Algebra Comprehensive Exam Aug 28, 2015

Student	Number:	

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Please note that a complete solution of a problem is preferable to partial progress on several problems. Write **only on the front side** of the solution pages. Work on the back of the page might not be graded.

1. Let \mathbf{F} be a finite field and let M be an invertible $n \times n$ matrix with entries in \mathbf{F} . Prove that $M^m - I_n$ is not invertible for some integer $m \ge 1$. (I_n denotes the $n \times n$ identity matrix.)

Alternate:

- 2. Let G be a non-abelian finite group with center Z(G). Prove that $\#Z(G) \leq \frac{1}{4} \#G$.
- 3. Which of the following rings are isomorphic? Justify your answer.
 - (a) $R_1 = \mathbf{Q}[X]/(X^2 1)$
 - (b) $R_2 = \mathbf{Q}[X]/(X^2 2)$
 - (c) $R_3 = \mathbf{Q}[X]/(X^2 3)$
 - (d) $R_4 = \mathbf{Q}[X]/(X^2 4)$

Alternate:

- 4. (a) Give an example of a degree-6 Galois extension F/Q with non-abelian Galois group.
 (b) Give an example of a degree-6 Galois extension K/Q with abelian Galois group. Justify your answers.
- 5. For a linear operator $A: V \to V$ on a finite-dimensional real vector space V, such that $A^2 = A$, show that trace $A = \operatorname{rank} A$. Alternate:
- 6. Let G be an abelian group with generators a, b, c and relations

$$M\begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0, \text{ where } M = \begin{bmatrix} 2 & 10 & 6 \\ 4 & 6 & 12 \\ 2 & 4 & 6 \end{bmatrix}$$

- (a) Find the decomposition of G according to the Fundamental Theorem of finitely generated abelian groups.
- (b) What are cyclic generators corresponding to the components in this decomposition in terms of a, b, c?
- 7. Show that for any field F and any integer $d \ge 1$ there exists at most one finite multiplicative subgroup $G \subset F \setminus \{0\}$ of order d.
- 8. Let R be a commutative ring and let $f(X) = \sum_{i=0}^{d} c_i X^i$ be a *nilpotent* univariate polynomial with coefficients $c_i \in R$. Show that the coefficients c_i are also nilpotent.