
Analysis Comprehensive Exam
Fall 2013

Instructions: Complete 5 of the 8 problems below. If you attempt more than five questions,
indicate clearly which five should be graded.

Problem 1. Let |E|e denote the exterior Lebesgue measure of a set E ⊂ Rn. Suppose that A, B
are disjoint subsets of [0, 1]n such that A ∪B = [0, 1]n. Show that A and B are measurable if and
only if |A|e + |B|e = 1.

Solution: We denote by |E| the Lebesgue measure of a measurable set E. Clearly, if A and
B are measurable, then by the additivity of the Lebesgue measure we have 1 = |A| + |B| =
|A|e + |B|e.

Conversely, suppose that 1 = |A|e + |B|e. Then, there exists a measurable set U ⊃ A such
that |U | = |A|e, and by taking U ∩ [0, 1]n we can assume that U ⊂ [0, 1]n, i.e. A ⊂ U ⊂ [0, 1]n.
Similarly, we can find a measurable set V such that B ⊂ V ⊂ [0, 1]n and |B|e = |V |. Thus
V ⊃ B = [0, 1]n\A ⊃ [0, 1]n\U , U ⊃ A = [0, 1]n\B ⊃ [0, 1]n\V and |U |+|V | = |A|e+|B|e = 1.
Then

|U \A|e ≤ |U \ ([0, 1]n \ V )| = |U | − |[0, 1]n \ V | = 0,

hence |U \A|e = 0 and similarly |V \B|e = 0 which shows that A and B are measurable.

Problem 2. Let (X, ρ) be a compact metric space and let C(X) denote the space of continuous
complex-valued functions on X equipped with the uniform norm ||f ||u = supx∈X |f(x)|. Fix α > 0
and for every f ∈ C(X) let

Nα(f) = sup
x 6=y

|f(x)− f(y)|
ρ(x, y)α

.

Show that F = {f ∈ C(X) : ||f ||u ≤ 1 and Nα(f) ≤ 1} is compact in C(X).

Solution: Clearly F is pointwise (even uniformly) bounded. Note also that, if ρ(x, y) < δ then
for every f ∈ F we have |f(x) − f(y)| ≤ ρ(x, y)α < δα, which shows that F is equicontinuous.
Thus, by the Arzelà-Ascoli theorem we see that F̄ is compact. We prove next that F is closed
(this would imply that F = F is compact, completing the proof).

Suppose that {fn} is a sequence in F and ||fn−f ||u → 0. We want to show that f ∈ F. The
fact that the closed unit ball {g ∈ C(X) : ||g||u ≤ 1} is closed in C(X) implies that ||f ||u ≤ 1.
To complete the proof it remains to show that Nα(f) ≤ 1.

Fix x 6= y and let ε > 0. Pick n such that ||fn − f ||u < ε. Then

|f(x)− f(y)|
ρ(x, y)α

≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |f(y)− fn(y)|
ρ(x, y)α

<
2ε+ |fn(x)− fn(y)|

ρ(x, y)α

≤ 2ε

ρ(x, y)α
+Nα(fn) ≤ 2ε

ρ(x, y)α
+ 1,

because fn ∈ F. Since the above is true for every ε > 0, we deduce that

|f(x)− f(y)|
ρ(x, y)α

≤ 1.



Taking now a supremum over all x 6= y we deduce that Nα(f) ≤ 1.

Problem 3. (a) Prove that a Banach space is either finite-dimensional or has uncountable dimen-
sion in the vector space sense (i.e. it is not generated by finite linear combinations of elements of
some countable subset).
(b) Use part (a) to give an example of a vector space that cannot be given the structure of a Banach
space.

Solution: (a) Let X be a an infinite-dimensional Banach space, and suppose that {xi : i ∈ N}
is a countable basis for X in the vector space sense (i.e. every element of X is a finite linear
combinations of {xi}). Let Vn = span{x1, x2 . . . , xn}. Thus X = ∪∞n=1Vn. Each Vn is finite-
dimensional and therefore closed. Note also that Vn has an empty interior. Indeed, if x ∈ Vn
then x+εxn+1 6∈ Vn for any ε > 0, hence Vn contains no balls. Therefore, by the Baire Category
Theorem X 6= ∪∞n=1Vn leading to a contradiction.
(b) We can take, for instance, X to be the space of all infinite sequences with finitely many
nonzero terms (which is isomorphic to the space of polynomials).

Problem 4. Let H be an infinite-dimensional Hilbert space.
(a) Show that every orthonormal sequence in H converges weakly to 0.
(b) Prove that the unit sphere S = {x : ||x|| = 1} is weakly dense in the unit ball B = {x : ||x|| ≤ 1}.

Solution: (a) Let {un}n∈N be an orthonormal sequence in H. In view of the Riesz represen-
tation theorem, we need to show that 〈un, y〉 → 0 for every y ∈ H. This follows immediately
from Bessel’s inequality∑

n∈N
|〈un, y〉|2 ≤ ||y||2. (1)

(b) Fix now x ∈ B and let {vα}α∈A be an orthonormal basis for H. We construct below
a sequence {xn}n∈N in S such that xn → x weakly. We know that 〈x, vα〉 6= 0 for at most
countably many α’s, denote them by αj where j ∈ J . Then we have

x =
∑
j∈N
〈x, vαj 〉vαj ,

where in the case when J is finite, we have added countably many αj ’s for which 〈x, vαj 〉 = 0.
From (1) we know that

∑
j∈N |〈x, vαj 〉|2 ≤ 1. If we set

xn =

n∑
j=1

〈x, vαj 〉vαj︸ ︷︷ ︸
zn

+

1−
n∑
j=1

|〈x, vαj 〉|2
1/2

vαn+1

then xn ∈ S by the Pythagorean theorem. Moreover, zn → x with respect to the norm (hence
weakly), vαn+1 → 0 weakly by (a), and therefore xn → x weakly.



Problem 5. Fix a measure space (X,M, µ) and 1 ≤ p < q < r <∞.

(a) Show that Lp ∩ Lr ⊂ Lq and ||f ||q ≤ ||f ||λp ||f ||1−λr , where λ ∈ (0, 1) is defined by λ = q−1−r−1

p−1−r−1 .

(b) Prove that Lp ∩ Lr is a Banach space with norm ||f || = ||f ||p + ||f ||r, and the inclusion map
Lp ∩ Lr → Lq is continuous.

Solution: (a) Note that p′ = p/(λq) and q′ = r/((1−λ)q) are conjugate exponents. Using the
Hölder’s inequality with p′ and q′ we find

||f ||qq =

∫
X
|f |λq |f |(1−λ)qdµ ≤

∥∥∥|f |λq∥∥∥
p′

∥∥∥|f |(1−λ)q∥∥∥
q′

= ||f ||λqp ||f ||(1−λ)qr .

Taking qth roots, we see that ||f ||q ≤ ||f ||λp ||f ||1−λr , completing the proof of (a).
(b) Since both Lp and Lr are vector spaces, it follows that Lp ∩ Lr is also a vector space.
Moreover, using the fact that || · ||p and || · ||r are norms, it is easy to see that || · || is a norm.
Indeed, by the triangle inequality (or Minkowski’s inequality) for || · ||p and || · ||r we see that

||f + g|| = ||f + g||p + ||f + g||r ≤ ||f ||p + ||g||p + ||f ||r + ||g||r = ||f ||+ ||g||,

proving the triangle inequality for || · ||. Similarly, for every c ∈ C we have

||cf || = ||cf ||p + ||cf ||r = |c| ||f ||p + |c| ||f ||r = |c|(||f ||p + ||f ||r) = |c| ||f ||.

Finally, note that ||f || = ||f ||p + ||f ||r = 0 iff ||f ||p = ||f ||r = 0 which is equivalent to f = 0
a.e. (since || · ||p and || · ||r are norms) and therefore ||f || = 0 iff f = 0 a.e.

Thus Lp ∩ Lr is a normed space and we need to prove that it is complete. Recall that if
fn → f in Lp then there is a subsequence fnk

→ f a.e. Suppose now that {fn} is a Cauchy
sequence with respect to || · ||. Since ||fn−fm|| = ||fn−fm||p+ ||fn−fm||r we see that {fn} is a
Cauchy sequence in Lp and Lr (which are Banach spaces, hence complete). Therefore there exist
f ∈ Lp and g ∈ Lr such that fn → f in Lp and fn → g in Lr. From the above remark, we can
find a subsequence of {fn} which converges pointwise a.e. to f and g, therefore f = g a.e., i.e.
f = g as an element of Lp∩Lr. From this we deduce that ||fn−f || = ||fn−f ||p+ ||fn−f ||r → 0
proving the completeness.

Finally, since the inclusion map Lp ∩ Lr → Lq is clearly linear, it is enough to show that it
is bounded. But this follows immediately from (a) since

||f ||q ≤ ||f ||λp ||f ||1−λr ≤ ||f ||λ ||f ||1−λ = ||f ||.

Problem 6. Let E ⊂ Rn be a measurable set, f be a measurable function on E and
∫
E f (x) dx =

r > 0, prove that: there exists a measurable subset e ⊂ E such that∫
e
f (x) dx =

r

3
.



Solution: For t ≥ 0, define the set Et = E ∩ B (0; t), where B (0; t) is the ball centered at
origin with radius t. Let

F (t) =

∫
Et

f (x) dx.

Then F (t) is continuous on [0,∞). Since by the absolute continuity of Lebesgue integral,
∀ε > 0 and ∀t ∈ [0,∞), ∃δ > 0 such that when t′ ∈ [0,∞), |t− t′| < δ,

∣∣F (t)− F
(
t′
)∣∣ =

∣∣∣∣∣
∫
Et′−Et

f (x) dx

∣∣∣∣∣ < ε.

We have

lim
t→0

F (t) = 0 and lim
t→∞

F (t) = r > 0.

Thus by the intermediate value property of continuous functions, ∃t0 ∈ (0,∞) such that F (t0) =
r/3. The conclusion is proved by setting e = E ∩B (0; t0) .

Problem 7. Let f (x) be an increasing function on [a, b] and∫ b

a
f ′ (x) dx = f (b)− f (a) .

Show that: f (x) is absolutely continuous on [a, b] .

Solution: For any x ∈ [a, b], we have∫ x

a
f ′ (t) dt ≤ f (x)− f (a) ,

∫ b

x
f ′ (t) dt ≤ f (b)− f (x) .

So

f (b)− f (a) =

∫ b

a
f ′ (t) dt

=

∫ x

a
f ′ (t) dt+

∫ b

x
f ′ (t) dt

≤ (f (x)− f (a)) + (f (b)− f (x))

= f (b)− f (a) .

Thus the two inequalities above must be equality, that is,∫ x

a
f ′ (t) dt = f (x)− f (a) ,

∫ b

x
f ′ (t) dt = f (b)− f (x) .

So

f (x) = f (a) +

∫ x

a
f ′ (t) dt

which implies that f (x) is absolutely continuous.



Problem 8. Suppose f (x) ∈ L2 ([0, 1]). Let

g (x) =

∫ 1

0

f (t)

|x− t|
1
2

dt, 0 < x < 1.

Show that:

‖g‖L2[0,1] ≤ 2
√

2 ‖f‖L2[0,1] .

Solution: First,

|g (x)| =

∣∣∣∣∣
∫ 1

0

f (t)

|x− t|
1
2

dt

∣∣∣∣∣
≤
∫ 1

0

1

|x− t|
1
4

|f (t)|
|x− t|

1
4

dt

≤
(∫ 1

0
|x− t|−

1
2 dt

) 1
2

(∫ 1

0

|f (t)|2

|x− t|
1
2

dt

) 1
2

≤
(

2
√

2
) 1

2

(∫ 1

0

|f (t)|2

|x− t|
1
2

dt

) 1
2

,

since (∫ 1

0
|x− t|−

1
2 dt

) 1
2

=

(∫ x

0
|x− t|−

1
2 dt+

∫ 1

x
|x− t|−

1
2 dt

) 1
2

=
(
2
(√
x+
√

1− x
)) 1

2 ≤
(

2
√

2
) 1

2
.

So (∫ 1

0
|g (x)|2 dx

) 1
2

≤

(
2
√

2

∫ 1

0

∫ 1

0

|f (t)|2

|x− t|
1
2

dtdx

) 1
2

=

(
2
√

2

∫ 1

0
|f (t)|2

∫ 1

0

1

|x− t|
1
2

dx dt

) 1
2

≤
((

2
√

2
)2 ∫ 1

0
|f (t)|2 dt

) 1
2

= 2
√

2

(∫ 1

0
|f (t)|2 dt

) 1
2

.


