FALL 2012 ALGEBRA COMPREHENSIVE EXAM

Instructions: Complete 5 of the 8 problems below. If you attempt more than five questions, then clearly indicate which five should be graded.

- (1) (a) Over a field of characteristic 0, prove that you cannot find two matrices A and B such that AB BA = I, where I denotes the identity matrix.
 - (b) Show that the statement is false in characteristic 2.
- (2) Let G be a group of order p^2q where p and q are distinct primes. Prove that G has a non-trivial normal subgroup.
- (3) For $n \geq 3$, prove that the alternating group A_n is generated by 3-cycles.
- (4) Find five nonabelian groups of order 24 that are pairwise non-isomorphic. Prove that your answer is correct.
- (5) Let R be a commutative ring and $f(x) = a_0 + a_1 x + \dots + a_n x^n \in R[x]$ be a zero divisor in the polynomial ring R[x]. Show that there is a nonzero element $b \in R$ such that $ba_0 = ba_1 = \dots = ba_n = 0$.
- (6) Let $f(x) \in \mathbb{Q}[x]$ be a rational polynomial irreducible over \mathbb{Q} . Prove that f(x) has no multiple (repeated) roots in \mathbb{C} .
- (7) Let F be a finite field. Show that if $a, b \in F$ are both non-squares, then ab is a square.
- (8) Let $\alpha = \sqrt{5}$ and $\beta = \sqrt[3]{2}$.
 - (a) Prove that the degree of the field extension $\mathbb{Q}(\alpha, \beta)/\mathbb{Q}$ is 6.
 - (b) Prove that the degree of the field extension $\mathbb{Q}(\alpha + \beta)/\mathbb{Q}$ is 6.
 - (c) Find the minimal polynomial of $\alpha + \beta$ over \mathbb{Q} .

Solution.

(1) (a) Take trace of both sides. Suppose matrices are of size $n \times n$, then

$$0 = \operatorname{Tr}(AB) - \operatorname{Tr}(BA) = \operatorname{Tr}(I) = n.$$

This leads to a contradiction for characteristics not diving n.

(b) Over
$$\mathbb{Z}/2\mathbb{Z}$$
, take

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

- (2) Let n_p and n_q be the number of p-Sylow subgroups and q-Sylow subgroups respectively. By Sylow's Theorems, the p-Sylow subgroups are conjugate to each other and $n_p = 1 \pmod{p}$. But $n_p | p^2 q$, so n_p is either 1 or q. Similarly, $n_q = 1 \pmod{q}$, and n_q is 1 or p or p^2 . If $n_p = 1$ or $n_q = 1$, a Sylow subgroup is normal, and we are done. Otherwise, $q | (p \pm 1)$ and p | (q 1), so the only possibility is p = 2 and q = 3. Then G is a group of order 12. If $n_2 = 1$, we are done. Otherwise, $n_2 = 3$, and G acts transitively on the three 2-Sylow subgroups by conjugation. Thus we get a non-trivial homomorphism from G to S_3 , whose kernel is a non-trivial normal subgroup.
- (3) Let $n \geq 3$. Every element of A_n can be written as the product of even number of transpositions. Note that (ab)(ac) = (acb), and (ab)(cd) = (ab)(bc)(bc)(cd) = (bca)(cdb) where a, b, c, d are distinct elements in $\{1, 2, \ldots, n\}$. Hence A_n is generated by 3-cycles.
- (4) Let S_n denote the symmetric group of order n and D_n denote the dihedral group consisting of symmetries of a regular n-gon.
 - (a) S_4
 - (b) D_{12}
 - (c) $S_3 \times C_4$
 - (d) $S_3 \times C_2 \times C_2$
 - (e) $D_6 \times C_2$

The last three groups have non-trivial and unique centers, so they're not isomorphic to any other on the list. The group D_{12} has 11 elements of order 2 while S_4 has only 9, so they're not isomorphic to each other.

- (5) Let $g(x) = b_0 + b_1 x + \dots + b_m x^m \in R[x]$ be a polynomial of minimal degree in R[x] satisfying g(x)f(x) = 0. We will show that $b_m a_i = 0$ for $0 \le i \le n$. It is clear that $b_m a_n = 0$. Then $a_n g(x)f(x) = 0$, so $a_n g(x)$ must be identically 0; otherwise $a_n g(x)$ would have degree less than g(x). Thus $(a_0 + \dots + a_{n-1}x^{n-1})g(x) = 0$, which implies that $b_m a_{n-1} = 0$ and $a_{n-1}g(x) = 0$. By repeating this argument, we conclude that $a_i g(x) = 0$ and $b_m a_i = 0$ for all $0 \le i \le n$.
- (6) Suppose f has a repeated root a, then a is a root of the derivative f' and $g = \text{gcd}(f, f') \in \mathbb{Q}[x]$, the greatest common divisor of f and f'. In particular, g is not a constant polynomial. Since it divides f

 $\mathbf{2}$

and is of lower degree, we have a contradiction to the irreducibility of f.

- (7) Let F^* be the multiplicative group of nonzero elements in F. It is a cyclic group. Let c be a generator. Since a and b are non-squares, they are non-zero, and they are both odd powers of c. Thus ab is an even power of c, so it is a square.
- (8) (a) It is sufficient to show that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 2$ and $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)] = 3$.
 - (b) Let $\gamma = \alpha + \beta$. Use linear algebra to show that $\{1, \gamma, \gamma^2, \gamma^3\}$ are linearly independent over \mathbb{Q} . Since $\mathbb{Q}(\gamma)$ is a subfield of $\mathbb{Q}(\alpha, \beta)$, the order $[\mathbb{Q}(\gamma) : \mathbb{Q}]$ has to divide 6 and 1, 2, 3 are ruled out.
 - (c) Cube $\sqrt[3]{2} = \gamma \sqrt{5}$ to get

$$2 = \gamma^3 - 3\sqrt{5}\gamma^2 + 15\gamma - 5\sqrt{5}.$$

Squaring $\sqrt{5}(3\gamma^2 + 5) = \gamma^3 + 15\gamma - 2$ shows that γ is a root of $f(x) = (x^3 + 15x - 2)^2 - 5(3x^2 + 5)^2$.

Since deg f(x) = 6, it is the minimal polynomial of γ by part (b).