Analysis Comprehensive Exam Questions Fall 2012

Instructions: Complete 5 of the 8 problems below. If you attempt more than five questions, then clearly indicate which five should be graded.

NOTE: Throughout this exam, the Lebesgue exterior measure of a set $E \subseteq \mathbb{R}^d$ will denoted by $|E|_e$, and if E is measurable then its Lebesgue measure is denoted by |E|. The characteristic function of a set A is denoted by χ_A .

1. Given a set $E \subseteq \mathbb{R}^d$ with $|E|_e < \infty$, show that E is Lebesgue measurable if and only if for each $\varepsilon > 0$ we can write $E = (S \cup A) \setminus B$ where S is a union of finitely many nonoverlapping boxes and $|A|_e$, $|B|_e < \varepsilon$.

Remark: A box is a rectangular parallelepiped of the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$. Boxes are nonoverlapping if their interiors are disjoint.

Solution: \Rightarrow . Suppose that E is measurable, and fix $\varepsilon > 0$. Then there exists an open set $U \supseteq E$ such that $|U \setminus E|_e < \varepsilon$. Since U is open, there exist nonoverlapping boxes Q_k such that $U = \bigcup_{k=1}^{\infty} Q_k$. Since

$$\sum_{k=1}^{\infty} |Q_k| = |U| < \infty,$$

we can choose M large enough that $\sum_{k=M+1}^{\infty} |Q_k| < \varepsilon$. Let

$$S = \bigcup_{k=1}^{M} Q_k, \qquad A = E \setminus S, \qquad B = S \setminus E.$$

Note that S is a finite union of nonoverlapping boxes. Since

$$A = E \backslash S \subseteq U \backslash S \subseteq \bigcup_{k=M+1}^{\infty} Q_k,$$

we have

$$|A|_e \leq |U \setminus S| \leq \left| \bigcup_{k=M+1}^{\infty} Q_k \right| \leq \sum_{k=M+1}^{\infty} |Q_k| < \varepsilon.$$

Finally, $B = S \setminus E \subseteq U \setminus E$, so

$$|B|_e \leq |U \backslash E|_e < \varepsilon.$$

 \Leftarrow . Fix $\varepsilon > 0$. By hypothesis, $E = (S \cup A) \setminus B$, where S is a finite union of nonoverlapping boxes and $|A|_e$, $|B|_e < \varepsilon$. Since S is measurable, let $U \supseteq S$ be an open set such that $|U \setminus S| < \varepsilon$. Although we don't know that A is measurable, we can find an open set $V \supseteq A$ such that $|V| \le |A|_e + \varepsilon$. Consequently,

$$|V| \leq |A|_e + \varepsilon < 2\varepsilon.$$

Let $G = U \cup V$. Then G is open, and since $U \supseteq S$ and $V \supseteq A$, we have that $G \supseteq S \cup A \supseteq E$. After some set-theoretic calculations, we see that

$$G \setminus E \subseteq (U \setminus S) \cup V \cup B.$$

Therefore

$$G \setminus E|_e \leq |U \setminus S| + |V| + |B|_e \leq \varepsilon + 2\varepsilon + \varepsilon = 4\varepsilon,$$

so E is measurable.

2. (a) Let $E \subseteq \mathbb{R}^d$ be a measurable set such that $|E| < \infty$. Let $\{f_n\}_{n \in \mathbb{N}}$ be a sequence of measurable functions on E, and suppose that f_n is finite a.e. for each n. Show that if $f_n \to f$ a.e. on E, then $f_n \stackrel{\text{m}}{\to} f$.

(b) Show by example that part (a) can fail if $|E| = \infty$.

Solution: (a) The function f is measurable since it is the pointwise a.e. limit of the measurable functions f_n . Fix $\varepsilon > 0$. We want to show that $|\{|f - f_n| \ge \varepsilon\}| \to 0$ as $n \to \infty$.

Fix $\eta > 0$. By Egorov's Theorem (which is applicable since E has finite measure), there exists a set $A \subseteq E$ such that $|A| < \eta$ and $f_n \to f$ uniformly on $E \setminus A$. Hence there exists an integer N > 0 such that

$$\forall n > N, \quad \sup_{x \notin A} |f(x) - f_n(x)| < \varepsilon.$$

Therefore, if n > N and $|f(x) - f_n(x)| \ge \varepsilon$, then $x \in A$. In other words, $\{|f - f_n| \ge \varepsilon\} \subseteq A$ for all n > N. Hence for all n > N we have

$$\left|\{|f - f_n| \ge \varepsilon\}\right| \le |A| < \eta.$$

This shows that

$$\lim_{n \to \infty} \left| \{ |f - f_n| \ge \varepsilon \} \right| = 0.$$

(b) Set $f_n = \chi_{[n,n+1]}$. Then $f_n \to 0$ pointwise on \mathbb{R} , but f_n does not converge in measure to the zero function. Another example is $f_n(x) = x/n$.

3. Suppose that f is a bounded, real valued, measurable function on [0,1] such that $\int_0^1 x^n f(x) dx = 0$ for all $n = 0, 1, 2, \ldots$ Show that f(x) = 0 almost everywhere.

Solution: Note the hypothesis $\int_0^1 x^n f(x) dx = 0$ implies that $\int_0^1 p(x) f(x) dx = 0$ for every polynomial p. Fix $\varphi \in C[0, 1]$. By the Weierstrass Approximation Theorem, there exist polynomials p_n such that $\|p_n - \varphi\|_{\infty} \to 0$ as $n \to \infty$. Then we have

$$\begin{aligned} \left| \int_0^1 f(x) \,\varphi(x) \,dx \right| &\leq \left| \int_0^1 f(x) \left(\varphi(x) - p_n(x)\right) dx \right| + \left| \int_0^1 f(x) \,p_n(x) \,dx \right| \\ &= \left| \int_0^1 f(x) \left(\varphi(x) - p_n(x)\right) dx \right| \\ &\leq \|f\|_1 \,\|\varphi - p_n\|_\infty \to 0. \end{aligned}$$

Note that we have $||f||_1 \leq ||f||_{\infty}$ since we are on a finite measure space. Thus, we have that

$$\int_0^1 f(x)\varphi(x)dx = 0$$

for every continuous function φ . Since C[0, 1] is dense in $L^1[0, 1]$ we can select a sequence $\{\varphi_n\}$ of continuous functions such that $\|f - \varphi_n\|_1 \to \infty$. Then we have

$$\begin{split} \int_0^1 f(x)^2 dx &\leq \left| \int_0^1 f(x) \left(f(x) - \varphi_n(x) \right) dx \right| + \left| \int_0^1 f(x) \varphi_n(x) dx \right| \\ &= \left| \int_0^1 f(x) \left(f(x) - \varphi_n(x) \right) dx \right| \\ &\leq \| f \|_\infty \| \varphi - p_n \|_1 \to 0. \end{split}$$

Therefore

$$\int_0^1 f(x)^2 \, dx = 0,$$

so f(x) = 0 almost everywhere as claimed.

4. Fix $1 \leq p < \infty$. Given f_n , $f \in L^p(\mathbb{R}^d)$, prove that $||f - f_n||_p \to 0$ if and only if the following three conditions hold.

(a) $f_n \xrightarrow{\mathrm{m}} f$.

(b) For each $\varepsilon > 0$ there exists a $\delta > 0$ such that for every measurable set $E \subseteq \mathbb{R}^d$ satisfying $|E| < \delta$ we have $\int_E |f_n|^p < \varepsilon$ for every n.

(c) For each $\varepsilon > 0$ there exists a measurable set $E \subseteq \mathbb{R}^d$ such that $|E| < \infty$ and $\int_{E^{\mathbb{C}}} |f_n|^p < \varepsilon$ for every n.

Solution: \Rightarrow . Assume that $||f - f_n||_p \to 0$. We must show that conditions (a), (b), and (c) hold.

(a) Tchebyshev's Inequality implies that if a sequence converges in L^p -norm then it converges in measure.

(b) Fix $\varepsilon > 0$. Since $|f|^p$ is integrable, there exists a $\delta_0 > 0$ such that

$$|E| < \delta_0 \implies ||f \chi_E||_p^p = \int_E |f|^p < \frac{\varepsilon}{2^{p+1}}.$$

Further, there is some N > 0 such that

$$n > N \implies ||f - f_n||_p^p < \frac{\varepsilon}{2^{p+1}}.$$

Hence if n > N and $|E| < \delta_0$ then we have

$$\int_{E} |f_{n}|^{p} = \|(f_{n} - f + f) \chi_{E}\|_{p}^{p}$$

$$\leq 2^{p} \|(f_{n} - f) \chi_{E}\|_{p}^{p} + 2^{p} \|f \chi_{E}\|_{p}^{p}$$

$$\leq 2^{p} \|f_{n} - f\|_{p}^{p} + 2^{p} \frac{\varepsilon}{2^{p+1}}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Since f_1, \ldots, f_N are all integrable, for each $n = 1, \ldots, N$, there is some $\delta_n > 0$ such that

$$|E| < \delta_n \implies ||f_n \chi_E||_p^p = \int_E |f_n|^p < \varepsilon.$$

Therefore if we take $\delta = \min{\{\delta_0, \delta_1, \ldots, \delta_N\}}$, then we have shown that statement (b) holds.

(c) Fix $\varepsilon > 0$. Since $|f|^p$ is integrable, by setting $E = B_r(0)$ with r large enough we will have

$$||f \chi_{E^{C}}||_{p}^{p} = \int_{E^{C}} |f|^{p} < \frac{\varepsilon}{2^{p+1}}.$$

There is some N > 0 such that

$$n > N \implies ||f - f_n||_p^p < \frac{\varepsilon}{2^{p+1}}.$$

Hence for all n > N we have

$$\begin{split} \|f \chi_{E^{\mathsf{C}}}\|_{p}^{p} &\leq \|(f_{n} - f + f) \chi_{E^{\mathsf{C}}}\|_{p}^{p} \\ &\leq 2^{p} \|(f_{n} - f) \chi_{E^{\mathsf{C}}}\|_{p}^{p} + 2^{p} \|f \chi_{E^{\mathsf{C}}}\|_{p}^{p} \\ &\leq 2^{p} \|f_{n} - f\|_{p}^{p} + 2^{p} \frac{\varepsilon}{2^{p+1}} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Since f_1, \ldots, f_N are all integrable, we can take r large enough that we will also have

$$\|f_n \chi_{E^{\mathsf{C}}}\|_p^p < \varepsilon, \qquad n = 1, \dots, N.$$

Therefore statement (c) holds.

 \Leftarrow . Assume that statements (a), (b), and (c) hold. Fix $\varepsilon > 0$, let *E* be the set given by statement (c), and let $\delta > 0$ be the number given by statement (b). Statement (a) tells us that $f_n \xrightarrow{\text{m}} f$. Setting

$$A_n = \left\{ |f - f_n| > \frac{\varepsilon^{1/p}}{|E|^{1/p}} \right\},$$

there must be some N > 0 such that

$$n > N \implies |A_n| < \delta.$$

Applying statement (b), we have

$$n > N \implies \int_{A_n} |f - f_n| < \varepsilon.$$

Putting this all together, for n > N we have

$$\begin{split} \|f - f_n\|_p^p &= \int_{E \cap A_n} |f - f_n|^p + \int_{E \setminus A_n} |f - f_n|^p + \int_{E^{\mathbb{C}}} |f - f_n|^p \\ &\leq \varepsilon + \int_{E \setminus A_n} \frac{\varepsilon}{|E|} + \varepsilon \\ &\leq 3\varepsilon. \end{split}$$

Therefore we have shown that $f_n \to f$ in L^p -norm.

5. Let $\{f_n\}_{n\in\mathbb{N}}$ be an orthonormal sequence in $L^2[a, b]$. Prove that $\{f_n\}_{n\in\mathbb{N}}$ is complete in $L^2[a, b]$ if and only if

$$\sum_{n=1}^{\infty} \left| \int_a^x f_n(t) \, dt \right|^2 = x - a, \qquad x \in [a, b].$$

Remark: A sequence is *complete* if its finite linear span is dense.

Solution: \Rightarrow . If $\{f_n\}$ is complete, then we have by Plancherel's Equality that $\sum_{n=1}^{\infty} \left| \int_a^x f_n(t) dt \right|^2 = \sum_{n=1}^{\infty} |\langle \chi_{[a,x]}, f_n \rangle|^2$ $= ||\chi_{[a,x]}||_2^2 = \int_a^b |\chi_{[a,x]}(t)|^2 dt = x - a.$

 \Leftarrow . Suppose that

$$\sum_{n=1}^{\infty} \left| \int_a^x f_n(t) \, dt \right|^2 = x - a, \qquad x \in [a, b].$$

Then,

$$\sum_{n=1}^{\infty} |\langle \chi_{[a,x]}, f_n \rangle|^2 = x - a = ||\chi_{[a,x]}||_2^2.$$

Thus, the Plancherel Equality holds for $\chi_{[a,x]}$. This implies that $\chi_{[a,x]} \in \overline{\operatorname{span}}\{f_n\}$. This is true for every $x \in [a, b]$, so

$$\chi_{[x,y]} = \chi_{[a,y]} - \chi_{[a,x]} \in \overline{\operatorname{span}}\{f_n\}$$

for every x < y. The span of the set of characteristic functions of intervals, i.e.,

$$\operatorname{span}\left\{\chi_{[x,y]} : a \le x < y \le b\right\},$$

is dense in $L^2[a, b]$ (this is sometimes called the set of "really simple functions"). Therefore $\overline{\text{span}}\{f_n\} = L^2[a, b]$. 6. Let S be a closed linear subspace of $L^1[0, 1]$. Suppose that for each $f \in S$ there exists a p > 1 such that $f \in L^p[0, 1]$. Show that there exists a q > 1 such that $S \subseteq L^q[0, 1]$.

Solution: Since $S \subseteq L^1[0,1]$ and S is closed, it is complete since $L^1[0,1]$ is complete. Let q_n be real numbers that decrease to 1, and for $m, n \in \mathbb{N}$ set

$$E_{n,m} := \{ f \in S : f \in L^{q_n}[0,1], \|f\|_{L^{q_n}} \le m \}.$$

Then we have that

$$S = \bigcup_{n,m} E_{n,m},$$

since by hypothesis for each $f \in S$ there is a p > 1 such that $f \in L^p[0,1]$, and if r > s then $L^r[0,1] \subseteq L^s[0,1]$, so choosing $q_n < p$ will place $f \in E_{n,m}$ for some m.

We claim that each set $E_{n,m}$ in the union is closed. To see this, suppose that $f_k \in E_{n,m}$ and $f_k \to f \in L^1[0, 1]$. Since we are working in the topology defined by the L^1 norm, we can find a subsequence $\{f_{k_j}\}$ that converges to f almost everywhere on [0, 1]. Then, as a consequence of Fatou's Lemma, we have

$$\int_0^1 |f|^{q_n} \, dx \; \le \; \liminf_{j \to \infty} \int_0^1 \left| f_{k_j} \right|^{q_n} \, dx \le m^{q_n}.$$

Hence $f \in E_{n,m}$, so $E_{n,m}$ is closed.

Therefore, by Baire's Category Theorem, there exist n_0, m_0 such that E_{n_0,m_0} has nonempty interior. So, there exists a ball of radius $\delta > 0$ centered at some point f such that

$$B_{\delta}(f) \subseteq E_{n_0, m_0}$$

Let us assume that f = 0, as the general case can be handled similarly via a translation. Then we have that $B_{\delta}(0) \subseteq E_{n_0,m_o} \subseteq L^{q_{n_0}}[0,1]$.

Finally, choose any function $0 \neq g \in S$. Then

$$\widetilde{g} = \frac{\delta}{2} \frac{g}{\|g\|_{L^1}} \in B_{\delta}(0) \subseteq E_{n_0, m_o} \subseteq L^{q_{n_0}}[0, 1].$$

But g is a scalar multiple of \tilde{g} , so we conclude that $g \in L^{q_{n_0}}[0,1]$. This gives us $S \subseteq L^{q_{n_0}}[0,1]$.

7. Let k be a measurable function on \mathbb{R}^2 that satisfies

$$C_1 = \operatorname{ess\,sup}_{x \in \mathbb{R}} \int_{-\infty}^{\infty} |k(x,y)| \, dy < \infty,$$

$$C_2 = \operatorname{ess\,sup}_{y \in \mathbb{R}} \int_{-\infty}^{\infty} |k(x,y)| \, dx < \infty.$$

Given $1 \leq p \leq \infty$, show that

$$L_k f(x) = \int_{-\infty}^{\infty} k(x, y) f(y) dy, \quad f \in L^p(\mathbb{R}),$$

defines a bounded mapping of $L^p(\mathbb{R})$ into itself, and its operator norm satisfies

$$||L_k||_{L^p \to L^p} \leq C_1^{1/p'} C_2^{1/p}.$$

Solution: Suppose that 1 (the cases <math>p = 1 and $p = \infty$ are similar). Given $f \in L^p(\mathbb{R})$,

$$\begin{split} \|L_k f\|_p^p &= \int |L_k f(x)|^p \, dx \\ &= \int \left| \int k(x,y) \, f(y) \, dy \right|^p \, dx \\ &\leq \int \left(\int |k(x,y)|^{1/p'} \cdot |k(x,y)|^{1/p} \, |f(y)| \, dy \right)^p \, dx \\ &\leq \int \left(\int |k(x,y)| \, dy \right)^{p/p'} \left(\int |k(x,y)| \, |f(y)|^p \, dy \right) \, dx \\ &\leq \int C_1^{p/p'} \int |k(x,y)| \, |f(y)|^p \, dy \, dx \\ &= C_1^{p/p'} \int |f(y)|^p \int |k(x,y)| \, dx \, dy \\ &\leq C_1^{p/p'} \int |f(y)|^p C_2 \, dy \\ &= C_1^{p/p'} C_2 \, \|f\|_p^p. \end{split}$$

Consequently,

$$||L_k f||_p \leq C_1^{1/p'} C_2^{1/p} ||f||_p,$$

so L_k is bounded and $||L_k||_{L^p \to L^p} \le C_1^{1/p'} C_2^{1/p}$.

8. Let X, Y, Z be Banach spaces. Suppose that $B: X \times Y \to Z$ is bilinear, i.e., $B_f(h) = B(f, h)$ and $B^g(h) = B(h, g)$ are linear functions of h for each $f \in X$ and $g \in Y$. Prove that the following three statements are equivalent.

(a) $B_f: Y \to Z$ and $B^g: X \to Z$ are continuous for each $f \in X$ and $g \in Y$.

(b) There is a constant C > 0 such that

$$||B(f,g)|| \le C ||f|| ||g||, \quad f \in X, \ g \in Y.$$

(c) B is a continuous mapping of $X \times Y$ into Z (note that B need not be linear on the domain $X \times Y$).

Solution: (a) \Rightarrow (b). Assume that B_f and B^g are continuous for each f and g. Since B_f is bounded, for each individual $f \in X$ we have

$$\sup_{\|g\|=1} \|B^g(f)\| = \sup_{\|g\|=1} \|B_f(g)\| = \|B_f\| < \infty.$$

Since each operator ${\cal B}_g$ is linear, the Uniform Boundedness Principle therefore implies that

$$C = \sup_{\|g\|=1} \|B^g\| < \infty.$$

Now fix any vectors $f \in X$ and $g \in Y$. If $g \neq 0$ then h = g/||g|| is a unit vector in Y, so

$$\frac{1}{|g||} \|B(f,g)\| = \|B(f,h)\| = \|B^{h}(f)\| \le \|B^{h}\| \|f\| \le C \|f\|.$$

Therefore, we have shown that for all f and all nonzero g we have

 $||B(f,g)|| \leq C ||f|| ||g||.$

The inequality on the preceding line also holds trivially if g = 0, so statement (b) follows.

(b) \Rightarrow (c). Assume that statement (b) holds. Suppose that $(f_n, g_n) \rightarrow (f, g)$ in $X \times Y$. Then $f_n \rightarrow f$ in X and $g_n \rightarrow g$ in Y, and consequently $D = \sup ||f_n|| < \infty$. Applying statement (b), it follows that

$$||B(f,g) - B(f_n,g_n)|| \leq ||B(f,g) - B(f_n,g)|| + ||B(f_n,g) - B(f_n,g_n)||$$

= $||B(f - f_n,g)|| + ||B(f_n,g - g_n)||$
 $\leq C ||f - f_n|| ||g|| + C ||f_n|| ||g - g_n||$
 $\leq C ||f - f_n|| ||g|| + CD ||g - g_n||$
 $\rightarrow 0 \text{ as } n \rightarrow \infty.$

Therefore B is continuous on $X \times Y$.

(c) \Rightarrow (a). This follows immediately from the fact that convergence in $X \times Y$ implies convergence in each factor individually.