
Analysis Comprehensive Exam Questions
Fall 2012

Instructions: Complete 5 of the 8 problems below. If you attempt more than five questions,
then clearly indicate which five should be graded.

NOTE: Throughout this exam, the Lebesgue exterior measure of a set E ⊆ R
d will denoted by

|E|e, and if E is measurable then its Lebesgue measure is denoted by |E|. The characteristic
function of a set A is denoted by χA.

1. Given a set E ⊆ R
d with |E|e < ∞, show that E is Lebesgue measurable if and only if for

each ε > 0 we can write E = (S∪A)\B where S is a union of finitely many nonoverlapping
boxes and |A|e, |B|e < ε.

Remark: A box is a rectangular parallelepiped of the form [a1, b1]× · · · × [ad, bd]. Boxes are
nonoverlapping if their interiors are disjoint.

Solution: ⇒. Suppose that E is measurable, and fix ε > 0. Then there exists an open
set U ⊇ E such that |U\E|e < ε. Since U is open, there exist nonoverlapping boxes Qk

such that U = ∪∞
k=1Qk. Since

∞∑

k=1

|Qk| = |U | < ∞,

we can choose M large enough that
∑∞

k=M+1 |Qk| < ε. Let

S =
M⋃
k=1

Qk, A = E\S, B = S\E.

Note that S is a finite union of nonoverlapping boxes. Since

A = E\S ⊆ U\S ⊆
∞⋃

k=M+1

Qk,

we have

|A|e ≤ |U\S| ≤
∣∣∣

∞⋃
k=M+1

Qk

∣∣∣ ≤

∞∑

k=M+1

|Qk| < ε.

Finally, B = S\E ⊆ U\E, so

|B|e ≤ |U\E|e < ε.

⇐. Fix ε > 0. By hypothesis, E = (S ∪ A)\B, where S is a finite union of nonover-
lapping boxes and |A|e, |B|e < ε. Since S is measurable, let U ⊇ S be an open set such



that |U\S| < ε. Although we don’t know that A is measurable, we can find an open set
V ⊇ A such that |V | ≤ |A|e + ε. Consequently,

|V | ≤ |A|e + ε < 2ε.

Let G = U∪V. Then G is open, and since U ⊇ S and V ⊇ A, we have that G ⊇ S∪A ⊇ E.
After some set-theoretic calculations, we see that

G\E ⊆ (U\S) ∪ V ∪B.

Therefore
|G\E|e ≤ |U\S|+ |V |+ |B|e ≤ ε+ 2ε+ ε = 4ε,

so E is measurable.
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2. (a) Let E ⊆ R
d be a measurable set such that |E| < ∞. Let {fn}n∈N be a sequence of

measurable functions on E, and suppose that fn is finite a.e. for each n. Show that if fn → f
a.e. on E, then fn

m
→ f.

(b) Show by example that part (a) can fail if |E| = ∞.

Solution: (a) The function f is measurable since it is the pointwise a.e. limit of the
measurable functions fn. Fix ε > 0. We want to show that |{|f − fn| ≥ ε}| → 0 as
n → ∞.

Fix η > 0. By Egorov’s Theorem (which is applicable since E has finite measure),
there exists a set A ⊆ E such that |A| < η and fn → f uniformly on E\A. Hence there
exists an integer N > 0 such that

∀n > N, sup
x/∈A

|f(x)− fn(x)| < ε.

Therefore, if n > N and |f(x)−fn(x)| ≥ ε, then x ∈ A. In other words, {|f−fn| ≥ ε} ⊆ A
for all n > N. Hence for all n > N we have

∣∣{|f − fn| ≥ ε}
∣∣ ≤ |A| < η.

This shows that
lim
n→∞

∣∣{|f − fn| ≥ ε}
∣∣ = 0.

(b) Set fn = χ[n,n+1]. Then fn → 0 pointwise on R, but fn does not converge in
measure to the zero function. Another example is fn(x) = x/n.
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3. Suppose that f is a bounded, real valued, measurable function on [0, 1] such that∫ 1

0
xnf(x) dx = 0 for all n = 0, 1, 2, . . . . Show that f(x) = 0 almost everywhere.

Solution: Note the hypothesis
∫ 1

0
xnf(x)dx = 0 implies that

∫ 1

0
p(x)f(x)dx = 0 for

every polynomial p. Fix ϕ ∈ C[0, 1]. By the Weierstrass Approximation Theorem, there
exist polynomials pn such that ‖pn − ϕ‖∞ → 0 as n → ∞. Then we have

∣∣∣∣
∫ 1

0

f(x)ϕ(x) dx

∣∣∣∣ ≤

∣∣∣∣
∫ 1

0

f(x) (ϕ(x)− pn(x)) dx

∣∣∣∣ +
∣∣∣∣
∫ 1

0

f(x) pn(x) dx

∣∣∣∣

=

∣∣∣∣
∫ 1

0

f(x) (ϕ(x)− pn(x)) dx

∣∣∣∣
≤ ‖f‖1 ‖ϕ− pn‖∞ → 0.

Note that we have ‖f‖1 ≤ ‖f‖∞ since we are on a finite measure space. Thus, we have
that ∫ 1

0

f(x)ϕ(x)dx = 0

for every continuous function ϕ. Since C[0, 1] is dense in L1[0, 1] we can select a sequence
{ϕn} of continuous functions such that ‖f − ϕn‖1 → ∞. Then we have

∫ 1

0

f(x)2 dx ≤

∣∣∣∣
∫ 1

0

f(x) (f(x)− ϕn(x)) dx

∣∣∣∣ +
∣∣∣∣
∫ 1

0

f(x)ϕn(x) dx

∣∣∣∣

=

∣∣∣∣
∫ 1

0

f(x) (f(x)− ϕn(x)) dx

∣∣∣∣
≤ ‖f‖∞ ‖ϕ− pn‖1 → 0.

Therefore ∫ 1

0

f(x)2 dx = 0,

so f(x) = 0 almost everywhere as claimed.
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4. Fix 1 ≤ p < ∞. Given fn, f ∈ Lp(Rd), prove that ‖f − fn‖p → 0 if and only if the
following three conditions hold.

(a) fn
m
→ f.

(b) For each ε > 0 there exists a δ > 0 such that for every measurable set E ⊆ R
d

satisfying |E| < δ we have
∫
E
|fn|

p < ε for every n.

(c) For each ε > 0 there exists a measurable set E ⊆ R
d such that |E| < ∞ and∫

EC |fn|
p < ε for every n.

Solution: ⇒. Assume that ‖f − fn‖p → 0. We must show that conditions (a), (b), and
(c) hold.

(a) Tchebyshev’s Inequality implies that if a sequence converges in Lp-norm then it
converges in measure.

(b) Fix ε > 0. Since |f |p is integrable, there exists a δ0 > 0 such that

|E| < δ0 =⇒ ‖f χE‖
p
p =

∫

E

|f |p <
ε

2p+1
.

Further, there is some N > 0 such that

n > N =⇒ ‖f − fn‖
p
p <

ε

2p+1
.

Hence if n > N and |E| < δ0 then we have

∫

E

|fn|
p = ‖(fn − f + f)χE‖

p
p

≤ 2p ‖(fn − f)χE‖
p
p + 2p‖f χE‖

p
p

≤ 2p ‖fn − f‖pp + 2p
ε

2p+1

<
ε

2
+

ε

2
= ε.

Since f1, . . . , fN are all integrable, for each n = 1, . . . , N, there is some δn > 0 such that

|E| < δn =⇒ ‖fn χE‖
p
p =

∫

E

|fn|
p < ε.

Therefore if we take δ = min{δ0, δ1, . . . , δN}, then we have shown that statement (b)
holds.

(c) Fix ε > 0. Since |f |p is integrable, by setting E = Br(0) with r large enough we
will have

‖f χ
EC‖pp =

∫

EC

|f |p <
ε

2p+1
.
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There is some N > 0 such that

n > N =⇒ ‖f − fn‖
p
p <

ε

2p+1
.

Hence for all n > N we have

‖f χ
EC‖pp ≤ ‖(fn − f + f)χEC‖pp

≤ 2p ‖(fn − f)χEC‖pp + 2p‖f χ
EC‖pp

≤ 2p ‖fn − f‖pp + 2p
ε

2p+1

<
ε

2
+

ε

2
= ε.

Since f1, . . . , fN are all integrable, we can take r large enough that we will also have

‖fn χEC‖pp < ε, n = 1, . . . , N.

Therefore statement (c) holds.

⇐. Assume that statements (a), (b), and (c) hold. Fix ε > 0, let E be the set given
by statement (c), and let δ > 0 be the number given by statement (b). Statement (a)
tells us that fn

m
→ f. Setting

An =

{
|f − fn| >

ε1/p

|E|1/p

}
,

there must be some N > 0 such that

n > N =⇒ |An| < δ.

Applying statement (b), we have

n > N =⇒

∫

An

|f − fn| < ε.

Putting this all together, for n > N we have

‖f − fn‖
p
p =

∫

E∩An

|f − fn|
p +

∫

E\An

|f − fn|
p +

∫

EC

|f − fn|
p

≤ ε+

∫

E\An

ε

|E|
+ ε

≤ 3ε.

Therefore we have shown that fn → f in Lp-norm.
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5. Let {fn}n∈N be an orthonormal sequence in L2[a, b]. Prove that {fn}n∈N is complete in
L2[a, b] if and only if

∞∑

n=1

∣∣∣∣
∫ x

a

fn(t) dt

∣∣∣∣
2

= x− a, x ∈ [a, b].

Remark: A sequence is complete if its finite linear span is dense.

Solution: ⇒. If {fn} is complete, then we have by Plancherel’s Equality that

∞∑

n=1

∣∣∣∣
∫ x

a

fn(t) dt

∣∣∣∣
2

=

∞∑

n=1

|〈χ[a,x], fn〉|
2

= ‖χ[a,x]‖
2
2 =

∫ b

a

|χ[a,x](t)|
2 dt = x− a.

⇐. Suppose that

∞∑

n=1

∣∣∣∣
∫ x

a

fn(t) dt

∣∣∣∣
2

= x− a, x ∈ [a, b].

Then,
∞∑

n=1

|〈χ[a,x], fn〉|
2 = x− a = ‖χ[a,x]‖

2
2.

Thus, the Plancherel Equality holds for χ[a,x]. This implies that χ[a,x] ∈ span{fn}. This
is true for every x ∈ [a, b], so

χ[x,y] = χ[a,y] − χ[a,x] ∈ span{fn}

for every x < y. The span of the set of characteristic functions of intervals, i.e.,

span
{
χ[x,y] : a ≤ x < y ≤ b

}
,

is dense in L2[a, b] (this is sometimes called the set of “really simple functions”). There-
fore span{fn} = L2[a, b].
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6. Let S be a closed linear subspace of L1[0, 1]. Suppose that for each f ∈ S there exists a
p > 1 such that f ∈ Lp[0, 1]. Show that there exists a q > 1 such that S ⊆ Lq[0, 1].

Solution: Since S ⊆ L1[0, 1] and S is closed, it is complete since L1[0, 1] is complete.
Let qn be real numbers that decrease to 1, and for m, n ∈ N set

En,m := {f ∈ S : f ∈ Lqn[0, 1], ‖f‖Lqn ≤ m}.

Then we have that
S =

⋃

n,m

En,m,

since by hypothesis for each f ∈ S there is a p > 1 such that f ∈ Lp[0, 1], and if r > s
then Lr[0, 1] ⊆ Ls[0, 1], so choosing qn < p will place f ∈ En,m for some m.

We claim that each set En,m in the union is closed. To see this, suppose that fk ∈ En,m

and fk → f ∈ L1[0, 1]. Since we are working in the topology defined by the L1 norm, we
can find a subsequence {fkj} that converges to f almost everywhere on [0, 1]. Then, as a
consequence of Fatou’s Lemma, we have

∫ 1

0

|f |qn dx ≤ lim inf
j→∞

∫ 1

0

∣∣fkj
∣∣qn dx ≤ mqn .

Hence f ∈ En,m, so En,m is closed.
Therefore, by Baire’s Category Theorem, there exist n0, m0 such that En0,m0

has non-
empty interior. So, there exists a ball of radius δ > 0 centered at some point f such
that

Bδ(f) ⊆ En0,m0
.

Let us assume that f = 0, as the general case can be handled similarly via a translation.
Then we have that Bδ(0) ⊆ En0,mo

⊆ Lqn0 [0, 1].
Finally, choose any function 0 6= g ∈ S. Then

g̃ =
δ

2

g

‖g‖L1

∈ Bδ(0) ⊆ En0,mo
⊆ Lqn0 [0, 1].

But g is a scalar multiple of g̃, so we conclude that g ∈ Lqn0 [0, 1]. This gives us S ⊆
Lqn0 [0, 1].
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7. Let k be a measurable function on R
2 that satisfies

C1 = ess sup
x∈R

∫ ∞

−∞

|k(x, y)| dy < ∞,

C2 = ess sup
y∈R

∫ ∞

−∞

|k(x, y)| dx < ∞.

Given 1 ≤ p ≤ ∞, show that

Lkf(x) =

∫ ∞

−∞

k(x, y) f(y) dy, f ∈ Lp(R),

defines a bounded mapping of Lp(R) into itself, and its operator norm satisfies

‖Lk‖Lp→Lp ≤ C
1/p′

1 C
1/p
2 .

Solution: Suppose that 1 < p < ∞ (the cases p = 1 and p = ∞ are similar). Given
f ∈ Lp(R),

‖Lkf‖
p
p =

∫
|Lkf(x)|

p dx

=

∫ ∣∣∣∣
∫

k(x, y) f(y) dy

∣∣∣∣
p

dx

≤

∫ (∫
|k(x, y)|1/p

′

· |k(x, y)|1/p |f(y)| dy

)p

dx

≤

∫ (∫
|k(x, y)| dy

)p/p′ (∫
|k(x, y)| |f(y)|p dy

)
dx

≤

∫
C

p/p′

1

∫
|k(x, y)| |f(y)|p dy dx

= C
p/p′

1

∫
|f(y)|p

∫
|k(x, y)| dx dy

≤ C
p/p′

1

∫
|f(y)|pC2 dy

= C
p/p′

1 C2 ‖f‖
p
p.

Consequently,

‖Lkf‖p ≤ C
1/p′

1 C
1/p
2 ‖f‖p,

so Lk is bounded and ‖Lk‖Lp→Lp ≤ C
1/p′

1 C
1/p
2 .
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8. Let X, Y, Z be Banach spaces. Suppose that B : X × Y → Z is bilinear, i.e., Bf(h) =
B(f, h) and Bg(h) = B(h, g) are linear functions of h for each f ∈ X and g ∈ Y. Prove that
the following three statements are equivalent.

(a) Bf : Y → Z and Bg : X → Z are continuous for each f ∈ X and g ∈ Y.

(b) There is a constant C > 0 such that

‖B(f, g)‖ ≤ C ‖f‖ ‖g‖, f ∈ X, g ∈ Y.

(c) B is a continuous mapping of X × Y into Z (note that B need not be linear on the
domain X × Y ).

Solution: (a) ⇒ (b). Assume that Bf and Bg are continuous for each f and g.
Since Bf is bounded, for each individual f ∈ X we have

sup
‖g‖=1

‖Bg(f)‖ = sup
‖g‖=1

‖Bf (g)‖ = ‖Bf‖ < ∞.

Since each operator Bg is linear, the Uniform Boundedness Principle therefore implies
that

C = sup
‖g‖=1

‖Bg‖ < ∞.

Now fix any vectors f ∈ X and g ∈ Y. If g 6= 0 then h = g/‖g‖ is a unit vector in Y,
so

1

‖g‖
‖B(f, g)‖ = ‖B(f, h)‖ = ‖Bh(f)‖ ≤ ‖Bh‖ ‖f‖ ≤ C ‖f‖.

Therefore, we have shown that for all f and all nonzero g we have

‖B(f, g)‖ ≤ C ‖f‖ ‖g‖.

The inequality on the preceding line also holds trivially if g = 0, so statement (b) follows.

(b) ⇒ (c). Assume that statement (b) holds. Suppose that (fn, gn) → (f, g) in X×Y.
Then fn → f in X and gn → g in Y, and consequently D = sup ‖fn‖ < ∞. Applying
statement (b), it follows that

‖B(f, g)− B(fn, gn)‖ ≤ ‖B(f, g)−B(fn, g)‖+ ‖B(fn, g)− B(fn, gn)‖

= ‖B(f − fn, g)‖+ ‖B(fn, g − gn)‖

≤ C ‖f − fn‖ ‖g‖+ C ‖fn‖ ‖g − gn‖

≤ C ‖f − fn‖ ‖g‖+ CD ‖g − gn‖

→ 0 as n → ∞.

Therefore B is continuous on X × Y.

(c) ⇒ (a). This follows immediately from the fact that convergence in X×Y implies
convergence in each factor individually.
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