Analysis Comprehensive Exam Questions

Fall 2014

NOTE: All functions in this exam are (extended) real-valued.

1. Assume $1 \leq p<\infty$. Given $f \in L^{p}[0, \infty]$, show that

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \int_{0}^{x} f(t) d t=0
$$

Solution: The case $p=1$ follows directly. For $1<p<\infty$, let

$$
q=\frac{p}{p-1}
$$

be the dual index to p, and observe that

$$
\frac{1}{q}-1=\frac{p-1}{p}-1=-\frac{1}{p} .
$$

Applying Hölder's inequality, we therefore obtain

$$
\begin{aligned}
\left|\frac{1}{x} \int_{0}^{x} f(t) d t\right| & \leq \frac{1}{x} \int_{0}^{\infty} \chi_{[0, x]}(t)|f(t)| d t \\
& \leq \frac{1}{x}\left\|\chi_{[0, x]}\right\|_{q}\|f\|_{p} \\
& =x^{-1} x^{\frac{1}{q}}\|f\|_{p} \\
& =\frac{1}{x^{1 / p}}\|f\|_{p} \\
& \rightarrow 0 \quad \text { as } x \rightarrow \infty
\end{aligned}
$$

2. Assume that f is a monotone increasing function on $[a, b]$. Prove that the following two statements are equivalent.
(a) f is absolutely continuous.
(b) For every absolutely continuous function g on $[a, b]$ and every $x \in[a, b]$,

$$
\int_{a}^{x} f(t) g^{\prime}(t) d t+\int_{a}^{x} f^{\prime}(t) g(t) d t=f(x) g(x)-f(a) g(a)
$$

Solution: The product $F=f g$ is absolutely continuous. Each of f and g is differentiable a.e., and at any point t where f and g are both differentiable, the product rule tells us that

$$
F^{\prime}(t)=f(t) g^{\prime}(t)+f^{\prime}(t) g(t)
$$

Applying the Fundamental Theorem of Calculus to the absolutely continuous function F, if $x \in[a, b]$ then

$$
\begin{aligned}
\int_{a}^{x} f(t) g^{\prime}(t) d t+\int_{a}^{x} f^{\prime}(t) g(t) d t=\int_{a}^{x} F^{\prime}(t) d t & =F(x)-F(a) \\
& =f(x) g(x)-f(a) g(a)
\end{aligned}
$$

$(\mathrm{b}) \Rightarrow(\mathrm{a})$. Suppose that statement (b) holds. Since f is monotone increasing on the closed interval $[a, b]$, we know that f is differentiable a.e., $f^{\prime} \geq 0$ a.e., and

$$
\int_{a}^{b}\left|f^{\prime}\right|=\int_{a}^{b} f^{\prime} \leq f(b)-f(a)<\infty
$$

Therefore f^{\prime} is integrable. Let $g=1$, the constant function. Then g is absolutely continuous, and $g^{\prime}=0$. Applying statement (b), it follows that for each $x \in[a, b]$ we have

$$
\begin{aligned}
f(x)-f(a)=f(x) g(x)-f(a) g(a) & =\int_{a}^{x} f(t) g^{\prime}(t) d t+\int_{a}^{x} f^{\prime}(t) g(t) d t \\
& =\int_{a}^{x} f^{\prime}(t) d t
\end{aligned}
$$

Therefore f is absolutely continuous on $[a, b]$.
3. For each $k \in \mathbb{N}$ let $x_{k}=\left(x_{k}(1), x_{k}(2), \ldots\right)$ be a vector in ℓ^{2}. Assume that for each n we have

$$
\lim _{k \rightarrow \infty} x_{k}(n)=0
$$

Must it be true that x_{k} converges weakly to 0 as $k \rightarrow \infty$?
If we assume further that there exists some constant M such that $\left\|x_{k}\right\|_{2} \leq M$ for every k, must it then be true that x_{k} converges weakly to 0 ?

Solution: In the first case it need not be true that x_{k} converges weakly to 0 . For example, let $x_{k}(n)=1$ if $k \leq n \leq 2 k$ and 0 otherwise. Then

$$
\lim _{k \rightarrow \infty} x_{k}(n)=0
$$

However, if we set $y=(y(1), y(2), \ldots)$ with $y(n)=1 / n$, then $y \in \ell^{2}$ and the inner product of y with x_{k} satisfies

$$
\left(y, x_{k}\right)=\sum_{n=k}^{2 k} \frac{1}{n} \geq \int_{k}^{2 k} \frac{1}{x} d x=\ln (2)
$$

Hence x_{k} does not converge weakly to 0 as $k \rightarrow \infty$.
If we assume further that $\left\|x_{k}\right\|_{2} \leq M$ for every k, then the sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ is contained in the closed ball of radius M. Since ℓ^{2} is a Hilbert space, closed balls are weakly compact. Therefore there exists a subsequence $\left\{x_{k_{n}}\right\}_{n \in \mathbb{N}}$ that converges weakly, say to $y=(y(1), y(2), \ldots)$. If we let δ_{m} denote the vector in ℓ^{2} that has a 1 in the m th component and zeros elsewhere, then

$$
y(m)=\left(y, \delta_{m}\right)=\lim _{n \rightarrow \infty}\left(x_{k_{n}}, \delta_{m}\right)=\lim _{n \rightarrow \infty} x_{k_{n}}(m)=0
$$

Thus $y=0$, so $x_{k_{n}}$ converges weakly to the zero in ℓ^{2}.
We can replace $\left\{x_{k}\right\}_{n \in \mathbb{N}}$ in the preceding argument with any subsequence of $\left\{x_{k}\right\}_{n \in \mathbb{N}}$. This shows that every subsequence of $\left\{x_{k}\right\}_{n \in \mathbb{N}}$ contains a sub-subsequence that converges weakly to 0 . This implies that the original sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ converges weakly to 0 .

Remark: The Uniform Boundedness Principle can be used to give an alternative proof.
4. Given $f \in L^{1}(\mathbb{R})$, define

$$
F(x)=\int_{-\infty}^{\infty} f(t) \frac{\sin x t}{t} d t, \quad x \in \mathbb{R} .
$$

Prove that F is differentiable on \mathbb{R}, and it is absolutely continuous on any finite interval $[a, b]$.

Solution: $F(x)$ is well-defined for every x since f is integrable and $\frac{\sin x t}{t}$ is a bounded function of t. The issue is to pass the derivative under the integral; we justify this via the Dominated Convergence Theorem.

Let x be fixed, and set

$$
S(t)=\sin t \quad \text { and } \quad g_{x}(t)=f(t) \frac{\sin x t}{t}
$$

Since S is differentiable, the Mean Value Theorem implies that given t and h, there exists some point ξ (depending on both t and h) such that

$$
\frac{S(x t+h t)-S(x t)}{h t}=S^{\prime}(\xi)=\cos \xi
$$

Hence

$$
\left|\frac{g_{x+h}(t)-g_{x}(t)}{h}\right|=\left|f(t) \frac{S(x t+h t)-S(x t)}{h t}\right|=\left|f(t) S^{\prime}(\xi)\right| \leq|f(t)| \in L^{1}(\mathbb{R})
$$

Also, since S is differentiable,

$$
\lim _{h \rightarrow 0} \frac{S(x t+h t)-S(x t)}{h t}=S^{\prime}(x t)=\cos x t .
$$

Therefore

$$
\lim _{h \rightarrow 0} \frac{g_{x+h}(t)-g_{x}(t)}{h}=\lim _{h \rightarrow 0} f(t) \frac{S(x t+h t)-S(x t)}{h t}=f(t) \cos x t
$$

Applying the Dominated Convergence Theorem, $F^{\prime}(x)$ exists and has the value

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=\lim _{h \rightarrow 0} \int_{-\infty}^{\infty} \frac{g_{x+h}(t)-g_{x}(t)}{h} d t=\int_{-\infty}^{\infty} f(t) \cos x t d t
$$

Since

$$
\left|F^{\prime}(x)\right| \leq \int_{-\infty}^{\infty}|f(t) \cos x t| d t \leq \int_{-\infty}^{\infty}|f(t)| d t=\|f\|_{1}
$$

we see that F^{\prime} is bounded, and therefore F is Lipschitz and hence absolutely continuous on any interval $[a, b]$.
5. Let μ be a finite signed Borel measure on \mathbb{R}, and suppose that μ is absolutely continuous with respect to Lebesgue measure. Show that if A is a Borel measurable subset of \mathbb{R}, then the function $\mu(A+t)$ is continuous in t (here $A+t=\{x+t: x \in A\}$).

Solution: Since μ is absolutely continuous with respect to Lebesgue measure, there exists an extended real-valued, Borel measurable function f such that for every Borel set A we have

$$
\mu(A)=\int_{A} f(x) d x
$$

If we let $\mathbb{R}=P \cup N$ be a Hahn decomposition of \mathbb{R} for μ, then μ is nonnegative on P and nonpositive on N. Consequently, f is nonnegative a.e. on P and nonpositive a.e. on N. As $0 \leq \mu(P)<\infty$ and $0 \leq-\mu(N)<\infty$, it follows that

$$
\int_{\mathbb{R}}|f|=\int_{P} f-\int_{N} f=\mu(P)-\mu(N)<\infty
$$

Thus f is integrable.
Fix $t_{0} \in \mathbb{R}$. If we set $T_{t} f(x)=f(x-t)$, then by standard methods (approximation by a continuous, compactly supported function), we have

$$
\lim _{t \rightarrow t_{0}}\left\|T_{t} f-T_{t_{0}} f\right\|_{1}=0
$$

Therefore, given a Borel set A,

$$
\begin{aligned}
\lim _{t \rightarrow t_{0}}\left|\mu(A+t)-\mu\left(A+t_{0}\right)\right| & =\lim _{t \rightarrow t_{0}}\left|\int_{A+t} f(x) d x-\int_{A+t_{0}} f(x) d x\right| \\
& =\lim _{t \rightarrow t_{0}}\left|\int_{A} f(x-t) d x-\int_{A} f\left(x-t_{0}\right) d x\right| \\
& \leq \lim _{t \rightarrow t_{0}} \int_{A}\left|T_{t} f(x)-T_{t_{0}} f(x)\right| d x \\
& \leq \lim _{t \rightarrow t_{0}}\left\|T_{t} f-T_{t_{0}} f\right\|_{1} \\
& =0 .
\end{aligned}
$$

Therefore $\mu(A+t)$ is continuous at t_{0}.
An alternative proof is to proceed through cases from $A=(a, b)$ to A being an arbitrary Borel set.
6. Let $C_{c}(\mathbb{R})$ denote the space of continuous, compactly supported functions on \mathbb{R}, and let $C_{0}(\mathbb{R})$ denote the set of all continuous functions f such that $\lim _{|x| \rightarrow \infty} f(x)=0$. Prove that $C_{c}(\mathbb{R})$ is a meager ($=1$ st category) subset of $C_{0}(\mathbb{R})$.

Solution: For each $N \in \mathbb{N}$, define

$$
C[-N, N]=\{f \in C(\mathbb{R}): \operatorname{supp}(f) \subseteq[-N, N]\}
$$

Since uniform convergence implies pointwise convergence, this is a closed subspace of $C_{0}(\mathbb{R})$ with respect to the uniform norm.

Given $\varepsilon>0$, let g be any nonzero continuous function supported on $[N, N+1]$ such that $\|g\|_{\infty}<\varepsilon$. Given any $f \in C[-N, N]$ we have $h=f+g \notin C[-N, N]$ yet

$$
\|f-h\|_{\infty}=\|g\|_{\infty}<\varepsilon
$$

Therefore $h \in B_{\varepsilon}(f)$, so $B_{\varepsilon}(f)$ is not contained in $C[-N, N]$. Thus $C[-N, N]$ is a closed subset of $C_{0}(\mathbb{R})$ that has no interior, which says that $C[-N, N]$ is a nowhere dense subset of $C_{0}(\mathbb{R})$. Finally,

$$
C_{c}(\mathbb{R})=\bigcup_{N \in \mathbb{N}} C[-N, N]
$$

so $C_{c}(\mathbb{R})$ is a meager subset of $C_{0}(\mathbb{R})$.
7. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in a Banach space X such that $\sum_{n=1}^{\infty}\left|\mu\left(x_{n}\right)\right|$ converges uniformly for μ in the unit sphere in the dual space X^{*}, i.e.,

$$
\lim _{N \rightarrow \infty} \sup _{\mu \in X^{*},\|\mu\|=1} \sum_{n=N}^{\infty}\left|\mu\left(x_{n}\right)\right|=0 .
$$

Prove that $\sum_{n=1}^{\infty} c_{n} x_{n}$ converges for every bounded sequence of scalars $\left(c_{n}\right)_{n \in \mathbb{N}}$.
Hint: Prove that $\sum c_{n} x_{n}$ is a Cauchy series.

Solution: Choose any bounded sequence $c=\left(c_{n}\right)_{n \in \mathbb{N}}$, and fix $\varepsilon>0$. The result is trivial if c is the zero sequence, so assume that not every c_{n} is zero. By hypothesis, there exists an N_{0} such that if $N>N_{0}$ then

$$
\sup _{\|\mu\|=1} \sum_{n=N}^{\infty}\left|\mu\left(x_{n}\right)\right|<\frac{\varepsilon}{\|c\|_{\infty}} .
$$

Consider any $N_{0}<M<N$. Then by Hahn-Banach we have

$$
\begin{aligned}
\left\|\sum_{k=1}^{N} c_{n} x_{n}-\sum_{k=1}^{M} c_{n} x_{n}\right\| & =\left\|\sum_{k=M+1}^{N} c_{n} x_{n}\right\| \\
& =\sup _{\|\mu\|=1}\left|\mu\left(\sum_{k=M+1}^{N} c_{n} x_{n}\right)\right| \\
& =\sup _{\|\mu\|=1}\left|\sum_{k=M+1}^{N} c_{n} \mu\left(x_{n}\right)\right| \quad \text { (linearity) } \\
& \leq \sup _{\|\mu\|=1} \sum_{k=M+1}^{N}\left|c_{n}\right|\left|\mu\left(x_{n}\right)\right| \\
& \leq\|c\|_{\infty} \sup _{\|\mu\|=1} \sum_{k=M+1}^{N}\left|\mu\left(x_{n}\right)\right| \\
& <\varepsilon .
\end{aligned}
$$

Hence the sequence of partial sums $\left\{\sum_{k=1}^{N} c_{n} x_{n}\right\}_{N \in \mathbb{N}}$ is Cauchy in X, and must therefore converge since X is a Banach space. This tells us that the infinite series $\sum_{k=1}^{\infty} c_{n} x_{n}$ converges.
8. Let μ^{*} be an outer measure on a set X, and let A_{1}, A_{2}, \ldots be disjoint μ^{*}-measurable subsets of X. Prove that for any $E \subset X$ (measurable or not),

$$
\mu^{*}\left(E \cap\left(\bigcup_{j=1}^{\infty} A_{j}\right)\right)=\sum_{j=1}^{\infty} \mu^{*}\left(E \cap A_{j}\right)
$$

Solution: First we will prove by induction that if $n \in \mathbb{N}$, then

$$
\begin{equation*}
\mu^{*}\left(E \cap\left(\bigcup_{j=1}^{n} A_{j}\right)\right)=\sum_{j=1}^{n} \mu^{*}\left(E \cap A_{j}\right) \tag{1}
\end{equation*}
$$

This statement is trivially true if $n=1$. Suppose that equation (1) holds for some n, and let $B_{n}=\bigcup_{j=1}^{n} A_{j}$. Applying Carathéodory's Criterion, we compute that

$$
\begin{array}{rlrl}
\mu^{*}\left(E \cap B_{n+1}\right) & =\mu^{*}\left(E \cap B_{n+1} \cap A_{n+1}\right)+\mu^{*}\left(E \cap B_{n+1} \cap A_{n+1}^{\mathrm{C}}\right) & & \left(A_{n+1}\right. \text { is measurable) } \\
& =\mu^{*}\left(E \cap A_{n+1}\right)+\mu^{*}\left(E \cap B_{n}\right) & & \text { (disjointness of the } A \\
& =\mu^{*}\left(E \cap A_{n+1}\right)+\sum_{j=1}^{n} \mu^{*}\left(E \cap A_{j}\right) & \\
& =\sum_{j=1}^{n+1} \mu^{*}\left(E \cap A_{j}\right) .
\end{array}
$$

This establishes equation (1).
Finally, taking B_{n} as before and setting $B=\bigcup_{j=1}^{\infty} A_{j}$, we use the above work, monotonicity, and subadditivity to compute that

$$
\sum_{j=1}^{n} \mu^{*}\left(E \cap A_{j}\right)=\mu^{*}\left(E \cap B_{n}\right) \leq \mu^{*}(E \cap B)=\mu^{*}\left(\bigcup_{j=1}^{\infty}\left(E \cap A_{j}\right)\right) \leq \sum_{j=1}^{\infty} \mu^{*}\left(E \cap A_{j}\right)
$$

This holds for every n, and every term in the sum is nonnegative, so we can take the limit as $n \rightarrow \infty$ and the result follows.

