Analysis Comprehensive Exam Questions
Fall 2014

NOTE: All functions in this exam are (extended) real-valued.

1. Assume 1 < p < oo. Given f € LP[0, 00], show that

lim —/ f(t)
rT—00 I

- P
p—1
be the dual index to p, and observe that
1 -1 1
So=t o2
q p p

Applying Holder’s inequality, we therefore obtain

! / f(t)dt‘gé / Xiow (£) | (1)) dt

1
< E ”X[O,m]Hq ||f”p
1
= o || fll,
1
= 175 171l

— 0 asz — 0.




2. Assume that f is a monotone increasing function on [a, b]. Prove that the following two
statements are equivalent.
(a) f is absolutely continuous.

(b) For every absolutely continuous function g on [a,b] and every = € [a, b],

/ f g0 de + / TP d = f@gle) - fla)gla).

Solution: The product F' = fg is absolutely continuous. Each of f and g is differentiable
a.e., and at any point ¢t where f and g are both differentiable, the product rule tells us

that

Fi(t) = f(t)g'(t) + f'(t)g(t).
Applying the Fundamental Theorem of Calculus to the absolutely continuous function F,
if z € [a,b] then

/ F(6) () dt —I—/xf’(t)g(t) it — /xF’(t) dt — F(z)— Fla)

= [f(x)g(x) — fla)g(a).

(b) = (a). Suppose that statement (b) holds. Since f is monotone increasing on the
closed interval [a, b], we know that f is differentiable a.e., f’ > 0 a.e., and

/ab’f":/abf/éﬂw—f(a) < o

Therefore f’ is integrable. Let g = 1, the constant function. Then ¢ is absolutely
continuous, and ¢’ = 0. Applying statement (b), it follows that for each = € [a,b] we
have

fl@) = Jla) = fa)gla) - f@gla) = | Cf) g @ de + / ") g(t) de

_ / F(b) dt

Therefore f is absolutely continuous on [a, b].
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3. For each k € N let x3, = (x1(1), zx(2),...) be a vector in ¢2. Assume that for each n we
have
lim zx(n) = 0.

k—o00
Must it be true that x; converges weakly to 0 as k — oc0?
If we assume further that there exists some constant M such that ||xy||2 < M for every k,
must it then be true that z; converges weakly to 07

Solution: In the first case it need not be true that z; converges weakly to 0. For example,
let zx(n) =11if £ <n <2k and 0 otherwise. Then

klim zr(n) = 0.
However, if we set y = (y(1),y(2),...) with y(n) = 1/n, then y € % and the inner
product of y with x;, satisfies

2k 1 ok 1
= - > —dx = 1n(2).
(y, k) ; - /k . T n(2)

Hence x; does not converge weakly to 0 as k — oo.

If we assume further that ||zx|ls < M for every k, then the sequence {zj}ren is
contained in the closed ball of radius M. Since ¢? is a Hilbert space, closed balls are
weakly compact. Therefore there exists a subsequence {xy, }nen that converges weakly,
say to y = (y(1),4(2),...). If we let &, denote the vector in ¢? that has a 1 in the mth
component and zeros elsewhere, then

n—oo

y(m) = (y,0m) = lim (z1,,0m) = lim x5, (m) = 0.

Thus y = 0, so z, converges weakly to the zero in (2.

We can replace {xy }nen in the preceding argument with any subsequence of {xy }nen.
This shows that every subsequence of {xy},en contains a sub-subsequence that converges
weakly to 0. This implies that the original sequence {x}ren converges weakly to 0.

Remark: The Uniform Boundedness Principle can be used to give an alternative
proof.
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4. Given f € LY(R), define

Fa) = [ 5

Prove that F' is differentiable on R, and it is absolutely continuous on any finite interval

la, b].

sin
t

t
* dt, r € R.

Solution: F(z) is well-defined for every x since f is integrable and *22 is a bounded
function of ¢t. The issue is to pass the derivative under the integral; we justify this via
the Dominated Convergence Theorem.

Let x be fixed, and set

sin xt
T

S(t) =sint and g:(t) = f(¢)

Since S is differentiable, the Mean Value Theorem implies that given ¢ and h, there exists
some point ¢ (depending on both ¢ and h) such that

S(xt + ht) — S(xt)

” = S'(§) = cosé&.

Hence

Gorn(t) — 92(t)
h

Also, since S is differentiable,

S(xt + ht) — S(xt)

. _ ! _
}lzli% p” = S'(zt) = coszt.
Therefore
g —galt) _ o S(at+ht) = S(at)
}ZILI(I) - = }ZILI(I) f(t) ” = f(t) cosut.

Applying the Dominated Convergence Theorem, F’(x) exists and has the value

FI(QZ) — }ILIL% F(l’ + hl)l - F(I) — Illli% o g$+h(t)h_ g$<t) dt — /OO f(t) COoS :L’t dt.
Since - -
|me/‘wmeWS/|mmﬁ=wm

we see that F’ is bounded, and therefore F' is Lipschitz and hence absolutely continuous
on any interval [a, b].
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5. Let p be a finite signed Borel measure on R, and suppose that p is absolutely continuous
with respect to Lebesgue measure. Show that if A is a Borel measurable subset of R, then
the function (A + t) is continuous in ¢ (here A+t ={x+t:z € A}).

Solution: Since p is absolutely continuous with respect to Lebesgue measure, there
exists an extended real-valued, Borel measurable function f such that for every Borel set

A we have
:/f(:c) dx
A

If we let R = PUN be a Hahn decomposition of R for u, then p is nonnegative on P and
nonpositive on N. Consequently, f is nonnegative a.e. on P and nonpositive a.e. on N.
As 0 < pu(P) < oo and 0 < —pu(N) < oo, it follows that

/R|f|=/Pf—/Nf=,u(P)—u(N)<oo.
Thus f is integrable.

Fix ty € R. If we set T, f(x) = f(x — t), then by standard methods (approximation
by a continuous, compactly supported function), we have

lim | T.f — T, f|l1 = 0.
t—to
Therefore, given a Borel set A,

lim |u(A+t) — u(A+t)| = lim

t—to t—to

f(x)de — f(x)dzx

A+t A+to

/fx—t dx—/fx—to ) dz

< lim T f (x) — Th, f(2)| da

= lim
t—to

< lim ITif — Tio 1
= 0.

Therefore p(A + t) is continuous at .

An alternative proof is to proceed through cases from A = (a,b) to A being an
arbitrary Borel set.
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6. Let C.(R) denote the space of continuous, compactly supported functions on R, and let
Co(R) denote the set of all continuous functions f such that lim|y . f(2) = 0. Prove that
C.(R) is a meager (= 1st category) subset of Cy(R).

Solution: For each N € N, define
C[_N7N] = {f € C(R) : Supp(f) g [_NaN]}

Since uniform convergence implies pointwise convergence, this is a closed subspace of
Co(R) with respect to the uniform norm.

Given € > 0, let g be any nonzero continuous function supported on [N, N + 1] such
that ||g]|e < €. Given any f € C[—N, N] we have h = f 4+ g ¢ C[—N, N] yet

If = Plloo = llglle <.

Therefore h € B.(f), so B-(f) is not contained in C[—N, N]. Thus C[—N, N] is a closed
subset of Cy(R) that has no interior, which says that C[—N, N| is a nowhere dense subset
of Cp(R). Finally,

Ce(R) = U C[=N, N],

NeN

so C.(R) is a meager subset of Cy(R).
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7. Let {z,}nen be a sequence in a Banach space X such that > - |u(z,)| converges
uniformly for p in the unit sphere in the dual space X*, i.e.,

o0

lim sup \p(z,)] = 0.
N=20 ex+, =1 ;V !

Prove that Y | ¢, converges for every bounded sequence of scalars (¢,,)nen-
Hint: Prove that > ¢,xz, is a Cauchy series.

Solution: Choose any bounded sequence ¢ = (¢, )nen, and fix € > 0. The result is trivial
if ¢ is the zero sequence, so assume that not every ¢, is zero. By hypothesis, there exists
an Ny such that if N > Ny then

3

sup 3 Jule,)| <

lul=1 =% lelloo

Consider any Ny < M < N. Then by Hahn—Banach we have

N M

E cnmn_g CpTn

k=1 k=1

N

E CnTn

k=M+1

N
($)
k=M+1
N

S conlen)

k=M+1
N

< sup 7 el )

llpll=1 k=M4+1

N
< [lefloo Sup > Intan)]

HlI=1 p—ari

= sup
llell=1

= sup
llull=1

(linearity)

< €.

Hence the sequence of partial sums {Zgil cnxn} Nen 18 Cauchy in X, and must therefore
converge since X is a Banach space. This tells us that the infinite series Y ;| ¢ 2p
converges.
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8. Let p* be an outer measure on a set X, and let Ay, As,... be disjoint p*-measurable
subsets of X. Prove that for any £ C X (measurable or not),

(B0 (04)) - LwEna.

Solution: First we will prove by induction that if n € N, then
(B0 (U 4)) => w(En4y), (1)
j=1 j=1

This statement is trivially true if n = 1. Suppose that equation (1) holds for some n, and
let B, = U;.Lzl A;. Applying Carathéodory’s Criterion, we compute that

(BN By1) = (EN Buii N Apyy) + 1 (EN Bii NASL)  (Anp is measurable)
= (ENApn) +p (ENBy) (disjointness of the A;)

= W (B0 Ay) + 30 (B0 4)
7=1
n+1
= ST w(ENA).

j=1

This establishes equation (1).
Finally, taking B,, as before and setting B = U;’il A;, we use the above work, mono-
tonicity, and subadditivity to compute that

> ow(ENA) = (ENB) <p(EnB) = (U(ENA)) <3 p'(En4)

This holds for every n, and every term in the sum is nonnegative, so we can take the
limit as n — oo and the result follows.

Page 8



