Analysis Comprehensive Exam Questions

Fall 2012

Instructions: Complete 5 of the 8 problems below. If you attempt more than five questions, then clearly indicate which five should be graded.

NOTE: Throughout this exam, the Lebesgue exterior measure of a set $E \subseteq \mathbb{R}^{d}$ will denoted by $|E|_{e}$, and if E is measurable then its Lebesgue measure is denoted by $|E|$. The characteristic function of a set A is denoted by χ_{A}.

1. Given a set $E \subseteq \mathbb{R}^{d}$ with $|E|_{e}<\infty$, show that E is Lebesgue measurable if and only if for each $\varepsilon>0$ we can write $E=(S \cup A) \backslash B$ where S is a union of finitely many nonoverlapping boxes and $|A|_{e},|B|_{e}<\varepsilon$.
Remark: A box is a rectangular parallelepiped of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$. Boxes are nonoverlapping if their interiors are disjoint.

Solution: \Rightarrow. Suppose that E is measurable, and fix $\varepsilon>0$. Then there exists an open set $U \supseteq E$ such that $|U \backslash E|_{e}<\varepsilon$. Since U is open, there exist nonoverlapping boxes Q_{k} such that $U=\cup_{k=1}^{\infty} Q_{k}$. Since

$$
\sum_{k=1}^{\infty}\left|Q_{k}\right|=|U|<\infty
$$

we can choose M large enough that $\sum_{k=M+1}^{\infty}\left|Q_{k}\right|<\varepsilon$. Let

$$
S=\bigcup_{k=1}^{M} Q_{k}, \quad A=E \backslash S, \quad B=S \backslash E
$$

Note that S is a finite union of nonoverlapping boxes. Since

$$
A=E \backslash S \subseteq U \backslash S \subseteq \bigcup_{k=M+1}^{\infty} Q_{k}
$$

we have

$$
|A|_{e} \leq|U \backslash S| \leq\left|\bigcup_{k=M+1}^{\infty} Q_{k}\right| \leq \sum_{k=M+1}^{\infty}\left|Q_{k}\right|<\varepsilon
$$

Finally, $B=S \backslash E \subseteq U \backslash E$, so

$$
|B|_{e} \leq|U \backslash E|_{e}<\varepsilon
$$

\Leftarrow. Fix $\varepsilon>0$. By hypothesis, $E=(S \cup A) \backslash B$, where S is a finite union of nonoverlapping boxes and $|A|_{e},|B|_{e}<\varepsilon$. Since S is measurable, let $U \supseteq S$ be an open set such
that $|U \backslash S|<\varepsilon$. Although we don't know that A is measurable, we can find an open set $V \supseteq A$ such that $|V| \leq|A|_{e}+\varepsilon$. Consequently,

$$
|V| \leq|A|_{e}+\varepsilon<2 \varepsilon
$$

Let $G=U \cup V$. Then G is open, and since $U \supseteq S$ and $V \supseteq A$, we have that $G \supseteq S \cup A \supseteq E$. After some set-theoretic calculations, we see that

$$
G \backslash E \subseteq(U \backslash S) \cup V \cup B
$$

Therefore

$$
|G \backslash E|_{e} \leq|U \backslash S|+|V|+|B|_{e} \leq \varepsilon+2 \varepsilon+\varepsilon=4 \varepsilon
$$

so E is measurable.
2. (a) Let $E \subseteq \mathbb{R}^{d}$ be a measurable set such that $|E|<\infty$. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of measurable functions on E, and suppose that f_{n} is finite a.e. for each n. Show that if $f_{n} \rightarrow f$ a.e. on E, then $f_{n} \xrightarrow{\mathrm{~m}} f$.
(b) Show by example that part (a) can fail if $|E|=\infty$.

Solution: (a) The function f is measurable since it is the pointwise a.e. limit of the measurable functions f_{n}. Fix $\varepsilon>0$. We want to show that $\left|\left\{\left|f-f_{n}\right| \geq \varepsilon\right\}\right| \rightarrow 0$ as $n \rightarrow \infty$.

Fix $\eta>0$. By Egorov's Theorem (which is applicable since E has finite measure), there exists a set $A \subseteq E$ such that $|A|<\eta$ and $f_{n} \rightarrow f$ uniformly on $E \backslash A$. Hence there exists an integer $N>0$ such that

$$
\forall n>N, \quad \sup _{x \notin A}\left|f(x)-f_{n}(x)\right|<\varepsilon .
$$

Therefore, if $n>N$ and $\left|f(x)-f_{n}(x)\right| \geq \varepsilon$, then $x \in A$. In other words, $\left\{\left|f-f_{n}\right| \geq \varepsilon\right\} \subseteq A$ for all $n>N$. Hence for all $n>N$ we have

$$
\left|\left\{\left|f-f_{n}\right| \geq \varepsilon\right\}\right| \leq|A|<\eta
$$

This shows that

$$
\lim _{n \rightarrow \infty}\left|\left\{\left|f-f_{n}\right| \geq \varepsilon\right\}\right|=0
$$

(b) Set $f_{n}=\chi_{[n, n+1]}$. Then $f_{n} \rightarrow 0$ pointwise on \mathbb{R}, but f_{n} does not converge in measure to the zero function. Another example is $f_{n}(x)=x / n$.
3. Suppose that f is a bounded, real valued, measurable function on $[0,1]$ such that $\int_{0}^{1} x^{n} f(x) d x=0$ for all $n=0,1,2, \ldots$. Show that $f(x)=0$ almost everywhere.

Solution: Note the hypothesis $\int_{0}^{1} x^{n} f(x) d x=0$ implies that $\int_{0}^{1} p(x) f(x) d x=0$ for every polynomial p. Fix $\varphi \in C[0,1]$. By the Weierstrass Approximation Theorem, there exist polynomials p_{n} such that $\left\|p_{n}-\varphi\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. Then we have

$$
\begin{aligned}
\left|\int_{0}^{1} f(x) \varphi(x) d x\right| & \leq\left|\int_{0}^{1} f(x)\left(\varphi(x)-p_{n}(x)\right) d x\right|+\left|\int_{0}^{1} f(x) p_{n}(x) d x\right| \\
& =\left|\int_{0}^{1} f(x)\left(\varphi(x)-p_{n}(x)\right) d x\right| \\
& \leq\|f\|_{1}\left\|\varphi-p_{n}\right\|_{\infty} \rightarrow 0
\end{aligned}
$$

Note that we have $\|f\|_{1} \leq\|f\|_{\infty}$ since we are on a finite measure space. Thus, we have that

$$
\int_{0}^{1} f(x) \varphi(x) d x=0
$$

for every continuous function φ. Since $C[0,1]$ is dense in $L^{1}[0,1]$ we can select a sequence $\left\{\varphi_{n}\right\}$ of continuous functions such that $\left\|f-\varphi_{n}\right\|_{1} \rightarrow \infty$. Then we have

$$
\begin{aligned}
\int_{0}^{1} f(x)^{2} d x & \leq\left|\int_{0}^{1} f(x)\left(f(x)-\varphi_{n}(x)\right) d x\right|+\left|\int_{0}^{1} f(x) \varphi_{n}(x) d x\right| \\
& =\left|\int_{0}^{1} f(x)\left(f(x)-\varphi_{n}(x)\right) d x\right| \\
& \leq\|f\|_{\infty}\left\|\varphi-p_{n}\right\|_{1} \rightarrow 0
\end{aligned}
$$

Therefore

$$
\int_{0}^{1} f(x)^{2} d x=0
$$

so $f(x)=0$ almost everywhere as claimed.
4. Fix $1 \leq p<\infty$. Given $f_{n}, f \in L^{p}\left(\mathbb{R}^{d}\right)$, prove that $\left\|f-f_{n}\right\|_{p} \rightarrow 0$ if and only if the following three conditions hold.
(a) $f_{n} \xrightarrow{m} f$.
(b) For each $\varepsilon>0$ there exists a $\delta>0$ such that for every measurable set $E \subseteq \mathbb{R}^{d}$ satisfying $|E|<\delta$ we have $\int_{E}\left|f_{n}\right|^{p}<\varepsilon$ for every n.
(c) For each $\varepsilon>0$ there exists a measurable set $E \subseteq \mathbb{R}^{d}$ such that $|E|<\infty$ and $\int_{E^{\mathrm{C}}}\left|f_{n}\right|^{p}<\varepsilon$ for every n.

Solution: \Rightarrow. Assume that $\left\|f-f_{n}\right\|_{p} \rightarrow 0$. We must show that conditions (a), (b), and (c) hold.
(a) Tchebyshev's Inequality implies that if a sequence converges in L^{p}-norm then it converges in measure.
(b) Fix $\varepsilon>0$. Since $|f|^{p}$ is integrable, there exists a $\delta_{0}>0$ such that

$$
|E|<\delta_{0} \Longrightarrow\left\|f \chi_{E}\right\|_{p}^{p}=\int_{E}|f|^{p}<\frac{\varepsilon}{2^{p+1}} .
$$

Further, there is some $N>0$ such that

$$
n>N \Longrightarrow\left\|f-f_{n}\right\|_{p}^{p}<\frac{\varepsilon}{2^{p+1}} .
$$

Hence if $n>N$ and $|E|<\delta_{0}$ then we have

$$
\begin{aligned}
\int_{E}\left|f_{n}\right|^{p} & =\left\|\left(f_{n}-f+f\right) \chi_{E}\right\|_{p}^{p} \\
& \leq 2^{p}\left\|\left(f_{n}-f\right) \chi_{E}\right\|_{p}^{p}+2^{p}\left\|f \chi_{E}\right\|_{p}^{p} \\
& \leq 2^{p}\left\|f_{n}-f\right\|_{p}^{p}+2^{p} \frac{\varepsilon}{2^{p+1}} \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Since f_{1}, \ldots, f_{N} are all integrable, for each $n=1, \ldots, N$, there is some $\delta_{n}>0$ such that

$$
|E|<\delta_{n} \Longrightarrow\left\|f_{n} \chi_{E}\right\|_{p}^{p}=\int_{E}\left|f_{n}\right|^{p}<\varepsilon .
$$

Therefore if we take $\delta=\min \left\{\delta_{0}, \delta_{1}, \ldots, \delta_{N}\right\}$, then we have shown that statement (b) holds.
(c) Fix $\varepsilon>0$. Since $|f|^{p}$ is integrable, by setting $E=B_{r}(0)$ with r large enough we will have

$$
\left\|f \chi_{E^{\mathrm{C}}}\right\|_{p}^{p}=\int_{E^{\mathrm{C}}}|f|^{p}<\frac{\varepsilon}{2^{p+1}} .
$$

There is some $N>0$ such that

$$
n>N \Longrightarrow\left\|f-f_{n}\right\|_{p}^{p}<\frac{\varepsilon}{2^{p+1}} .
$$

Hence for all $n>N$ we have

$$
\begin{aligned}
\left\|f \chi_{E^{\mathrm{C}}}\right\|_{p}^{p} & \leq\left\|\left(f_{n}-f+f\right) \chi_{E^{\mathrm{C}}}\right\|_{p}^{p} \\
& \leq 2^{p}\left\|\left(f_{n}-f\right) \chi_{E^{\mathrm{C}}}\right\|_{p}^{p}+2^{p}\left\|f \chi_{E^{\mathrm{C}}}\right\|_{p}^{p} \\
& \leq 2^{p}\left\|f_{n}-f\right\|_{p}^{p}+2^{p} \frac{\varepsilon}{2^{p+1}} \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Since f_{1}, \ldots, f_{N} are all integrable, we can take r large enough that we will also have

$$
\left\|f_{n} \chi_{E^{\mathrm{C}}}\right\|_{p}^{p}<\varepsilon, \quad n=1, \ldots, N
$$

Therefore statement (c) holds.
\Leftarrow. Assume that statements (a), (b), and (c) hold. Fix $\varepsilon>0$, let E be the set given by statement (c), and let $\delta>0$ be the number given by statement (b). Statement (a) tells us that $f_{n} \xrightarrow{\mathrm{~m}} f$. Setting

$$
A_{n}=\left\{\left|f-f_{n}\right|>\frac{\varepsilon^{1 / p}}{|E|^{1 / p}}\right\}
$$

there must be some $N>0$ such that

$$
n>N \Longrightarrow\left|A_{n}\right|<\delta .
$$

Applying statement (b), we have

$$
n>N \Longrightarrow \int_{A_{n}}\left|f-f_{n}\right|<\varepsilon
$$

Putting this all together, for $n>N$ we have

$$
\begin{aligned}
\left\|f-f_{n}\right\|_{p}^{p} & =\int_{E \cap A_{n}}\left|f-f_{n}\right|^{p}+\int_{E \backslash A_{n}}\left|f-f_{n}\right|^{p}+\int_{E^{\mathrm{C}}}\left|f-f_{n}\right|^{p} \\
& \leq \varepsilon+\int_{E \backslash A_{n}} \frac{\varepsilon}{|E|}+\varepsilon \\
& \leq 3 \varepsilon
\end{aligned}
$$

Therefore we have shown that $f_{n} \rightarrow f$ in L^{p}-norm.
5. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be an orthonormal sequence in $L^{2}[a, b]$. Prove that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is complete in $L^{2}[a, b]$ if and only if

$$
\sum_{n=1}^{\infty}\left|\int_{a}^{x} f_{n}(t) d t\right|^{2}=x-a, \quad x \in[a, b] .
$$

Remark: A sequence is complete if its finite linear span is dense.

Solution: \Rightarrow. If $\left\{f_{n}\right\}$ is complete, then we have by Plancherel's Equality that

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|\int_{a}^{x} f_{n}(t) d t\right|^{2} & =\sum_{n=1}^{\infty}\left|\left\langle\chi_{[a, x]}, f_{n}\right\rangle\right|^{2} \\
& =\left\|\chi_{[a, x]}\right\|_{2}^{2}=\int_{a}^{b}\left|\chi_{[a, x]}(t)\right|^{2} d t=x-a
\end{aligned}
$$

\Leftarrow. Suppose that

$$
\sum_{n=1}^{\infty}\left|\int_{a}^{x} f_{n}(t) d t\right|^{2}=x-a, \quad x \in[a, b]
$$

Then,

$$
\sum_{n=1}^{\infty}\left|\left\langle\chi_{[a, x]}, f_{n}\right\rangle\right|^{2}=x-a=\left\|\chi_{[a, x]}\right\|_{2}^{2}
$$

Thus, the Plancherel Equality holds for $\chi_{[a, x]}$. This implies that $\chi_{[a, x]} \in \operatorname{span}\left\{f_{n}\right\}$. This is true for every $x \in[a, b]$, so

$$
\chi_{[x, y]}=\chi_{[a, y]}-\chi_{[a, x]} \in \overline{\operatorname{span}}\left\{f_{n}\right\}
$$

for every $x<y$. The span of the set of characteristic functions of intervals, i.e.,

$$
\operatorname{span}\left\{\chi_{[x, y]}: a \leq x<y \leq b\right\}
$$

is dense in $L^{2}[a, b]$ (this is sometimes called the set of "really simple functions"). Therefore $\overline{\operatorname{span}}\left\{f_{n}\right\}=L^{2}[a, b]$.
6. Let S be a closed linear subspace of $L^{1}[0,1]$. Suppose that for each $f \in S$ there exists a $p>1$ such that $f \in L^{p}[0,1]$. Show that there exists a $q>1$ such that $S \subseteq L^{q}[0,1]$.

Solution: Since $S \subseteq L^{1}[0,1]$ and S is closed, it is complete since $L^{1}[0,1]$ is complete. Let q_{n} be real numbers that decrease to 1 , and for $m, n \in \mathbb{N}$ set

$$
E_{n, m}:=\left\{f \in S: f \in L^{q_{n}}[0,1],\|f\|_{L^{q_{n}}} \leq m\right\}
$$

Then we have that

$$
S=\bigcup_{n, m} E_{n, m}
$$

since by hypothesis for each $f \in S$ there is a $p>1$ such that $f \in L^{p}[0,1]$, and if $r>s$ then $L^{r}[0,1] \subseteq L^{s}[0,1]$, so choosing $q_{n}<p$ will place $f \in E_{n, m}$ for some m.

We claim that each set $E_{n, m}$ in the union is closed. To see this, suppose that $f_{k} \in E_{n, m}$ and $f_{k} \rightarrow f \in L^{1}[0,1]$. Since we are working in the topology defined by the L^{1} norm, we can find a subsequence $\left\{f_{k_{j}}\right\}$ that converges to f almost everywhere on $[0,1]$. Then, as a consequence of Fatou's Lemma, we have

$$
\int_{0}^{1}|f|^{q_{n}} d x \leq \liminf _{j \rightarrow \infty} \int_{0}^{1}\left|f_{k_{j}}\right|^{q_{n}} d x \leq m^{q_{n}}
$$

Hence $f \in E_{n, m}$, so $E_{n, m}$ is closed.
Therefore, by Baire's Category Theorem, there exist n_{0}, m_{0} such that $E_{n_{0}, m_{0}}$ has nonempty interior. So, there exists a ball of radius $\delta>0$ centered at some point f such that

$$
B_{\delta}(f) \subseteq E_{n_{0}, m_{0}}
$$

Let us assume that $f=0$, as the general case can be handled similarly via a translation. Then we have that $B_{\delta}(0) \subseteq E_{n_{0}, m_{o}} \subseteq L^{q_{n_{0}}}[0,1]$.

Finally, choose any function $0 \neq g \in S$. Then

$$
\widetilde{g}=\frac{\delta}{2} \frac{g}{\|g\|_{L^{1}}} \in B_{\delta}(0) \subseteq E_{n_{0}, m_{o}} \subseteq L^{q_{n_{0}}}[0,1]
$$

But g is a scalar multiple of \widetilde{g}, so we conclude that $g \in L^{q_{n_{0}}}[0,1]$. This gives us $S \subseteq$ $L^{q_{n_{0}}}[0,1]$.
7. Let k be a measurable function on \mathbb{R}^{2} that satisfies

$$
\begin{aligned}
& C_{1}=\underset{x \in \mathbb{R}}{\operatorname{ess} \sup } \int_{-\infty}^{\infty}|k(x, y)| d y<\infty \\
& C_{2}=\underset{y \in \mathbb{R}}{\operatorname{esssup}} \int_{-\infty}^{\infty}|k(x, y)| d x<\infty .
\end{aligned}
$$

Given $1 \leq p \leq \infty$, show that

$$
L_{k} f(x)=\int_{-\infty}^{\infty} k(x, y) f(y) d y, \quad f \in L^{p}(\mathbb{R})
$$

defines a bounded mapping of $L^{p}(\mathbb{R})$ into itself, and its operator norm satisfies

$$
\left\|L_{k}\right\|_{L^{p} \rightarrow L^{p}} \leq C_{1}^{1 / p^{\prime}} C_{2}^{1 / p}
$$

Solution: Suppose that $1<p<\infty$ (the cases $p=1$ and $p=\infty$ are similar). Given $f \in L^{p}(\mathbb{R})$,

$$
\begin{aligned}
\left\|L_{k} f\right\|_{p}^{p} & =\int\left|L_{k} f(x)\right|^{p} d x \\
& =\int\left|\int k(x, y) f(y) d y\right|^{p} d x \\
& \leq \int\left(\int|k(x, y)|^{1 / p^{\prime}} \cdot|k(x, y)|^{1 / p}|f(y)| d y\right)^{p} d x \\
& \leq \int\left(\int|k(x, y)| d y\right)^{p / p^{\prime}}\left(\int|k(x, y)||f(y)|^{p} d y\right) d x \\
& \leq \int C_{1}^{p / p^{\prime}} \int|k(x, y)||f(y)|^{p} d y d x \\
& =C_{1}^{p / p^{\prime}} \int|f(y)|^{p} \int|k(x, y)| d x d y \\
& \leq C_{1}^{p / p^{\prime}} \int|f(y)|^{p} C_{2} d y \\
& =C_{1}^{p / p^{\prime}} C_{2}\|f\|_{p}^{p} .
\end{aligned}
$$

Consequently,

$$
\left\|L_{k} f\right\|_{p} \leq C_{1}^{1 / p^{\prime}} C_{2}^{1 / p}\|f\|_{p}
$$

so L_{k} is bounded and $\left\|L_{k}\right\|_{L^{p} \rightarrow L^{p}} \leq C_{1}^{1 / p^{\prime}} C_{2}^{1 / p}$.
8. Let X, Y, Z be Banach spaces. Suppose that $B: X \times Y \rightarrow Z$ is bilinear, i.e., $B_{f}(h)=$ $B(f, h)$ and $B^{g}(h)=B(h, g)$ are linear functions of h for each $f \in X$ and $g \in Y$. Prove that the following three statements are equivalent.
(a) $B_{f}: Y \rightarrow Z$ and $B^{g}: X \rightarrow Z$ are continuous for each $f \in X$ and $g \in Y$.
(b) There is a constant $C>0$ such that

$$
\|B(f, g)\| \leq C\|f\|\|g\|, \quad f \in X, g \in Y
$$

(c) B is a continuous mapping of $X \times Y$ into Z (note that B need not be linear on the domain $X \times Y$).

Solution: $(\mathrm{a}) \Rightarrow(\mathrm{b})$. Assume that B_{f} and B^{g} are continuous for each f and g.
Since B_{f} is bounded, for each individual $f \in X$ we have

$$
\sup _{\|g\|=1}\left\|B^{g}(f)\right\|=\sup _{\|g\|=1}\left\|B_{f}(g)\right\|=\left\|B_{f}\right\|<\infty
$$

Since each operator B_{g} is linear, the Uniform Boundedness Principle therefore implies that

$$
C=\sup _{\|g\|=1}\left\|B^{g}\right\|<\infty
$$

Now fix any vectors $f \in X$ and $g \in Y$. If $g \neq 0$ then $h=g /\|g\|$ is a unit vector in Y, so

$$
\frac{1}{\|g\|}\|B(f, g)\|=\|B(f, h)\|=\left\|B^{h}(f)\right\| \leq\left\|B^{h}\right\|\|f\| \leq C\|f\|
$$

Therefore, we have shown that for all f and all nonzero g we have

$$
\|B(f, g)\| \leq C\|f\|\|g\| .
$$

The inequality on the preceding line also holds trivially if $g=0$, so statement (b) follows.
(b) \Rightarrow (c). Assume that statement (b) holds. Suppose that $\left(f_{n}, g_{n}\right) \rightarrow(f, g)$ in $X \times Y$. Then $f_{n} \rightarrow f$ in X and $g_{n} \rightarrow g$ in Y, and consequently $D=\sup \left\|f_{n}\right\|<\infty$. Applying statement (b), it follows that

$$
\begin{aligned}
\left\|B(f, g)-B\left(f_{n}, g_{n}\right)\right\| & \leq\left\|B(f, g)-B\left(f_{n}, g\right)\right\|+\left\|B\left(f_{n}, g\right)-B\left(f_{n}, g_{n}\right)\right\| \\
& =\left\|B\left(f-f_{n}, g\right)\right\|+\left\|B\left(f_{n}, g-g_{n}\right)\right\| \\
& \leq C\left\|f-f_{n}\right\|\|g\|+C\left\|f_{n}\right\|\left\|g-g_{n}\right\| \\
& \leq C\left\|f-f_{n}\right\|\|g\|+C D\left\|g-g_{n}\right\| \\
& \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Therefore B is continuous on $X \times Y$.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. This follows immediately from the fact that convergence in $X \times Y$ implies convergence in each factor individually.

