
Analysis Comprehensive Exam Questions
Fall 2014

NOTE: All functions in this exam are (extended) real-valued.

1. Assume 1 ≤ p < ∞. Given f ∈ Lp[0,∞], show that

lim
x→∞

1

x

∫ x

0

f(t) dt = 0.

Solution: The case p = 1 follows directly. For 1 < p < ∞, let

q =
p

p − 1

be the dual index to p, and observe that

1

q
− 1 =

p − 1

p
− 1 = −

1

p
.

Applying Hölder’s inequality, we therefore obtain

∣

∣

∣

∣

1

x

∫ x

0

f(t) dt

∣

∣

∣

∣

≤
1

x

∫ ∞

0

χ[0,x](t) |f(t)| dt

≤
1

x
‖χ[0,x]‖q ‖f‖p

= x−1 x
1

q ‖f‖p

=
1

x1/p
‖f‖p

→ 0 as x → ∞.



2. Assume that f is a monotone increasing function on [a, b]. Prove that the following two
statements are equivalent.

(a) f is absolutely continuous.

(b) For every absolutely continuous function g on [a, b] and every x ∈ [a, b],

∫ x

a

f(t) g′(t) dt +

∫ x

a

f ′(t) g(t) dt = f(x)g(x) − f(a)g(a).

Solution: The product F = fg is absolutely continuous. Each of f and g is differentiable
a.e., and at any point t where f and g are both differentiable, the product rule tells us
that

F ′(t) = f(t)g′(t) + f ′(t)g(t).

Applying the Fundamental Theorem of Calculus to the absolutely continuous function F,
if x ∈ [a, b] then

∫ x

a

f(t) g′(t) dt +

∫ x

a

f ′(t) g(t) dt =

∫ x

a

F ′(t) dt = F (x) − F (a)

= f(x)g(x) − f(a)g(a).

(b) ⇒ (a). Suppose that statement (b) holds. Since f is monotone increasing on the
closed interval [a, b], we know that f is differentiable a.e., f ′ ≥ 0 a.e., and

∫ b

a

|f ′| =

∫ b

a

f ′ ≤ f(b) − f(a) < ∞.

Therefore f ′ is integrable. Let g = 1, the constant function. Then g is absolutely
continuous, and g′ = 0. Applying statement (b), it follows that for each x ∈ [a, b] we
have

f(x) − f(a) = f(x)g(x) − f(a)g(a) =

∫ x

a

f(t) g′(t) dt +

∫ x

a

f ′(t) g(t) dt

=

∫ x

a

f ′(t) dt.

Therefore f is absolutely continuous on [a, b].
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3. For each k ∈ N let xk = (xk(1), xk(2), . . .) be a vector in ℓ2. Assume that for each n we
have

lim
k→∞

xk(n) = 0.

Must it be true that xk converges weakly to 0 as k → ∞?
If we assume further that there exists some constant M such that ‖xk‖2 ≤ M for every k,

must it then be true that xk converges weakly to 0?

Solution: In the first case it need not be true that xk converges weakly to 0. For example,
let xk(n) = 1 if k ≤ n ≤ 2k and 0 otherwise. Then

lim
k→∞

xk(n) = 0.

However, if we set y = (y(1), y(2), . . .) with y(n) = 1/n, then y ∈ ℓ2 and the inner
product of y with xk satisfies

(y, xk) =
2k

∑

n=k

1

n
≥

∫ 2k

k

1

x
dx = ln(2).

Hence xk does not converge weakly to 0 as k → ∞.

If we assume further that ‖xk‖2 ≤ M for every k, then the sequence {xk}k∈N is
contained in the closed ball of radius M. Since ℓ2 is a Hilbert space, closed balls are
weakly compact. Therefore there exists a subsequence {xkn

}n∈N that converges weakly,
say to y = (y(1), y(2), . . .). If we let δm denote the vector in ℓ2 that has a 1 in the mth
component and zeros elsewhere, then

y(m) = (y, δm) = lim
n→∞

(xkn
, δm) = lim

n→∞
xkn

(m) = 0.

Thus y = 0, so xkn
converges weakly to the zero in ℓ2.

We can replace {xk}n∈N in the preceding argument with any subsequence of {xk}n∈N.
This shows that every subsequence of {xk}n∈N contains a sub-subsequence that converges
weakly to 0. This implies that the original sequence {xk}k∈N converges weakly to 0.

Remark: The Uniform Boundedness Principle can be used to give an alternative
proof.
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4. Given f ∈ L1(R), define

F (x) =

∫ ∞

−∞

f(t)
sin xt

t
dt, x ∈ R.

Prove that F is differentiable on R, and it is absolutely continuous on any finite interval
[a, b].

Solution: F (x) is well-defined for every x since f is integrable and sin xt
t

is a bounded
function of t. The issue is to pass the derivative under the integral; we justify this via
the Dominated Convergence Theorem.

Let x be fixed, and set

S(t) = sin t and gx(t) = f(t)
sin xt

t
.

Since S is differentiable, the Mean Value Theorem implies that given t and h, there exists
some point ξ (depending on both t and h) such that

S(xt + ht) − S(xt)

ht
= S ′(ξ) = cos ξ.

Hence
∣

∣

∣

∣

gx+h(t) − gx(t)

h

∣

∣

∣

∣

=

∣

∣

∣

∣

f(t)
S(xt + ht) − S(xt)

ht

∣

∣

∣

∣

= |f(t) S ′(ξ)| ≤ |f(t)| ∈ L1(R).

Also, since S is differentiable,

lim
h→0

S(xt + ht) − S(xt)

ht
= S ′(xt) = cos xt.

Therefore

lim
h→0

gx+h(t) − gx(t)

h
= lim

h→0
f(t)

S(xt + ht) − S(xt)

ht
= f(t) cos xt.

Applying the Dominated Convergence Theorem, F ′(x) exists and has the value

F ′(x) = lim
h→0

F (x + h) − F (x)

h
= lim

h→0

∫ ∞

−∞

gx+h(t) − gx(t)

h
dt =

∫ ∞

−∞

f(t) cos xt dt.

Since

|F ′(x)| ≤

∫ ∞

−∞

|f(t) cos xt| dt ≤

∫ ∞

−∞

|f(t)| dt = ‖f‖1,

we see that F ′ is bounded, and therefore F is Lipschitz and hence absolutely continuous
on any interval [a, b].
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5. Let µ be a finite signed Borel measure on R, and suppose that µ is absolutely continuous
with respect to Lebesgue measure. Show that if A is a Borel measurable subset of R, then
the function µ(A + t) is continuous in t (here A + t = {x + t : x ∈ A}).

Solution: Since µ is absolutely continuous with respect to Lebesgue measure, there
exists an extended real-valued, Borel measurable function f such that for every Borel set
A we have

µ(A) =

∫

A

f(x) dx.

If we let R = P ∪N be a Hahn decomposition of R for µ, then µ is nonnegative on P and
nonpositive on N. Consequently, f is nonnegative a.e. on P and nonpositive a.e. on N.
As 0 ≤ µ(P ) < ∞ and 0 ≤ −µ(N) < ∞, it follows that

∫

R

|f | =

∫

P

f −

∫

N

f = µ(P ) − µ(N) < ∞.

Thus f is integrable.
Fix t0 ∈ R. If we set Ttf(x) = f(x − t), then by standard methods (approximation

by a continuous, compactly supported function), we have

lim
t→t0

‖Ttf − Tt0f‖1 = 0.

Therefore, given a Borel set A,

lim
t→t0

|µ(A + t) − µ(A + t0)| = lim
t→t0

∣

∣

∣

∣

∫

A+t

f(x) dx −

∫

A+t0

f(x) dx

∣

∣

∣

∣

= lim
t→t0

∣

∣

∣

∣

∫

A

f(x − t) dx −

∫

A

f(x − t0) dx

∣

∣

∣

∣

≤ lim
t→t0

∫

A

|Ttf(x) − Tt0f(x)| dx

≤ lim
t→t0

‖Ttf − Tt0f‖1

= 0.

Therefore µ(A + t) is continuous at t0.

An alternative proof is to proceed through cases from A = (a, b) to A being an
arbitrary Borel set.
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6. Let Cc(R) denote the space of continuous, compactly supported functions on R, and let
C0(R) denote the set of all continuous functions f such that lim|x|→∞ f(x) = 0. Prove that
Cc(R) is a meager (= 1st category) subset of C0(R).

Solution: For each N ∈ N, define

C[−N,N ] =
{

f ∈ C(R) : supp(f) ⊆ [−N,N ]
}

.

Since uniform convergence implies pointwise convergence, this is a closed subspace of
C0(R) with respect to the uniform norm.

Given ε > 0, let g be any nonzero continuous function supported on [N,N + 1] such
that ‖g‖∞ < ε. Given any f ∈ C[−N,N ] we have h = f + g /∈ C[−N,N ] yet

‖f − h‖∞ = ‖g‖∞ < ε.

Therefore h ∈ Bε(f), so Bε(f) is not contained in C[−N,N ]. Thus C[−N,N ] is a closed
subset of C0(R) that has no interior, which says that C[−N,N ] is a nowhere dense subset
of C0(R). Finally,

Cc(R) =
⋃

N∈N

C[−N,N ],

so Cc(R) is a meager subset of C0(R).
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7. Let {xn}n∈N be a sequence in a Banach space X such that
∑∞

n=1 |µ(xn)| converges
uniformly for µ in the unit sphere in the dual space X∗, i.e.,

lim
N→∞

sup
µ∈X∗, ‖µ‖=1

∞
∑

n=N

|µ(xn)| = 0.

Prove that
∑∞

n=1 cnxn converges for every bounded sequence of scalars (cn)n∈N.
Hint: Prove that

∑

cnxn is a Cauchy series.

Solution: Choose any bounded sequence c = (cn)n∈N, and fix ε > 0. The result is trivial
if c is the zero sequence, so assume that not every cn is zero. By hypothesis, there exists
an N0 such that if N > N0 then

sup
‖µ‖=1

∞
∑

n=N

|µ(xn)| <
ε

‖c‖∞
.

Consider any N0 < M < N. Then by Hahn–Banach we have

∥

∥

∥

∥

N
∑

k=1

cnxn −
M

∑

k=1

cnxn

∥

∥

∥

∥

=

∥

∥

∥

∥

N
∑

k=M+1

cnxn

∥

∥

∥

∥

= sup
‖µ‖=1

∣

∣

∣

∣

µ

( N
∑

k=M+1

cnxn

)
∣

∣

∣

∣

= sup
‖µ‖=1

∣

∣

∣

∣

N
∑

k=M+1

cnµ(xn)

∣

∣

∣

∣

(linearity)

≤ sup
‖µ‖=1

N
∑

k=M+1

|cn| |µ(xn)|

≤ ‖c‖∞ sup
‖µ‖=1

N
∑

k=M+1

|µ(xn)|

< ε.

Hence the sequence of partial sums
{
∑N

k=1 cnxn

}

N∈N
is Cauchy in X, and must therefore

converge since X is a Banach space. This tells us that the infinite series
∑∞

k=1 cnxn

converges.
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8. Let µ∗ be an outer measure on a set X, and let A1, A2, . . . be disjoint µ∗-measurable
subsets of X. Prove that for any E ⊂ X (measurable or not),

µ∗
(

E ∩
( ∞

⋃

j=1

Aj

))

=
∞

∑

j=1

µ∗(E ∩ Aj).

Solution: First we will prove by induction that if n ∈ N, then

µ∗
(

E ∩
( n

⋃

j=1

Aj

))

=
n

∑

j=1

µ∗(E ∩ Aj). (1)

This statement is trivially true if n = 1. Suppose that equation (1) holds for some n, and
let Bn =

⋃n
j=1 Aj. Applying Carathéodory’s Criterion, we compute that

µ∗(E ∩ Bn+1) = µ∗(E ∩ Bn+1 ∩ An+1) + µ∗(E ∩ Bn+1 ∩ AC
n+1) (An+1 is measurable)

= µ∗(E ∩ An+1) + µ∗(E ∩ Bn) (disjointness of the Aj)

= µ∗(E ∩ An+1) +
n

∑

j=1

µ∗(E ∩ Aj)

=
n+1
∑

j=1

µ∗(E ∩ Aj).

This establishes equation (1).
Finally, taking Bn as before and setting B =

⋃∞
j=1 Aj, we use the above work, mono-

tonicity, and subadditivity to compute that

n
∑

j=1

µ∗(E ∩ Aj) = µ∗(E ∩ Bn) ≤ µ∗(E ∩ B) = µ∗
( ∞

⋃

j=1

(E ∩ Aj)
)

≤

∞
∑

j=1

µ∗(E ∩ Aj).

This holds for every n, and every term in the sum is nonnegative, so we can take the
limit as n → ∞ and the result follows.
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