Analysis Comprehensive Exam Questions

Fall 2011

1. Let $f \in L^{2}(0, \infty)$ be given.
(a) Prove that

$$
\left(\int_{0}^{x} f(t) d t\right)^{2} \leq 2 \sqrt{x} \int_{0}^{x} \sqrt{t} f(t)^{2} d t
$$

(b) Given part (a), prove that $\|F\|_{L^{2}(0, \infty)} \leq 2\|f\|_{L^{2}(0, \infty)}$, where

$$
F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t
$$

Solution
(a) Using Hölder's inequality we have

$$
\left(\int_{0}^{x} f(t) d t\right)^{2}=\left(\int_{0}^{x} \frac{1}{t^{\frac{1}{4}}} t^{\frac{1}{4}} f(t) d t\right)^{2} \leq \int_{0}^{x} \frac{1}{t^{\frac{1}{2}}} d t \int_{0}^{x} t^{\frac{1}{2}} f^{2}(t) d t=2 \sqrt{x} \int_{0}^{x} \sqrt{t} f(t)^{2} d t
$$

(b) By (a)

$$
F^{2}(x) \leq \frac{2}{\sqrt{x}^{3}} \int_{0}^{x} \sqrt{t} f^{2}(t) d t
$$

Set

$$
D=\left\{(t, x) \mathbb{R}^{2} \mid 0<t \leq x<\infty\right\} \quad \text { and } \quad g(t, x)=\frac{2 \sqrt{t}}{\sqrt{x}^{3}} \chi_{D}(t, x) f^{2}(t)
$$

We conclude that

$$
\|F\|_{L^{2}(0, \infty)}^{2} \leq \int_{0}^{\infty}\left(\int_{0}^{x} \frac{2 \sqrt{t}}{\sqrt{x}^{3}} f^{2}(t) d t\right) d x=\int_{\mathbb{R}^{2}} g(t, x) d t d x
$$

As g is nonnegative we may apply Tonelli's theorem to obtain that

$$
\begin{aligned}
\|F\|_{L^{2}(0, \infty)}^{2} & \leq \int_{\mathbb{R}^{2}} g(t, x) d x d t \\
& =\int_{0}^{\infty} 2 \sqrt{t} f^{2}(t)\left(\int_{t}^{\infty} \frac{1}{\sqrt{x}^{3}} d x\right) d t \\
& =\int_{0}^{\infty} 2 \sqrt{t} f^{2}(t) d t \frac{2}{\sqrt{t}} d x \\
& =4\|f\|_{L^{2}(0, \infty)}^{2} .
\end{aligned}
$$

2. Let X be a compact metric space, and let $\cdots \subset X_{n} \subset X_{n-1} \subset \cdots X_{2} \subset X_{1}$ be a nested sequence of closed nonempty subsets of X.
(a) Show that $S:=\cap_{n=1}^{\infty} X_{n}$ is nonempty.
(b) Suppose that none of the X_{n} is contained in the disjoint union of two nonempty open sets. Show that S cannot be contained in the disjoint union of two nonempty open sets (hence S is connected).

Solution

(a) Denote by X_{n}^{c} the complement of X_{n}. I if Y was empty, $\left\{X_{n}^{c}\right\}_{n=1}^{\infty}$ would be an open cover of X. As X is compact, we may a finite subcover $\left\{X_{n_{i}}\right\}_{i=1}^{k}$ where $n_{1}<n_{2} \cdots, n_{k}$ are positive integers. This would imply that such that $\emptyset=\cap_{i=1}^{k} X_{n_{i}}=X_{n_{k}} \neq \emptyset$ which yields a contradiction.
(b) Suppose on the contrary that $S \subset U \cup V$ where U and V are open, non empty and disjoint. Then the sets $F_{n}=X_{n} \backslash(U \cup V)$ are closed and $\left\{F_{n}\right\}_{n=1}^{\infty}$ is a nested family whose intersection is empty. Thus, by (a) there exists n_{0} such that $F_{n_{0}}$ is empty. This yields a contradiction.
3. Let $U: H \rightarrow H$ be a unitary mapping on a Hilbert space H. Let I be the identity map on H, set $M=\operatorname{ker}(U-I)$, let P be the orthogonal projection of H onto M, and for each integer $N>0$ define

$$
S_{N}=\frac{1}{N} \sum_{k=0}^{N-1} U^{k}
$$

where we take $U^{0}=I$. Show that $S_{N} \rightarrow P$ strongly, i.e., for each $f \in H$ we have $S_{N} f \rightarrow P f$ as $N \rightarrow \infty$.

Hint: Show that $M^{\perp}=\overline{\operatorname{range}(U-I)}$. Consider $f \in M$ and $f \in \operatorname{range}(U-I)$ first.

Solution

We have

$$
U f-f=0 \quad \Longleftrightarrow \quad f-U^{-1} f=0
$$

so

$$
\operatorname{ker}(U-I)=\operatorname{ker}\left(U^{-1}-I\right)=\operatorname{ker}\left(U^{*}-I\right)
$$

Therefore

$$
M^{\perp}=\operatorname{ker}(U-I)^{\perp}=\operatorname{ker}\left(U^{*}-I\right)^{\perp}=\overline{\operatorname{range}\left(\left(U^{*}-I\right)^{*}\right)}=\overline{\operatorname{range}(U-I)} .
$$

If $f \in M=\operatorname{ker}(U-I)$, then $U f=f$ and therefore $S_{N} f=f$ for every N. Hence $S_{N} f \rightarrow P f$ in this case.

If $f \in \operatorname{range}(U-I)$, then $f=U g-g$ for some $g \in H$. Therefore

$$
S_{N} f=\frac{1}{N} \sum_{k=0}^{N-1} U^{k} f=\frac{1}{N} \sum_{k=0}^{N-1}\left(U^{k+1} g-U^{k} g\right)=\frac{U^{N} g}{N}-\frac{g}{N}
$$

Hence

$$
\left\|S_{N} f\right\| \leq \frac{\left\|U^{N} g\right\|}{N}+\frac{\|g\|}{N}=\frac{2\|g\|}{N} \rightarrow 0
$$

Suppose $f \in M^{\perp}=\overline{\operatorname{range}(U-I)}$, and fix $\varepsilon>0$. Then there exists some $g \in \operatorname{range}(U-I)$ such that $\|f-g\|<\varepsilon$. Hence

$$
\begin{aligned}
\left\|S_{N} f\right\| & \leq\left\|S_{N} g\right\|+\left\|S_{N}(f-g)\right\| \\
& \leq\left\|S_{N} g\right\|+\frac{1}{N} \sum_{k=0}^{N-1}\left\|U^{k}(f-g)\right\| \\
& =\left\|S_{N} g\right\|+\|f-g\| \\
& \leq\left\|S_{N} g\right\|+\varepsilon
\end{aligned}
$$

Consequently

$$
\limsup _{N \rightarrow \infty}\left\|S_{N} f\right\| \leq \limsup _{N \rightarrow \infty}\left\|S_{N} g\right\|+\varepsilon=\varepsilon
$$

Since ε is arbitrary, it follows that $S_{N} f \rightarrow 0$ as $N \rightarrow \infty$.
Finally, given an arbitrary vector $f \in H$, we have $f=g+h$ where $g=P f \in M$ and $h \in M^{\perp}$. Therefore, by combining the cases above we see that

$$
S_{N} f=S_{N} g+S_{N} h \rightarrow g+0=P f
$$

4. Let X be a complete metric space. Prove that if U_{1}, U_{2}, \ldots are open, dense subsets of X, then $\cap U_{n}$ is dense in X.
Solution
The sets $E_{n}=U_{n}^{\mathrm{C}}=X \backslash U_{n}$ are closed and have empty interiors.
If $\cap U_{n}$ is not dense in X, then we can find some $f \in X$ and $r>0$ such that

$$
B_{r}(f) \subseteq\left(\bigcap_{n=1}^{\infty} U_{n}\right)^{\mathrm{C}}=\bigcup_{n=1}^{\infty} E_{n}
$$

The closed ball

$$
Y=\overline{B_{r / 2}(f)}
$$

is a closed subset of X and hence is a complete metric space (using the metric on X). We have

$$
Y=\bigcup_{n=1}^{\infty}\left(E_{n} \cap Y\right)
$$

Each set $E_{n} \cap Y$ is closed in Y, and its complement in Y is

$$
Y \backslash\left(E_{n} \cap Y\right)=Y \cap U_{n}
$$

Since U_{n} is dense in X, the set $Y \cap U_{n}$ is dense in Y. Hence the interior of $E_{n} \cap Y$ must be empty. Therefore we have written Y as a countable union of closed sets that each have empty interiors. The Baire Category Theorem says that a complete metric space is nonmeager in itself, so this is a contradiction.
5. Given $f: \mathbb{R} \rightarrow \mathbb{R}$ and $y \in \mathbb{R}$, define $f^{y}(x)=f(x-y)$.
(a) Show that if f is continuous and has compact support, then $\lim _{y \rightarrow 0}\left\|f^{y}-f\right\|_{L^{\infty}(\mathbb{R})}=0$.
(b) Show that if $f \in L^{p}(\mathbb{R})$ and $1 \leq p<\infty$, then $\lim _{y \rightarrow 0}\left\|f^{y}-f\right\|_{L^{p}(\mathbb{R})}=0$.
(c) Either prove or give a counterexample: if $f \in L^{\infty}(\mathbb{R})$, then $\lim _{y \rightarrow 0}\left\|f^{y}-f\right\|_{L^{\infty}(\mathbb{R})}=0$.

Solution

(a) Suppose f is continuous its support is contained in $[-r, r]$ and $r>1$. Note that if $|y|<1$ then $f^{y}(x)-f(x)=f(x-y)-f(x)=0$ unless $|x| \leq 2 r$. Hence, if $\epsilon \in(0,1)$

$$
l(\epsilon):=\sup _{|y| \leq \epsilon}\left\|f^{y}-f\right\|_{L^{\infty}(\mathbb{R})}=\sup _{x, y}\{|f(x-y)-f(x)||x \in[-2 r, 2 r],|y| \leq \epsilon\} .
$$

But, f is uniformly continuous on $[-4 r, 4 r]$ and so,

$$
\lim _{\epsilon \rightarrow 0^{+}} \sup _{x, y}\{|f(x-y)-f(x)||x \in[-2 r, 2 r],|y| \leq \epsilon\}=0 .
$$

This proves that $\lim _{\epsilon \rightarrow 0^{+}} \sup _{|y| \leq \epsilon}\left\|f^{y}-f\right\|_{L^{\infty}(\mathbb{R})}$ which proves (a).
(b) Suppose $f \in L^{p}(\mathbb{R})$. For each integer $n \geq 1$ we may find $g_{n}: \mathbb{R} \rightarrow \mathbb{R}$ continuous with compact support such that $\left\|f-g_{n}\right\|_{L^{p}(\mathbb{R})}<1 / n$. We use the triangle inequality to obtain that

$$
\left\|f^{y}-f\right\|_{L^{p}(\mathbb{R})} \leq\left\|f^{y}-g_{n}^{y}\right\|_{L^{p}(\mathbb{R})}+\left\|g_{n}^{y}-g_{n}\right\|_{L^{p}(\mathbb{R})}+\left\|g_{n}-f\right\|_{L^{p}(\mathbb{R})}
$$

A simple change of variables reveal that $\left\|f^{y}-g_{n}^{y}\right\|_{L^{p}(\mathbb{R})}=\left\|g_{n}-f\right\|_{L^{p}(\mathbb{R})}<1 / n$ and so,

$$
\begin{equation*}
\left\|f^{y}-f\right\|_{L^{p}(\mathbb{R})} \leq\left\|g_{n}^{y}-g_{n}\right\|_{L^{p}(\mathbb{R})}+\frac{2}{n} \tag{1}
\end{equation*}
$$

Assume that g_{n} is supported by $\left[-r_{n}+1, r_{n}-1\right]$ and $|y| \leq 1$. Then $g_{n}^{y}-g_{n}$ is supported by [$-r_{n}, r_{n}$] and so,

$$
\left\|g_{n}^{y}-g_{n}\right\|_{L^{p}(\mathbb{R})}=\left\|g_{n}^{y}-g_{n}\right\|_{L^{p}\left(\left[-r_{n}, r_{n}\right]\right)} \leq\left(2 r_{n}\right)^{\frac{1}{p}}\left\|g_{n}^{y}-g_{n}\right\|_{L^{\infty}(\mathbb{R})}
$$

This, together with (a) implies

$$
\begin{equation*}
\limsup _{y \rightarrow 0}\left\|g_{n}^{y}-g_{n}\right\|_{L^{p}(\mathbb{R})} \leq \limsup _{y \rightarrow 0}\left(2 r_{n}\right)^{\frac{1}{p}}\left\|g_{n}^{y}-g_{n}\right\|_{L^{\infty}(\mathbb{R})}=0 \tag{2}
\end{equation*}
$$

We combine (1) and (2) to conclude that

$$
\limsup _{y \rightarrow 0}\left\|f^{y}-f\right\|_{L^{p}(\mathbb{R})} \leq 2 / n
$$

Since n is arbitrary we have that $0 \leq \lim \sup _{y \rightarrow 0}\left\|f^{y}-f\right\|_{L^{p}(\mathbb{R})} \leq 0$ and so, $\lim _{y \rightarrow 0} \| f^{y}-$ $f \|_{L^{p}(\mathbb{R})}=0$.
(c) Let $f=\chi_{(0,1)}$. In other words, $f(x)=1$ if $x \in(0,1)$ and $f(x)=0$ if $x \notin(0,1)$. For $0<y<1$ and $x \in(0, y), f^{y}(x)-f(x)=-1$. Hence,

$$
\left\|f^{y}-f\right\|_{L^{\infty}(\mathbb{R})} \geq\left\|f^{y}-f\right\|_{L^{\infty}(0, y)}=1 .
$$

This proves that we don't have $\lim _{y \rightarrow 0}\left\|f^{y}-f\right\|_{L^{\infty}(\mathbb{R})}=0$.
6. Assume f is absolutely continuous on an interval $[a, b]$, and there is a continuous function g such that $f^{\prime}=g$ a.e. Show that f is differentiable at all points of $[a, b]$, and $f^{\prime}(x)=g(x)$ for all $x \in[a, b]$.
Solution
First proof. Since g is continuous, every point is a Lebesgue point of g. Suppose that $x \in(a, b)$. If $|h|$ is small enough, then we have $x+h \in(a, b)$ as well, so we can compute that

$$
\begin{aligned}
g(x) & =\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} g(t) d t & & \text { Fund. Thm. Calculus } \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f^{\prime}(t) d t & & \text { since } f^{\prime}=g \text { a.e. } \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & & \text { since } f \text { is absolutely continuous. }
\end{aligned}
$$

Therefore f is differentiable at all points in (a, b), and $f^{\prime}(x)=g(x)$ for $x \in(a, b)$. a similar proof works at the endpoints $x=a$ and $x=b$ if we take appropriate limits from the left or right.

Second proof. Since g is continuous, its antiderivative $F(x)=\int_{a}^{x} g(t) d t$ is absolutely continuous, differentiable at all points, and satisfies $F^{\prime}(x)=g(x)$ for every $x \in[a, b]$. Hence $(F-f)^{\prime}=F^{\prime}-f^{\prime}=g-g=0$ a.e. An absolutely continuous function whose derivative is zero almost everywhere must be a constant. Therefore $F-f$ is constant, so $f=F+c$ and f is differentiable at all points. Also $f^{\prime}(x)=F^{\prime}(x)=g(x)$ for all $x \in[a, b]$.
7. Let Y be a dense subspace of a normed linear space X, and let Z be a Banach space. Let $L: Y \rightarrow Z$ be a bounded linear operator.
(a) Prove that there exists a unique bounded linear operator $\widetilde{L}: X \rightarrow Z$ whose restriction to Y is L. Prove that $\|\widetilde{L}\|=\|L\|$.
(b) Prove that if $L: Y \rightarrow \operatorname{range}(L)$ is a topological isomorphism (L is a bijection and L, L^{-1} are both continuous) then $\widetilde{L}: X \rightarrow \overline{\operatorname{range}(L)}$ is also a topological isomorphism.

Solution

(a) Fix any $f \in X$. Since Y is dense in X, there exist $g_{n} \in Y$ such that $g_{n} \rightarrow f$. Since L is bounded, we have $\left\|L g_{m}-L g_{n}\right\| \leq\|L\|\left\|g_{m}-g_{n}\right\|$. But $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy in X, so this implies that $\left\{L g_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy in Z. Since Z is a Banach space, we conclude that there exists an $h \in Z$ such that $L g_{n} \rightarrow h$. Define $\widetilde{L} f=h$.

To see that \widetilde{L} is well-defined, suppose that we also had $g_{n}^{\prime} \rightarrow f$ for some $g_{n}^{\prime} \in Y$. Then $\left\|L g_{n}^{\prime}-L g_{n}\right\| \leq\|L\|\left\|g_{n}^{\prime}-g_{n}\right\| \rightarrow 0$. Since $L g_{n} \rightarrow h$, it follows that $L g_{n}^{\prime}=L g_{n}+\left(L g_{n}^{\prime}-L g_{n}\right) \rightarrow$ $h+0=h$. Thus \widetilde{L} is well-defined, and similarly it is linear.

To see that \widetilde{L} is an extension of L, suppose that $g \in Y$ is fixed. If we set $g_{n}=g$, then $g_{n} \rightarrow g$ and $L g_{n} \rightarrow L g$, so by definition we have $\widetilde{L} g=L g$. Hence the restriction of \widetilde{L} to Y is L. Consequently,

$$
\|\widetilde{L}\|=\sup _{f \in X,\|f\|=1}\|\widetilde{L} f\| \geq \sup _{f \in Y,\|f\|=1}\|\widetilde{L} f\|=\sup _{f \in Y,\|f\|=1}\|L f\|=\|L\|
$$

Now suppose that $f \in X$. Then there exist $g_{n} \in Y$ such that $g_{n} \rightarrow f$ and $L g_{n} \rightarrow \widetilde{L} f$, so

$$
\|\widetilde{L} f\|=\lim _{n \rightarrow \infty}\left\|L g_{n}\right\| \leq \lim _{n \rightarrow \infty}\|L\|\left\|g_{n}\right\|=\|L\|\|f\|
$$

Hence $\|\widetilde{L}\| \leq\|L\|$. Combining this with the opposite inequality derived above, we conclude that $\|\widetilde{L}\|=\|L\|$.

Finally, we must show that \widetilde{L} is unique. Suppose that $A \in \mathcal{B}(X, Y)$ also satisfied $\left.A\right|_{Y}=L$. Then $A f=\widetilde{L} f$ for all $f \in Y$. Since Y is dense, this extends by continuity to all $f \in X$, which implies that $A=\widetilde{L}$.
(b) Suppose that $L: Y \rightarrow \operatorname{range}(Y)$ is a topological isomorphism. We already know that $\widetilde{L}: X \rightarrow \operatorname{range}(\widetilde{L})$ is bounded. We need to show that \widetilde{L} is injective, that $\widetilde{L}^{-1}: \operatorname{range}(\widetilde{L}) \rightarrow X$ is bounded, and that range $(\widetilde{L})=\overline{\operatorname{range}(L)}$.

Fix any $f \in X$. Then there exist $g_{n} \in Y$ such that $g_{n} \rightarrow f$ and $L g_{n} \rightarrow \widetilde{L} f$. Since L is a topological isomorphism, $\left\|g_{n}\right\|=\left\|L^{-1} L g_{n}\right\| \leq\left\|L^{-1}\right\|\left\|L g_{n}\right\|$. Hence

$$
\|\widetilde{L} f\|=\lim _{n \rightarrow \infty}\left\|L g_{n}\right\| \geq \lim _{n \rightarrow \infty} \frac{\left\|g_{n}\right\|}{\left\|L^{-1}\right\|}=\frac{\|f\|}{\left\|L^{-1}\right\|}
$$

Consequently, \widetilde{L} is injective and for any $h \in \operatorname{range}(\widetilde{L})$ we have

$$
\left\|\widetilde{L}^{-1} h\right\| \leq\left\|L^{-1}\right\|\left\|\widetilde{L}\left(\widetilde{L}^{-1} h\right)\right\|=\left\|L^{-1}\right\|\|h\| .
$$

Therefore \widetilde{L}^{-1} : range $(\widetilde{L}) \rightarrow X$ is bounded.

It remains only to show that the range of \widetilde{L} is the closure of the range of L. If $f \in X$, then by definition there exist $g_{n} \in Y$ such that $g_{n} \rightarrow f$ and $L g_{n} \rightarrow \widetilde{L} f$. Hence $\widetilde{L} f \in \overline{\operatorname{range}(L)}$, so range $(\widetilde{L}) \subseteq \overline{\text { range }(L)}$.

On the other hand, suppose that $h \in \overline{\operatorname{range}(L)}$. Then there exist $g_{n} \in Y$ such that $L g_{n} \rightarrow h$. Since \widetilde{L}^{-1} is bounded and \widetilde{L} extends L, we conclude that $g_{n}=\widetilde{L}^{-1}\left(L g_{n}\right) \rightarrow \widetilde{L}^{-1}(h)$. Hence $f=\widetilde{L}^{-1}(h)$, so $f \in \operatorname{range}(\widetilde{L})$.
8. Assume that $E \subset \mathbb{R}^{d}$ is Lebesgue measurable and $m(E)>0$, where m denotes Lebesgue measure. Show that there exists a point $x \in E$ such that for every $\delta>0$ we have $m\left(E \cap B_{\delta}(x)\right)>0$. Here, $B_{\delta}(x)$ denotes the open ball with center x and radius δ.

Solution
Suppose on the contrary that for every $x \in E$ there exists $\delta_{x}>0$ such that $m\left(E \cap B_{\delta_{x}}(x)\right)=$ 0 . Set

$$
\mathcal{F}:=\left\{\bar{B}_{\delta}(x) \mid x \in E, 0<\delta<\min \left\{\delta_{x}, 1\right\}\right\}
$$

By Vitali's Covering Lemma there exists \mathcal{G}, a countable family of disjoint balls in \mathcal{F}, such that

$$
\cup_{B \in \mathcal{F}} B \subset \cup_{B \in \mathcal{G}} \hat{B}
$$

where $\hat{\bar{B}}_{\delta}(x)=\bar{B}_{5 \delta}(x)$. As $E \subset \cup_{B \in \mathcal{F}} B$ we have $E \subset \cup_{B \in \mathcal{G}} \hat{B}$ and so,

$$
m(E) \leq \sum_{B \in \mathcal{G}} m(\hat{B})=0
$$

This contradicts the fact that $m(E)>0$.

