FALL 2012 ALGEBRA COMPREHENSIVE EXAM

Instructions: Complete 5 of the 8 problems below. If you attempt more than five questions, then clearly indicate which five should be graded.
(1) (a) Over a field of characteristic 0 , prove that you cannot find two matrices A and B such that $A B-B A=I$, where I denotes the identity matrix.
(b) Show that the statement is false in characteristic 2.
(2) Let G be a group of order $p^{2} q$ where p and q are distinct primes. Prove that G has a non-trivial normal subgroup.
(3) For $n \geq 3$, prove that the alternating group A_{n} is generated by 3-cycles.
(4) Find five nonabelian groups of order 24 that are pairwise non-isomorphic. Prove that your answer is correct.
(5) Let R be a commutative ring and $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x]$ be a zero divisor in the polynomial ring $R[x]$. Show that there is a nonzero element $b \in R$ such that $b a_{0}=b a_{1}=\cdots=b a_{n}=0$.
(6) Let $f(x) \in \mathbb{Q}[x]$ be a rational polynomial irreducible over \mathbb{Q}. Prove that $f(x)$ has no multiple (repeated) roots in \mathbb{C}.
(7) Let F be a finite field. Show that if $a, b \in F$ are both non-squares, then $a b$ is a square.
(8) Let $\alpha=\sqrt{5}$ and $\beta=\sqrt[3]{2}$.
(a) Prove that the degree of the field extension $\mathbb{Q}(\alpha, \beta) / \mathbb{Q}$ is 6 .
(b) Prove that the degree of the field extension $\mathbb{Q}(\alpha+\beta) / \mathbb{Q}$ is 6 .
(c) Find the minimal polynomial of $\alpha+\beta$ over \mathbb{Q}.

Solution.

(1) (a) Take trace of both sides. Suppose matrices are of size $n \times n$, then

$$
0=\operatorname{Tr}(A B)-\operatorname{Tr}(B A)=\operatorname{Tr}(I)=n
$$

This leads to a contradiction for characteristics not diving n.
(b) Over $\mathbb{Z} / 2 \mathbb{Z}$, take

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

(2) Let n_{p} and n_{q} be the number of p-Sylow subgroups and q-Sylow subgroups respectively. By Sylow's Theorems, the p-Sylow subgroups are conjugate to each other and $n_{p}=1(\bmod p)$. But $n_{p} \mid p^{2} q$, so n_{p} is either 1 or q. Similarly, $n_{q}=1(\bmod q)$, and n_{q} is 1 or p or p^{2}. If $n_{p}=1$ or $n_{q}=1$, a Sylow subgroup is normal, and we are done. Otherwise, $q \mid(p \pm 1)$ and $p \mid(q-1)$, so the only possibility is $p=2$ and $q=3$. Then G is a group of order 12. If $n_{2}=1$, we are done. Otherwise, $n_{2}=3$, and G acts transitively on the three 2-Sylow subgroups by conjugation. Thus we get a non-trivial homomorphism from G to S_{3}, whose kernel is a non-trivial normal subgroup.
(3) Let $n \geq 3$. Every element of A_{n} can be written as the product of even number of transpositions. Note that $(a b)(a c)=(a c b)$, and $(a b)(c d)=(a b)(b c)(b c)(c d)=(b c a)(c d b)$ where a, b, c, d are distinct elements in $\{1,2, \ldots, n\}$. Hence A_{n} is generated by 3 -cycles.
(4) Let S_{n} denote the symmetric group of order n and D_{n} denote the dihedral group consisting of symmetries of a regular n-gon.
(a) S_{4}
(b) D_{12}
(c) $S_{3} \times C_{4}$
(d) $S_{3} \times C_{2} \times C_{2}$
(e) $D_{6} \times C_{2}$

The last three groups have non-trivial and unique centers, so they're not isomorphic to any other on the list. The group D_{12} has 11 elements of order 2 while S_{4} has only 9 , so they're not isomorphic to each other.
(5) Let $g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$ be a polynomial of minimal degree in $R[x]$ satisfying $g(x) f(x)=0$. We will show that $b_{m} a_{i}=0$ for $0 \leq i \leq n$. It is clear that $b_{m} a_{n}=0$. Then $a_{n} g(x) f(x)=0$, so $a_{n} g(x)$ must be identically 0 ; otherwise $a_{n} g(x)$ would have degree less than $g(x)$. Thus $\left(a_{0}+\cdots+a_{n-1} x^{n-1}\right) g(x)=0$, which implies that $b_{m} a_{n-1}=0$ and $a_{n-1} g(x)=0$. By repeating this argument, we conclude that $a_{i} g(x)=0$ and $b_{m} a_{i}=0$ for all $0 \leq i \leq n$.
(6) Suppose f has a repeated root a, then a is a root of the derivative f^{\prime} and $g=\operatorname{gcd}\left(f, f^{\prime}\right) \in \mathbb{Q}[x]$, the greatest common divisor of f and f^{\prime}. In particular, g is not a constant polynomial. Since it divides f
and is of lower degree, we have a contradiction to the irreducibility of f.
(7) Let F^{*} be the multiplicative group of nonzero elements in F. It is a cyclic group. Let c be a generator. Since a and b are non-squares, they are non-zero, and they are both odd powers of c. Thus $a b$ is an even power of c, so it is a square.
(8) (a) It is sufficient to show that $[\mathbb{Q}(\alpha): \mathbb{Q}]=2$ and $[\mathbb{Q}(\alpha, \beta)$: $\mathbb{Q}(\alpha)]=3$.
(b) Let $\gamma=\alpha+\beta$. Use linear algebra to show that $\left\{1, \gamma, \gamma^{2}, \gamma^{3}\right\}$ are linearly independent over \mathbb{Q}. Since $\mathbb{Q}(\gamma)$ is a subfield of $\mathbb{Q}(\alpha, \beta)$, the order $[\mathbb{Q}(\gamma): \mathbb{Q}]$ has to divide 6 and $1,2,3$ are ruled out.
(c) Cube $\sqrt[3]{2}=\gamma-\sqrt{5}$ to get

$$
2=\gamma^{3}-3 \sqrt{5} \gamma^{2}+15 \gamma-5 \sqrt{5}
$$

Squaring $\sqrt{5}\left(3 \gamma^{2}+5\right)=\gamma^{3}+15 \gamma-2$ shows that γ is a root of

$$
f(x)=\left(x^{3}+15 x-2\right)^{2}-5\left(3 x^{2}+5\right)^{2}
$$

Since $\operatorname{deg} f(x)=6$, it is the minimal polynomial of γ by part (b).

