ALGEBRA COMPREHENSIVE EXAM QUESTIONS FALL 2014

Choose any five problems. If you attempt more than five, indicate clearly which five are to be graded.
(1) Show that a group of order 80 cannot be simple.

Solution: Let G be a group of order 80 . We have $80=16 \cdot 5=2^{4} \cdot 5$. Let n_{5} be the number of Sylow 5 -subgroups. Then $n_{5} \equiv 1 \bmod 5$ and n_{5} divides 16 , so either $n_{5}=1$ or $n_{5}=16$. In the first case, the Sylow 5 -subgroup is normal. In the second case, since a Sylow 5 -subgroup is generated by any nontrivial element, any distinct Sylow 5-subgroups H, H^{\prime} have $H \cap H^{\prime}=\{1\}$. Therefore there are $16 \cdot 4=64$ elements of G of order 5 (and 1 of order 1), so there are at most $15=80-65$ elements of G of even order. It follows that there is a unique Sylow 2-group (of order 16).
(2) Let R be a commutative ring with 1 . Show that the set of all nilpotent elements is an ideal of R.

Solution: Let I be the set of all nilpotent elements in R. Let $x, y \in I$, and choose $n \gg 0$ such that $x^{n}=y^{n}=0$. Let $N=2 n-1$. We have

$$
(x-y)^{N}=\sum_{i=0}^{N}(-1)^{N-i}\binom{N}{i} x^{i} y^{N-i}=0
$$

because for every $0 \leq i \leq N$ either $i \geq n$ or $i \leq n-1$ in which case $N-i \geq N-(n-1)=n$. Hence I is an additive subgroup of R. If $x \in I$ and $y \in R$ then $(y x)^{n}=y^{n} x^{n}=0$ for $n \gg 0$, so I is an ideal.
(3) Let R and S be commutative rings with 1 and let $f: R \rightarrow S$ be a ring homomorphism. Prove that if R is a field then either f is injective or $S=0$.

Solution: Suppose that f is not injective. Then $\operatorname{ker}(f)$ contains a nonzero element $x \in R$. Since $\operatorname{ker}(f)$ is an ideal in R and R is a field, we have $1=x^{-1} x \in \operatorname{ker}(f)$, so $f(1)=0$. A ring homomorphism by definition takes 1 to the multiplicative identity, so $0=1$ in S, and hence $y=1 \cdot y=0 \cdot y=0$ for all $y \in S$.
(4) Let V be a finite-dimensional complex vector space. A linear operator $T: V \rightarrow V$ is called nilpotent if $T^{m}=0$ for some $m \in \mathbf{N}$ (i.e. $T^{m} v=0$ for all $v \in V$). Show that if T is nilpotent, then $T^{n}=0$, where n is the dimension of V.

Solution: First we claim that all eigenvalues of T are zero. If λ is an eigenvalue with eigenvector v then

$$
0=T^{m} v=\lambda T^{m-1} v=\lambda^{2} T^{m-2} v=\cdots=\lambda^{m} v
$$

hence $\lambda^{m}=0$, so $\lambda=0$, which establishes the claim. Let $f(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$ be the characteristic polynomial of T. The roots of f are the eigenvalues of T, so f has no nonzero roots, and hence $f(t)=t^{n}$. By the Cayley-Hamilton theorem, $f(T)=T^{n}=0$.
(5) Let $f(X)=\left(X^{7}-1\right) /(X-1)=X^{6}+X^{5}+\cdots+1$. Prove that f is irreducible over \mathbf{F}_{3} but not over \mathbf{F}_{7}.

Solution: Let $\alpha \in \overline{\mathbf{F}}_{3}$ be a primitive 7 th root of unity and let g be the irreducible factor of f such that $g(\alpha)=0$. Consider the field extension $\mathbf{F}_{3}[\alpha]$. Let $\varphi: \mathbf{F}_{3}[\alpha] \rightarrow \mathbf{F}_{3}[\alpha], x \mapsto x^{3}$ be the Frobenius
homomorphism. Since $g(x)^{3}=g\left(x^{3}\right)$ we have $g(\varphi(\alpha))=g(\alpha)^{3}=g(\alpha)=0$, so that $\varphi^{i}(\alpha)$ is a root of g for all i. Observe that
$\alpha, \varphi(\alpha)=\alpha^{3}, \varphi^{2}(\alpha)=\alpha^{9}=\alpha^{2}, \varphi^{3}(\alpha)=\alpha^{6}, \varphi^{4}(\alpha)=\alpha^{18}=\alpha^{4}, \varphi^{5}(\alpha)=\alpha^{12}=\alpha^{5}$
are all distinct elements of $\mathbf{F}_{3}[\alpha]$. Therefore g has 6 distinct roots in $\mathbf{F}_{3}[\alpha]$ and thus $g=f$ as desired.
Over \mathbf{F}_{7} we note that $x^{7}-1=(x-1)^{7}$.
(6) Let G be a group of order 140 and H be a subgroup of of G of index 4 . Show that H is normal in G.

Solution: Let G act on the set of (left) cosets of H by (left) multiplication. This action leads to a homomorphism $\varphi: G \rightarrow S_{4}$, the symmetric group on 4 elements. Since the stabilizer of H is H it follows that the kernel of φ is a subgroup of H. On the other hand, since 5 and 7 don't divide the order of $S_{4}=24$, we have $|\operatorname{ker}(\varphi)| \geq 5 \cdot 7=35=|H|$. Therefore we have $H=\operatorname{ker} \varphi$, so H is normal in G.
(7) Let M be a finitely generated free abelian group of rank n and let $N \subset M$ be a subgroup such that M / N is finite. Prove that there exists a basis x_{1}, \ldots, x_{n} of M and positive integers a_{1}, \ldots, a_{n} such that $a_{1} x_{1}, \ldots, a_{n} x_{n}$ is a basis for N.

Solution: If $r=[M: N]$ then $\mathbf{Z}^{n} \cong r M \subset N \subset M \cong \mathbf{Z}^{n}$, so $n \leq \operatorname{rank}(N) \leq n$, i.e. $\operatorname{rank}(N)=n$. Let x_{1}, \ldots, x_{n} be a basis of M and let y_{1}, \ldots, y_{n} be a basis of N. For $i=1, \ldots, n$ we can write $y_{i}=c_{i 1} x_{1}+\cdots+c_{i n} x_{n}$ with $c_{i j} \in \mathbf{Z}$. Let C be the matrix with $i j$-entry given by $c_{i j}$. The matrix C can be reduced to Smith Normal Form, which amounts to a sequence of change of basis operations on $\left\{y_{i}\right\}$ and $\left\{x_{i}\right\}$. The matrix in Smith Normal Form is diagonal and thus gives a basis of M whose multiples are a basis of N as desired.
(8) Let $F=\mathbf{Q}(\sqrt{2}, \sqrt{3})$ and define $T: F \rightarrow F$ by $T(x)=x \cdot \sqrt{2}$. Prove that T is a linear transformation of \mathbf{Q}-vector spaces, and find its characteristic polynomial.

Solution: Associativity and distributivity in F imply that $T(x+y)=T x+T y$ and $T(c x)=c T x$ for $x, y \in F$ and $c \in \mathbf{Q}$. A basis for F over \mathbf{Q} is given by the elements $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$. With respect to this basis, the matrix for T is

$$
\left[\begin{array}{llll}
0 & 2 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Hence $\operatorname{det}(t I-T)=\left(t^{2}-2\right)^{2}$.

