## Proposed algebra questions

1. Let $G$ be a group, and let $H$ be a subgroup of $G$. If every prime $p$ dividing $|H|$ is at least $[G: H]$, prove that $H$ is a normal subgroup of $G$.
Solution: It is a general fact that the action of $H$ by left-multiplication on the set $G / H$ of left cosets is trivial iff $H$ is normal. The orbit of the identity coset is itself. The orbit of any non-trivial left coset does not contain the trivial coset, and therefore the size of the orbit is $m<[G: H]$. The orbit-stabilizer formula implies that $m$ divides the order of $H$, so every prime $p$ dividing $m$ is at least $[G: H]$ by assumption. Therefore $m=1$, so every orbit is trivial, which means that the action itself is trivial. Therefore $H$ is normal in $G$.
2. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be the standard basis of $\mathbf{R}^{4}$. Let $G$ be the additive subgroup of $\mathbf{R}^{4}$ generated by the four elements

$$
e_{1}, e_{1}+e_{2}, \frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}\right), \frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}\right)
$$

and let $H$ be the subgroup of $G$ generated by the four elements

$$
e_{1}-e_{2}, e_{2}-e_{3}, e_{3}-e_{4}, e_{3}+e_{4}
$$

Identify the abelian group $G / H$ as a direct sum of cyclic groups.
Solution: Let the four generators for $G$ be $x_{1}, \ldots, x_{4}$ and let the four generators for $H$ be $y_{1}, \ldots, y_{4}$. The matrix of the $y_{i}$ 's in terms of the $x_{j}$ 's is

$$
\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & -1 \\
0 & -1 & 0 & 2 \\
0 & -1 & 2 & 0
\end{array}\right)
$$

Performing elementary row and column operations leads to the Smith Normal Form

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

Therefore $G / H \cong \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$.
3. Let $I$ be the ideal $\left(n, x^{3}+2 x+2\right)$ in $\mathbf{Z}[x]$. For which $n$ with $1 \leq n \leq 7$ is $I$ a maximal ideal?

Solution: $I$ is maximal if and only if the quotient ring $R=\mathbf{Z}[x] / I$, which is isomorphic to $(\mathbf{Z} / n \mathbf{Z})[x] /\left(x^{3}+2 x+2\right)$, is a field. This happens if and only if $n=p$ is prime and $x^{3}+2 x+2$ is irreducible over $\mathbf{F}_{p}$. So we just need to test whether $x^{3}+2 x+2$ is irreducible over $\mathbf{F}_{p}$ for $p=2,3,5,7$, which happens iff the cubic does not have a root in $\mathbf{F}_{p}$. By inspection, the polynomial has a root for $p=2,5,7$ but not for $p=3$ so the only value of $n$ for which $I$ is maximal is $n=3$.
4. Let $R$ be a commutative ring with identity.
a. Let $I, J$ be ideals of $R$, and let $P$ be a prime ideal of $R$. If $I J \subset P$, prove that either $I \subset P$ or $J \subset P$.
b. Let $A, B, I$ be ideals of $R$. If $I \subset A \cup B$, prove that either $I \subset A$ or $I \subset B$.

Solution: (a) Suppose $I \not \subset P$ and $J \not \subset P$. Then there exist $x \in I$ and $y \in J$ with $x, y \notin P$. Therefore $x y \notin P$, by the definition of a prime ideal. But $x y \in I J$ by definition and $I J \subset P$ by assumption, so $x y \in P$, a contradiction.
(b) Suppose $I \not \subset A$ and $I \not \subset B$. Then there exist $x, y \in I$ with $x \notin A$ and $y \notin B$. Thus $x \in B$ and $y \in A$. But also $x+y \in I$ so $x+y \in A$ or $x+y \in B$. Without loss of generality we may assume that $x+y \in A$. Then $x=(x+y)-y \in A$, a contradiction.
5. Let $L / K$ be a field extension of degree $n$. Prove that $L$ is isomorphic to a subring of the ring of $n \times n$ matrices over $K$.

Solution: Choose a basis $\alpha_{1}, \ldots, \alpha_{n}$ for $L$ as a vector space over $K$, and define $\varphi: L \rightarrow M_{n}(K)$ by letting $\varphi(\alpha)$ be the matrix of multiplication by $\alpha$ with respect to the chosen basis. By linear algebra, $\varphi$ is a homomorphism, and if $\varphi(\alpha)=\varphi(\beta)$ then $\alpha \alpha_{i}=\beta \alpha_{i}$ for all $i$ and thus $\alpha=\beta$ (by writing 1 as a linear combination of the $\alpha_{i}$ ). It follows that $\varphi$ is injective. By the first isomorphism theorem, $L$ is isomorphic to the subring $\varphi(L)$ of $M_{n}(K)$.
6. Let $\alpha, \beta$ be complex numbers with $\beta \in \mathbf{Q}(\alpha)$ and $\beta \notin \mathbf{Q}$. Prove that $\mathbf{Q}(\alpha)$ is an algebraic extension of $\mathbf{Q}(\beta)$.

Solution: Write $\beta=F(\alpha) / G(\alpha) \in \mathbf{Q}(\alpha)$, where $F, G$ are polynomials in one variable over $\mathbf{Q}$ with $G$ nonzero. Then $G(\alpha) \beta-F(\alpha)=0$. This equation can be viewed as a non-constant polynomial in $\alpha$ with coefficients in $\mathbf{Q}(\beta)$. (Since $\beta \notin \mathbf{Q}$, at least one of $F$ and $G$ is non-constant, and therefore $\alpha$ actually appears in the equation.) Thus $\alpha$ is algebraic over $\mathbf{Q}(\beta)$, and $\mathbf{Q}(\alpha)$ is an algebraic extension of $\mathbf{Q}(\beta)$.
7. Let $A$ be a complex $n \times n$ matrix such that the sequence $\left(A^{n}\right)_{n=1}^{\infty}$ converges to a matrix $B$. Prove that $B$ is similar to a diagonal matrix with 0 's and 1 's along the main diagonal.
Solution: Since the squaring map on $M_{n}(\mathbf{C})$ is continuous, we have

$$
B^{2}=\left(\lim _{n \rightarrow \infty} A^{n}\right)^{2}=\lim _{n \rightarrow \infty} A^{2 n}=B
$$

Therefore the minimal polynomial $m_{B}(x)$ of $B$ divides $x^{2}-x$. In particular, all eigenvalues of $B$ are either 0 or 1 and (since $m_{B}(x)$ is square-free) $B$ is diagonalizable.
Alternate solution: Let $S$ be an invertible matrix so that $A^{\prime}=S A S^{-1}$ is in Jordan canonical form. If $A^{n}$ converges to $B$ as $n \rightarrow \infty$, then $A^{\prime n}$ converges to $B^{\prime}=S B S^{-1}$. Now note that the powers of a Jordan block with eigenvalue $\lambda$ converge if and only if the block is $1 \times 1$ with $\lambda=1$, or if $|\lambda|<1$. (Write $J=\lambda I+N$ with $N$ nilpotent, say $N^{k}=0$, and use the fact that $I$ and $N$ commute to show that $J^{n}=\lambda^{n} I+\binom{n}{1} \lambda^{n-1} N+\cdots+$ $\binom{n}{k-1} \lambda^{n-k+1} N^{k-1}$.) The corresponding limits are the $1 \times 1$ matrix (1) or a 0 block. Thus $B$ is conjugate to $B^{\prime}$ in the desired form.

