Topology Comprehensive Exam August 14, 2015

Student Number:
 \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Please note that a complete solution of a problem is preferable to partial progress on several problems. Write only on the front side of the solution pages. Work on the back of the page might not be graded.

1. Let M be a smooth compact manifold of dimension n (without boundary) and C a submanifold of M diffeomorphic to a circle. If there is a smooth function $f: M \rightarrow$ S^{1} that is a diffeomorphism when restricted to C then show that there is a $(n-1)$ dimensional submanifold of M that is not the boundary of any compact submanifold in M.
2. Let M be a compact m-dimensional manifold and N be an n-dimensional manifold. Suppose that $f: M \rightarrow N$ is a bijection and $d f_{x}: T_{x} M \rightarrow T_{f(x)} N$ is injective at each $x \in M$. Show that f is a diffeomorphism.
3. Given an area form ω on a surface Σ (that is a 2 -form that is never zero) then one can define the divergence of a vector field v on Σ as the unique function $\operatorname{div}_{\omega} v$ such that

$$
\mathcal{L}_{v} \omega=\left(\operatorname{div}_{\omega} v\right) \omega
$$

where \mathcal{L}_{v} denotes the Lie derivative with respect to v.
(a) Show that if ω^{\prime} is another area form (defining the same orientation) then there is a unique positive function f such that $\omega^{\prime}=f \omega$ and that

$$
\operatorname{div}_{\omega}(v)=\operatorname{div}_{\omega^{\prime}}(v)+d(\ln f)(v)
$$

(b) Derive a formula for $\operatorname{div}_{\omega}\left(v^{\prime}\right)$ in terms of $\operatorname{div}_{\omega}(v)$ if $v^{\prime}=g v$ for some function g.
(c) Show that given a function $f: \Sigma \rightarrow \mathbb{R}$ there is a unique vector field v_{f} that satisfies $\iota_{v_{f}} \omega=d f$, where $\iota_{v_{f}} \omega$ is the contraction of ω given by $\iota_{v_{f}} \omega(x)=\omega\left(v_{f}, x\right)$.
(d) Show the flow of v_{f} from the previous item preserves the level sets of f and has zero divergence.
4. Let $X=S^{2}-\left\{x_{0}, \ldots, x_{n}\right\}$ be the 2 -sphere with $n+1$ distinct points removed. Choose a base-point b such that a geodesic path \wp_{i} from b to each x_{i} doesn't go through any other x_{i}. Let B_{i} be a small closed ball around x_{i}, so that all the B_{i} are disjoint and don't intersect any \wp_{j} for $j \neq i$. Let γ_{i} be the path from b following \wp_{i} to the boundary B_{i}, then following the boundary of B_{i} counterclockwise, and then returning along \wp_{i}.
(a) Prove that there is a unique homomorphism $f: \pi_{1}(X, b) \rightarrow \mathbb{Z} / 2$ sending γ_{i} to 1 for all i if and only if n is odd.
(b) By the classification of covering spaces, there is a unique covering space $Y \rightarrow X$ corresponding to Ker f. Compute the abelianization of $\pi_{1}(Y)$ as a finitely generated abelian group.
5. Let X be the topological space

$$
\begin{aligned}
& X=\left\{(x, y) \in \mathbb{C}^{2}\right\} \\
& -(\{(x, y): x=y\} \cup\{(x, y): x=-y\} \cup\{(x, y): x=y+1\} \cup\{(x, y): x=-y+1\}) .
\end{aligned}
$$

Show that any map from $\mathbb{R P}^{3} \rightarrow X$ is null-homotopic.
6. The mapping torus T_{f} of a map $f: X \rightarrow X$ is the quotient of $X \times[0,1]$ obtained by identifying $(x, 0)$ with $(f(x), 1)$. Let $X=S^{1} \vee S^{1}$ and let $f: X \rightarrow X$ be the following map. View S^{1} as the subset of elements of \mathbb{C} of elements of norm 1 , with base point 1 . Let f map the first S^{1} to the second by $z \mapsto z^{2}$, and let f map the second to the first by $z \mapsto z^{-3}$. Give a presentation of $\pi_{1}\left(T_{f}\right)$.
7. Let X be a path-connected, locally path-connected, and semi locally simply-connected topological space. A covering space $f: Y \rightarrow X$ is said to be finite if $f^{-1}(x)$ is a finite set for all $x \in X$. A covering space $f: Y \rightarrow X$ is said to be Galois if for any points $y_{1}, y_{2} \in Y$ such that $f\left(y_{1}\right)=f\left(y_{2}\right)$, there exists a covering transformation $g: Y \rightarrow Y$ such that $g\left(y_{1}\right)=y_{2}$.
Show that for any connected finite covering space $Y \rightarrow X$ there exists a finite Galois covering space $Z \rightarrow X$ such that $Z \rightarrow X$ factors $Z \rightarrow Y \rightarrow X$.
8. Let $f: S^{1} \rightarrow \mathbb{R}^{3}$ be a knot, i.e., a smooth embedding. Given an element $v \in S^{2}$, let $P_{v}=\{v\}^{\perp}$ denote the plane perpendicular to v and let $\pi_{v}: \mathbb{R}^{3} \rightarrow P_{v}$ denote orthogonal projection.
(a) Show that for almost every $v \in S^{2}, f_{v}=\pi_{v} \circ f: S^{1} \rightarrow P_{v}$ is an immersion.
(b) Let $X=S^{1} \times S^{1}-\Delta$ where $\Delta=\left\{(x, x): x \in S^{1}\right\}$ is the diagonal. Consider the $\operatorname{map} G: X \rightarrow S^{2}$ defined by

$$
G(x, y)=\frac{f(x)-f(y)}{|f(x)-f(y)|}
$$

Show that if $v \in S^{2}$ is a regular value of G and f_{v} is an immersion, then f_{v} has transverse crossings in the sense that $f_{v}(x)=f_{v}(y)$ implies that $\partial f_{v}(x)$ and $\partial f_{v}(y)$ are linearly independent. Conclude that for almost all $v \in S^{2}, f_{v}$ is an immersion with transverse crossings.

Topology Comp
Aug 14, 2015

