uf = f and therefore SNf = f for every N. Hence SNf → Pf
in this case.

If f ∈ range(U − I), then f = Ug − g for some g ∈ H. Therefore

SNf =
1

N

N−1∑

k=0

Ukf =
1

N

N−1∑

k=0

(Uk+1g − Ukg) =
UNg

N
− g

N
.

Hence

‖SNf‖ ≤ ‖UNg‖
N

+
‖g‖
N

=
2 ‖g‖
N

→ 0.

Suppose f ∈ M⊥ = range(U − I), and fix ε > 0. Then there exists some g ∈ range(U − I)
such that ‖f − g‖ < ε. Hence

‖SNf‖ ≤ ‖SNg‖ + ‖SN(f − g)‖

≤ ‖SNg‖ +
1

N

N−1∑

k=0

‖Uk(f − g)‖

= ‖SNg‖ + ‖f − g‖

≤ ‖SNg‖ + ε.

Consequently
lim sup

N→∞
‖SNf‖ ≤ lim sup

N→∞
‖SNg‖ + ε = ε.

Since ε is arbitrary, it follows that SNf → 0 as N → ∞.

Finally, given an arbitrary vector f ∈ H, we have f = g + h where g = Pf ∈ M and
h ∈ M⊥. Therefore, by combining the cases above we see that

SNf = SNg + SNh → g + 0 = Pf. �
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4. Let X be a complete metric space. Prove that if U1, U2, . . . are open, dense subsets
of X, then ∩Un is dense in X.

Solution
The sets En = UC

n = X \ Un are closed and have empty interiors.
If ∩Un is not dense in X, then we can find some f ∈ X and r > 0 such that

Br(f) ⊆
( ∞⋂

n=1

Un

)C

=
∞⋃

n=1

En.

The closed ball
Y = Br/2(f)

is a closed subset of X and hence is a complete metric space (using the metric on X). We
have

Y =
∞⋃

n=1

(En ∩ Y ).

Each set En ∩ Y is closed in Y, and its complement in Y is

Y \ (En ∩ Y ) = Y ∩ Un.

Since Un is dense in X, the set Y ∩ Un is dense in Y. Hence the interior of En ∩ Y must be
empty. Therefore we have written Y as a countable union of closed sets that each have empty
interiors. The Baire Category Theorem says that a complete metric space is nonmeager in
itself, so this is a contradiction.
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5. Given f : R → R and y ∈ R, define f y(x) = f(x − y).

(a) Show that if f is continuous and has compact support, then limy→0 ‖f y −f‖L∞(R) = 0.

(b) Show that if f ∈ Lp(R) and 1 ≤ p < ∞, then limy→0 ‖f y − f‖Lp(R) = 0.

(c) Either prove or give a counterexample: if f ∈ L∞(R), then limy→0 ‖f y − f‖L∞(R) = 0.

Solution
(a) Suppose f is continuous its support is contained in [−r, r] and r > 1. Note that if

|y| < 1 then f y(x) − f(x) = f(x − y) − f(x) = 0 unless |x| ≤ 2r. Hence, if ǫ ∈ (0, 1)

l(ǫ) := sup
|y|≤ǫ

||f y − f ||L∞(R) = sup
x,y

{|f(x − y) − f(x)| | x ∈ [−2r, 2r], |y| ≤ ǫ}.

But, f is uniformly continuous on [−4r, 4r] and so,

lim
ǫ→0+

sup
x,y

{|f(x − y) − f(x)| | x ∈ [−2r, 2r], |y| ≤ ǫ} = 0.

This proves that limǫ→0+ sup|y|≤ǫ ||f y − f ||L∞(R) which proves (a).

(b) Suppose f ∈ Lp(R). For each integer n ≥ 1 we may find gn : R → R continuous with
compact support such that ||f − gn||Lp(R) < 1/n. We use the triangle inequality to obtain
that

||f y − f ||Lp(R) ≤ ||f y − gy
n||Lp(R) + ||gy

n − gn||Lp(R) + ||gn − f ||Lp(R).

A simple change of variables reveal that ||f y − gy
n||Lp(R) = ||gn − f ||Lp(R) < 1/n and so,

||f y − f ||Lp(R) ≤ ||gy
n − gn||Lp(R) +

2

n
. (1)

Assume that gn is supported by [−rn + 1, rn − 1] and |y| ≤ 1. Then gy
n − gn is supported by

[−rn, rn] and so,

||gy
n − gn||Lp(R) = ||gy

n − gn||Lp([−rn,rn]) ≤ (2rn)
1

p ||gy
n − gn||L∞(R).

This, together with (a) implies

lim sup
y→0

||gy
n − gn||Lp(R) ≤ lim sup

y→0
(2rn)

1

p ||gy
n − gn||L∞(R) = 0. (2)

We combine (1) and (2) to conclude that

lim sup
y→0

||f y − f ||Lp(R) ≤ 2/n.

Since n is arbitrary we have that 0 ≤ lim supy→0 ||f y − f ||Lp(R) ≤ 0 and so, limy→0 ||f y −
f ||Lp(R) = 0.

(c) Let f = χ(0,1). In other words, f(x) = 1 if x ∈ (0, 1) and f(x) = 0 if x 6∈ (0, 1). For
0 < y < 1 and x ∈ (0, y), f y(x) − f(x) = −1. Hence,

||f y − f ||L∞(R) ≥ ||f y − f ||L∞(0,y) = 1.

This proves that we don’t have limy→0 ||f y − f ||L∞(R) = 0.



6

6. Assume f is absolutely continuous on an interval [a, b], and there is a continuous
function g such that f ′ = g a.e. Show that f is differentiable at all points of [a, b], and
f ′(x) = g(x) for all x ∈ [a, b].

Solution
First proof. Since g is continuous, every point is a Lebesgue point of g. Suppose that

x ∈ (a, b). If |h| is small enough, then we have x+h ∈ (a, b) as well, so we can compute that

g(x) = lim
h→0

1

h

∫ x+h

x

g(t) dt Fund. Thm. Calculus

= lim
h→0

1

h

∫ x+h

x

f ′(t) dt since f ′ = g a.e.

= lim
h→0

f(x + h) − f(x)

h
since f is absolutely continuous.

Therefore f is differentiable at all points in (a, b), and f ′(x) = g(x) for x ∈ (a, b). a similar
proof works at the endpoints x = a and x = b if we take appropriate limits from the left or
right.

Second proof. Since g is continuous, its antiderivative F (x) =
∫ x

a
g(t) dt is absolutely

continuous, differentiable at all points, and satisfies F ′(x) = g(x) for every x ∈ [a, b]. Hence
(F − f)′ = F ′ − f ′ = g − g = 0 a.e. An absolutely continuous function whose derivative is
zero almost everywhere must be a constant. Therefore F −f is constant, so f = F + c and f
is differentiable at all points. Also f ′(x) = F ′(x) = g(x) for all x ∈ [a, b].
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7. Let Y be a dense subspace of a normed linear space X, and let Z be a Banach space.
Let L : Y → Z be a bounded linear operator.

(a) Prove that there exists a unique bounded linear operator L̃ : X → Z whose restriction

to Y is L. Prove that ‖L̃‖ = ‖L‖.
(b) Prove that if L : Y → range(L) is a topological isomorphism (L is a bijection and L,

L−1 are both continuous) then L̃ : X → range(L) is also a topological isomorphism.

Solution
(a) Fix any f ∈ X. Since Y is dense in X, there exist gn ∈ Y such that gn → f. Since L

is bounded, we have ‖Lgm − Lgn‖ ≤ ‖L‖ ‖gm − gn‖. But {gn}n∈N is Cauchy in X, so this
implies that {Lgn}n∈N is Cauchy in Z. Since Z is a Banach space, we conclude that there

exists an h ∈ Z such that Lgn → h. Define L̃f = h.

To see that L̃ is well-defined, suppose that we also had g′
n → f for some g′

n ∈ Y. Then
‖Lg′

n−Lgn‖ ≤ ‖L‖ ‖g′
n−gn‖ → 0. Since Lgn → h, it follows that Lg′

n = Lgn+(Lg′
n−Lgn) →

h + 0 = h. Thus L̃ is well-defined, and similarly it is linear.

To see that L̃ is an extension of L, suppose that g ∈ Y is fixed. If we set gn = g, then
gn → g and Lgn → Lg, so by definition we have L̃g = Lg. Hence the restriction of L̃ to Y is
L. Consequently,

‖L̃‖ = sup
f∈X, ‖f‖=1

‖L̃f‖ ≥ sup
f∈Y, ‖f‖=1

‖L̃f‖ = sup
f∈Y, ‖f‖=1

‖Lf‖ = ‖L‖.

Now suppose that f ∈ X. Then there exist gn ∈ Y such that gn → f and Lgn → L̃f, so

‖L̃f‖ = lim
n→∞

‖Lgn‖ ≤ lim
n→∞

‖L‖ ‖gn‖ = ‖L‖ ‖f‖.

Hence ‖L̃‖ ≤ ‖L‖. Combining this with the opposite inequality derived above, we conclude

that ‖L̃‖ = ‖L‖.
Finally, we must show that L̃ is unique. Suppose that A ∈ B(X, Y ) also satisfied A|Y = L.

Then Af = L̃f for all f ∈ Y. Since Y is dense, this extends by continuity to all f ∈ X,

which implies that A = L̃.

(b) Suppose that L : Y → range(Y ) is a topological isomorphism. We already know that

L̃ : X → range(L̃) is bounded. We need to show that L̃ is injective, that L̃−1 : range(L̃) → X

is bounded, and that range(L̃) = range(L).

Fix any f ∈ X. Then there exist gn ∈ Y such that gn → f and Lgn → L̃f. Since L is a
topological isomorphism, ‖gn‖ = ‖L−1Lgn‖ ≤ ‖L−1‖ ‖Lgn‖. Hence

‖L̃f‖ = lim
n→∞

‖Lgn‖ ≥ lim
n→∞

‖gn‖
‖L−1‖ =

‖f‖
‖L−1‖ .

Consequently, L̃ is injective and for any h ∈ range(L̃) we have

‖L̃−1h‖ ≤ ‖L−1‖ ‖L̃(L̃−1h)‖ = ‖L−1‖ ‖h‖.

Therefore L̃−1 : range(L̃) → X is bounded.
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It remains only to show that the range of L̃ is the closure of the range of L. If f ∈ X, then

by definition there exist gn ∈ Y such that gn → f and Lgn → L̃f. Hence L̃f ∈ range(L), so

range(L̃) ⊆ range(L).

On the other hand, suppose that h ∈ range(L). Then there exist gn ∈ Y such that Lgn → h.

Since L̃−1 is bounded and L̃ extends L, we conclude that gn = L̃−1(Lgn) → L̃−1(h). Hence

f = L̃−1(h), so f ∈ range(L̃).
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8. Assume that E ⊂ R
d is Lebesgue measurable and m(E) > 0, where m denotes

Lebesgue measure. Show that there exists a point x ∈ E such that for every δ > 0 we
have m(E ∩ Bδ(x)) > 0. Here, Bδ(x) denotes the open ball with center x and radius δ.

Solution
Suppose on the contrary that for every x ∈ E there exists δx > 0 such that m(E∩Bδx

(x)) =
0. Set

F := {B̄δ(x) | x ∈ E, 0 < δ < min{δx, 1}}.
By Vitali’s Covering Lemma there exists G, a countable family of disjoint balls in F , such
that

∪B∈FB ⊂ ∪B∈GB̂

where ˆ̄Bδ(x) = B̄5δ(x). As E ⊂ ∪B∈FB we have E ⊂ ∪B∈GB̂ and so,

m(E) ≤
∑

B∈G

m(B̂) = 0.

This contradicts the fact that m(E) > 0.


