
Topology Comprehensive Exam

August 14, 2015

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

1 2 3 4 5 6 7 8

Please note that a complete solution of a problem is preferable to partial progress on several
problems. Write only on the front side of the solution pages. Work on the back of the
page might not be graded.
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1. Let M be a smooth compact manifold of dimension n (without boundary) and C a
submanifold of M diffeomorphic to a circle. If there is a smooth function f : M →
S1 that is a diffeomorphism when restricted to C then show that there is a (n − 1)-
dimensional submanifold of M that is not the boundary of any compact submanifold in
M .

2. Let M be a compact m-dimensional manifold and N be an n-dimensional manifold.
Suppose that f : M → N is a bijection and dfx : TxM → Tf(x)N is injective at each
x ∈M . Show that f is a diffeomorphism.

3. Given an area form ω on a surface Σ (that is a 2–form that is never zero) then one can
define the divergence of a vector field v on Σ as the unique function divωv such that

Lvω = (divωv)ω,

where Lv denotes the Lie derivative with respect to v.

(a) Show that if ω′ is another area form (defining the same orientation) then there is a
unique positive function f such that ω′ = fω and that

divω(v) = divω′(v) + d(ln f)(v).

(b) Derive a formula for divω(v′) in terms of divω(v) if v′ = gv for some function g.

(c) Show that given a function f : Σ→ R there is a unique vector field vf that satisfies
ιvfω = df , where ιvfω is the contraction of ω given by ιvfω(x) = ω(vf , x).

(d) Show the flow of vf from the previous item preserves the level sets of f and has
zero divergence.

4. Let X = S2 − {x0, . . . , xn} be the 2-sphere with n+ 1 distinct points removed. Choose
a base-point b such that a geodesic path ℘i from b to each xi doesn’t go through any
other xi. Let Bi be a small closed ball around xi, so that all the Bi are disjoint and
don’t intersect any ℘j for j 6= i. Let γi be the path from b following ℘i to the boundary
Bi, then following the boundary of Bi counterclockwise, and then returning along ℘i.

(a) Prove that there is a unique homomorphism f : π1(X, b)→ Z/2 sending γi to 1 for
all i if and only if n is odd.

(b) By the classification of covering spaces, there is a unique covering space Y → X
corresponding to Ker f . Compute the abelianization of π1(Y ) as a finitely generated
abelian group.

5. Let X be the topological space

X = {(x, y) ∈ C2}

−
(
{(x, y) : x = y} ∪ {(x, y) : x = −y} ∪ {(x, y) : x = y + 1} ∪ {(x, y) : x = −y + 1}

)
.

Show that any map from RP3 → X is null-homotopic.
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6. The mapping torus Tf of a map f : X → X is the quotient of X × [0, 1] obtained by
identifying (x, 0) with (f(x), 1). Let X = S1 ∨ S1 and let f : X → X be the following
map. View S1 as the subset of elements of C of elements of norm 1, with base point 1.
Let f map the first S1 to the second by z 7→ z2, and let f map the second to the first
by z 7→ z−3. Give a presentation of π1(Tf ).

7. Let X be a path-connected, locally path-connected, and semi locally simply-connected
topological space. A covering space f : Y → X is said to be finite if f−1(x) is a finite
set for all x ∈ X. A covering space f : Y → X is said to be Galois if for any points
y1, y2 ∈ Y such that f(y1) = f(y2), there exists a covering transformation g : Y → Y
such that g(y1) = y2.

Show that for any connected finite covering space Y → X there exists a finite Galois
covering space Z → X such that Z → X factors Z → Y → X.

8. Let f : S1 → R3 be a knot, i.e., a smooth embedding. Given an element v ∈ S2, let
Pv = {v}⊥ denote the plane perpendicular to v and let πv : R3 → Pv denote orthogonal
projection.

(a) Show that for almost every v ∈ S2, fv = πv ◦ f : S1 → Pv is an immersion.

(b) Let X = S1 × S1 − ∆ where ∆ = {(x, x) : x ∈ S1} is the diagonal. Consider the
map G : X → S2 defined by

G(x, y) =
f(x)− f(y)

|f(x)− f(y)|
.

Show that if v ∈ S2 is a regular value of G and fv is an immersion, then fv has
transverse crossings in the sense that fv(x) = fv(y) implies that ∂fv(x) and ∂fv(y)
are linearly independent. Conclude that for almost all v ∈ S2, fv is an immersion
with transverse crossings.
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