Analysis Comprehensive Exam
Fall 2013

Instructions: Complete 5 of the 8 problems below. If you attempt more than five questions,
indicate clearly which five should be graded.

Problem 1. Let |E|. denote the exterior Lebesgue measure of a set £ C R™. Suppose that A, B
are disjoint subsets of [0, 1] such that AU B = [0,1]". Show that A and B are measurable if and
only if |A|¢ + |Ble = 1.

Solution: We denote by |E| the Lebesgue measure of a measurable set E. Clearly, if A and
B are measurable, then by the additivity of the Lebesgue measure we have 1 = |A| + |B| =
(Al + | Bl..

Conversely, suppose that 1 = |A|e + |Ble. Then, there exists a measurable set U D A such
that |U| = |Ale, and by taking U N [0, 1]™ we can assume that U C [0,1]", i.e. A C U C [0,1]™.
Similarly, we can find a measurable set V' such that B ¢ V C [0,1]" and |B|. = |V|. Thus
VO>B=[0,1"\AD[0,1]"\U,U > A=1[0,1]"\B D [0,1]"\V and |U|+|V| = |Ale+|B|. = 1.
Then

U\ Ale < U\ (0, "\ V)| = [U] = ][0, ]*\ V] = 0,

hence |U \ A|. = 0 and similarly |V \ Ble = 0 which shows that A and B are measurable.

Problem 2. Let (X, p) be a compact metric space and let C'(X) denote the space of continuous
complex-valued functions on X equipped with the uniform norm ||f||, = sup,cx |f(z)|. Fix a >0

and for every f € C(X) let
Na(f) = sup ‘f(.%') — f(y)‘

TH#Y p(.’L’,y)a
Show that F = {f € C(X) : ||f||lu <1 and N,(f) < 1} is compact in C(X).

Solution: Clearly J is pointwise (even uniformly) bounded. Note also that, if p(z,y) < ¢ then
for every f € F we have |f(x) — f(y)| < p(z,y)* < §%, which shows that F is equicontinuous.
Thus, by the Arzela-Ascoli theorem we see that F is compact. We prove next that F is closed
(this would imply that F = F is compact, completing the proof).

Suppose that {f,} is a sequence in F and ||f,, — f|]. — 0. We want to show that f € F. The
fact that the closed unit ball {g € C(X) : ||g||, < 1} is closed in C(X) implies that ||f]], < 1.
To complete the proof it remains to show that N, (f) < 1.

Fix z # y and let € > 0. Pick n such that ||f, — f||l. < e. Then
(@) = Fl _ 1f(2) = fa(@)[ + [ ful@) = Fa@) +1f (W) = faly)] _ 2¢ + [ful2) = fuly)]

plz,y)>  ~ p(z,y)* p(z,y)*
2e 2e
< + Na(fn) < +1,
pla,y)e T p(x,y)e
because f, € F. Since the above is true for every € > 0, we deduce that
@)~ f)

p(z,y)™




Taking now a supremum over all = # y we deduce that N, (f) < 1.

Problem 3. (a) Prove that a Banach space is either finite-dimensional or has uncountable dimen-
sion in the vector space sense (i.e. it is not generated by finite linear combinations of elements of
some countable subset).

(b) Use part (a) to give an example of a vector space that cannot be given the structure of a Banach
space.

Solution: (a) Let X be a an infinite-dimensional Banach space, and suppose that {z; : i € N}
is a countable basis for X in the vector space sense (i.e. every element of X is a finite linear
combinations of {z;}). Let V;, = span{x1,z2...,2,}. Thus X = U2 ,V,,. Each V,, is finite-
dimensional and therefore closed. Note also that V,, has an empty interior. Indeed, if z € V,,
then z+ex,11 € V, for any € > 0, hence V,, contains no balls. Therefore, by the Baire Category
Theorem X # U2,V leading to a contradiction.

(b) We can take, for instance, X to be the space of all infinite sequences with finitely many
nonzero terms (which is isomorphic to the space of polynomials).

Problem 4. Let H be an infinite-dimensional Hilbert space.
(a) Show that every orthonormal sequence in H converges weakly to 0.
(b) Prove that the unit sphere S = {x : ||x|| = 1} is weakly dense in the unit ball B = {z : ||z|| < 1}.

Solution: (a) Let {uy}nen be an orthonormal sequence in H. In view of the Riesz represen-
tation theorem, we need to show that (u,,y) — 0 for every y € H. This follows immediately
from Bessel’s inequality

D )P < Lyl (1)

neN

(b) Fix now x € B and let {vg}aca be an orthonormal basis for H{. We construct below
a sequence {xy}nen in S such that x,, — x weakly. We know that (z,v,) # 0 for at most
countably many o’s, denote them by a; where j € J. Then we have

x = Z(x,vaj)vaj,

jEN

where in the case when J is finite, we have added countably many «;’s for which (z,v,,) = 0.
From (1) we know that >,y [, va,)|* < 1. If we set

1/2
" /

n
T = (@, 00,000, + [ 1= D 1@ va)? | van
j=1

J=1

Zn

then z, € S by the Pythagorean theorem. Moreover, z,, — = with respect to the norm (hence
weakly), vq,, — 0 weakly by (a), and therefore x, — 2 weakly.




Problem 5. Fix a measure space (X, M, ) and 1 <p < g <r < o0.

(a) Show that LP N L™ C L% and || f|lg < [|f|l; [|f|[f~*, where A € (0,1) is defined by A = 1%.
(b) Prove that LP N L" is a Banach space with norm ||f|| = ||f||, + || f]|r, and the inclusion map
LP N L" — LY is continuous.

Solution: (a) Note that p’ = p/(A\q) and ¢’ = r/((1 — X)q) are conjugate exponents. Using the
Holder’s inequality with p’ and ¢’ we find

1= [ 1P 10 < ] o

p/

. AL =

Taking gth roots, we see that ||f]|, < Hf||]>3‘ | £]]L=*, completing the proof of (a).

(b) Since both LP and L" are vector spaces, it follows that LP N L" is also a vector space.
Moreover, using the fact that || - ||, and || - ||, are norms, it is easy to see that || - || is a norm.
Indeed, by the triangle inequality (or Minkowski’s inequality) for || - ||, and || - ||, we see that

f +gll = IIF + gllp + 11 + gllr <[fllp +[lgllp + LF1l- + gl = [IF]] + llgll;

proving the triangle inequality for || - ||. Similarly, for every ¢ € C we have

eIl = llefllp + llefllr = lel 1Lfllp + el I1F 1l = 1el (LAl +1F1l) = lel 11 £]]-

Finally, note that ||f|| = ||fllp + ||f]l» = 0 iff ||f||, = ||f||» = 0 which is equivalent to f =0
a.e. (since || ||, and || - ||, are norms) and therefore ||f|| =0 iff f =0 a.e.

Thus LP N L™ is a normed space and we need to prove that it is complete. Recall that if
fn — f in LP then there is a subsequence f,, — f a.e. Suppose now that {f,} is a Cauchy
sequence with respect to ||-||. Since ||fn — fim|| = ||fn = fimllp + || fr. — fiml|r we see that {f,} is a
Cauchy sequence in LP and L" (which are Banach spaces, hence complete). Therefore there exist
f € LP and g € L" such that f,, — f in LP and f,, — ¢ in L". From the above remark, we can
find a subsequence of {f,} which converges pointwise a.e. to f and g, therefore f = g a.e., i.e.
[ = g as an element of LPNL". From this we deduce that || f, — f|| = || fn— fllp+||fn—fllr = 0
proving the completeness.

Finally, since the inclusion map LP N L" — L9 is clearly linear, it is enough to show that it
is bounded. But this follows immediately from (a) since

1fllg < A A < AT =111

Problem 6. Let E C R" be a measurable set, f be a measurable function on E and || pf(x) do=
r > 0, prove that: there exists a measurable subset e C F such that

/ef(x) dx:%.



Solution: For ¢ > 0, define the set Ey = E N B(0;t), where B (0;¢) is the ball centered at
origin with radius ¢. Let

F(t) = f(z) dx.

Ey

Then F'(t) is continuous on [0,00). Since by the absolute continuity of Lebesgue integral,
Ve > 0 and Vt € [0,00), 3§ > 0 such that when ¢’ € [0,00), [t —t'| <4,

/Et/—Et f(x) dx

IF(t) - F ()] = <e.

We have

lim F' (t) = 0 and tlim F(t)=r>0.
—00

t—0

Thus by the intermediate value property of continuous functions, 3ty € (0, 00) such that F (tg) =
r/3. The conclusion is proved by setting e = E N B (0;ty) .

Problem 7. Let f(x) be an increasing function on [a, b] and

/f ) dz = f(8)— f(a).

Show that: f (x) is absolutely continuous on [a, b].

Solution: For any x € [a, b], we have

/f dt < f(z /f dt < f(b) — f(2).

:/a () dt
:/:f’(t) dt+/:f’(t) dt
(f(

< (f (@) = fla) + (£ (0) = f(2))
= /()= f(a).

Thus the two inequalities above must be equality, that is,

x b
/f’(t) dt=f<x>—f<a>,/f'<t> dt = f(b) - f (x).
f /f

which implies that f (z) is absolutely continuous.




Problem 8. Suppose f (x) € L?([0,1]). Let

1
t
f()ldt, O<x<l.
0 |z—t|2

Show that:

g1l 210,07 < 2V2 1 £l z2p0.11 -

Solution: First,

LR )
"3 d d
: </0 =4 t> ( 0 |w—t|% '

() ([ 108

1 1 % T 1 1 1 %
(/ |x —t| 2 dt> = (/ |z —t|"2 dt+/ |z —t|"2 dt>
0 0

= (Ve +vi—n)? < (2v2)".

N

So

(/ lg ()| d §<2\f/ i |x_t| )é 7
:(2f/ F P ; ‘x_lﬂ dxdt>2
)

—2va ([ If(t>\2dt> .

[




