
Analysis Comprehensive Exam

August 21, 2015

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below – the uncircled
problems will not be graded.

1 2 3 4 5 6 7 8

Please note that a complete solution of a problem is preferable to partial progress on several
problems. Write only on the front side of the solution pages. Work on the back of the
page might not be graded.
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1. Let f ∈ L1(R) and α > 0. Show that

lim
n→∞

f(nx)n−α = 0 for a.e. x ∈ R.

2. Suppose that fn are absolutely continuous functions on [0, 1] such that fn(0) = 0 and

∞∑
n=1

∫ 1

0

|f ′
n(x)|dx < ∞.

show that

•
∑∞

n=1 fn(x) converges for every x. Call the limit f(x);

• f is absolutely continuous;

• for a.e. x ∈ [0, 1], we have

f ′(x) =
∞∑
n=1

f ′
n(x).

3. Let fn be a sequance in L2([0, 1]) and, for x ∈ [0, 1], define

Fn(x) =

∫ x

0

fn(t)dt

Assume that fn converge in norm to f in L2([0, 1]) with

F (x) =

∫ x

0

f(t)dt

a) Show that Fn, F are continuous and that Fn converge to F uniformly on [0, 1].

b) Is the conclusion still true if fn converge weakly to f? Prove or find a counterex-
ample.

4. Given two measurable sets A and B in S1 = R/Z let

τy(A) = (A+ y) mod 1.

Let m be the Lebesgue measure on S1 and note that m(S1) = 1. Show that there exists
y ∈ S1 such that

m(τy(A) ∩B) ≥ m(A)m(B).

5. Show that every closed convex set K in a Hilbert space H has a unique element of
minimal norm.
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6. Let (X,M, µ) be a finite measure space, N a sub-σ-algebra of M and ν = µ|N be the
restriction of µ to N . Show that for every f ∈ L1(X,M, µ) there exists a unique P (f) ∈
L1(X,N , ν) such that

∫
E
f dµ =

∫
E
P (f) dν for all E ∈ N . Moreover, L1(X,N , ν) is

a closed linear subspace of L1(X,M, µ) and P is a continuous linear projection (i.e.
P 2 = P ) of L1(X,M, µ) onto L1(X,N , ν).

7. Fix a finite measure space (X,M, µ) and 1 ≤ p < q ≤ ∞. Show that Lp 6⊂ Lq iff
X contains sets of arbitrarily small positive measure (Hint for the “if” implication:
construct a disjoint sequence {En} with 0 < µ(En) <

1
2n
, and consider f =

∑
n anχEn

for suitable constants an.).

8. Let 1 < p < ∞. Show that the operator Tf(x) =
∫∞

0
f(y)
x+y

dy satisfies

||Tf ||p ≤ Cp||f ||p, where Cp =

∫ ∞

0

dx

(1 + x)x1/p
,

and || · ||p is the p-norm on Lp(0,∞).
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