Algebra Comprehensive Exam Aug 28, 2015

Student Number: \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Please note that a complete solution of a problem is preferable to partial progress on several problems. Write only on the front side of the solution pages. Work on the back of the page might not be graded.

1. Let \mathbf{F} be a finite field and let M be an invertible $n \times n$ matrix with entries in \mathbf{F}. Prove that $M^{m}-I_{n}$ is not invertible for some integer $m \geq 1$. (I_{n} denotes the $n \times n$ identity matrix.)

Alternate:

2. Let G be a non-abelian finite group with center $Z(G)$. Prove that $\# Z(G) \leq \frac{1}{4} \# G$.
3. Which of the following rings are isomorphic? Justify your answer.
(a) $R_{1}=\mathbf{Q}[X] /\left(X^{2}-1\right)$
(b) $R_{2}=\mathbf{Q}[X] /\left(X^{2}-2\right)$
(c) $R_{3}=\mathbf{Q}[X] /\left(X^{2}-3\right)$
(d) $R_{4}=\mathbf{Q}[X] /\left(X^{2}-4\right)$

Alternate:
4. (a) Give an example of a degree-6 Galois extension F / \mathbf{Q} with non-abelian Galois group.
(b) Give an example of a degree-6 Galois extension K / \mathbf{Q} with abelian Galois group. Justify your answers.
5. For a linear operator $A: V \rightarrow V$ on a finite-dimensional real vector space V, such that $A^{2}=A$, show that trace $A=\operatorname{rank} A$.

Alternate:
6. Let G be an abelian group with generators a, b, c and relations

$$
M\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=0, \text { where } M=\left[\begin{array}{ccc}
2 & 10 & 6 \\
4 & 6 & 12 \\
2 & 4 & 6
\end{array}\right]
$$

(a) Find the decomposition of G according to the Fundamental Theorem of finitely generated abelian groups.
(b) What are cyclic generators corresponding to the components in this decomposition in terms of a, b, c ?
7. Show that for any field F and any integer $d \geq 1$ there exists at most one finite multiplicative subgroup $G \subset F \backslash\{0\}$ of order d.
8. Let R be a commutative ring and let $f(X)=\sum_{i=0}^{d} c_{i} X^{i}$ be a nilpotent univariate polynomial with coefficients $c_{i} \in R$. Show that the coefficients c_{i} are also nilpotent.

Algebra Comp
Aug 28, 2015

