
Comprehensive Examination, February 2003

REAL ANALYSIS

Instructions: (1) Please do any 5 of the 7 problems. (2) Be sure to justify your assertions.

Please provide careful and complete answers; partial progress towards many questions

counts less than a complete answer to fewer questions. If you attempt more than five

questions, specify which ones you want to be graded, otherwise the first five answered

will be graded.

1. Proof or counterexample: If f is a nonnegative function in L1[0, 1] and

∫ 1

0

f(x)dx = 1,

then there exists a measurable set A ⊂ [0, 1] such that

µ(A) =
1

2
and

∫

A

f =
1

2

(µ denotes Lebesgue measure).

2. Let µ denote Lebesgue measure on [0, 1], ν counting measure on [0, 1], andH Hausdorff

measure on [0, 1]. Hausdorff measure is given by

H(A) = lim
r↘0

inf







∞
∑

j=1

diam(Aj) : A ⊂

∞
⋃

j=1

Aj ,diam(Aj) ≤ r







on

M = {A ⊂ [0, 1] : H(A ∩B) +H(B\A) = H(B) for every B ⊂ [0, 1]} .

Here, diam(Aj) = sup {|x− y| : x, y ∈ Aj} is the diameter of Aj .

(a) Give precise definitions for µ and ν.

(b) Determine which of the following assertions concerning absolute continuity are

true and which are false on the intersection of the domains of the given measures:

µ¿ ν, µ¿ H, ν ¿ µ, ν ¿ H, H ¿ µ, H ¿ ν.

(Justify your answers.)

(c) Is there a function f such that µ(A) =

∫

A

f dν for every A ∈ M? (Justify your

answer.)
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3. Suppose fn, f ∈ L1(−∞,∞), ‖fn‖L1(−∞,∞) ≤ 1 for all n, and

∫

E

fn →

∫

E

f for every

measurable set E. Prove that if g is a measurable function with 0 ≤ g ≤ 1 a.e., then
∫

fng →

∫

fg.

4.(a) Give a counterexample to the statement: If {fn}
∞
n=1 is a sequence of Lebesgue mea-

surable functions on (−∞,∞) satisfying f1 > f2 > · · · > 0 a.e. and fn → f a.e.,

then
∫

R

fn →

∫

R

f.

(b) Add one additional hypothesis to the statement of part (a) (do not otherwise modify

the given hypotheses) and prove the resulting assertion.

5. Denote the class of absolutely summable sequences of real numbers by l1. Let α =

{αn}
∞
n=1, β = {βn}

∞
n=1 ∈ l1 with αn, βn > 0 for all n. Assume ‖β‖ = 1. Show that

∞
∏

n=1

αβn

n ≤

∞
∑

n=1

αnβn <∞.

6. State carefully the Riesz Representation Theorem for linear functionals on Lp, 1 ≤

p <∞, and prove the uniqueness of Riesz representation.

7. Let A =
{

f ∈ L1[0, 1] : |f(x)| ≥ 1 a.e.
}

True or False

(a) A is norm closed in L1[0, 1].

(b) A is weakly closed in L1[0, 1].
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Comprehensive Examination, Spring 2003

ALGEBRA

Instructions: (1) Please do any 5 of the 7 problems. (2) Be sure to justify your assertions.

Please provide careful and complete answers; partial progress towards many questions

counts less than a complete answer to fewer questions. If you attempt more than five

questions, specify which ones you want to be graded, otherwise the first five answered

will be graded.

1. Let G be a finite group. For any x ∈ G, let Z(x) = {g ∈ G : gx = xg}. Let

C(G) = {Z(x) : x ∈ G}. Prove the following statements.

(a) If |C(G)| = 1 then G is Abelian.

(b) |C(G)| 6= 2.

(c) |C(G)| 6= 3.

2. (a) Show that if H and K are normal subgroups of a group and H ∩K = {1} where

1 is the identity, then xy = yx for all x ∈ H and y ∈ K.

(b) Let G be a group of order pq, where p < q and both p and q are prime numbers.

Let P be a subgroup of G of order p and Q a subgroup of G of order q. Prove

that Q is a normal subgroup of G, and if P is a normal subgroup of G then G is

cyclic.

3. Let R be an integral domain, and let R{x} denote the set of formal power series

in x with coefficients in R. Then R{x} is a commutative ring under the following

operations:
∞
∑

n=0

anx
n +

∞
∑

n=0

bnx
n =

∞
∑

n=0

(an + bn)x
n, and

(

∞
∑

n=0

anx
n

)

·

(

∞
∑

n=0

bnx
n

)

=
∞
∑

n=0

(

n
∑

k=0

akbn−k

)

xn.

Prove the following statements.

(a) I = (x), the principle ideal generated by x, is a prime ideal in R{x}.

(b) I is a maximal ideal if and only if R is a field.
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4. Let F be a finite field. Prove (from first principles) that there exist a prime number

p and a positive integer n such that |F | = pn.

5. Let Zp[x] denote the polynomial ring with coefficients in Zp (where p is a prime

number) and let f(x) be an irreducible polynomial over Zp of degree n > 0. Show

(from first principles) that Zp[x]
/

(f(x)) is a field with pn elements. Here, f(x)) is the

ideal in Zp[x] generated by f(x).

6. Prove that 〈A,B〉 = trace(ABT ) defines an inner product on the space of n × n real

matrices, and find the orthogonal complement of the subspace of all skew symmetric

matrices.

7. Prove that diagonalizable matrices A and B can be simultaneously diagonalized (there

exists a matrix S with S−1AS and S−1BS both diagonal) if and only if AB = BA.
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SOLUTIONS: Algebra

1. Proof of (a). ∀ x, y ∈ G with x 6= y, we have Z(x) = Z(y) = Z(1) = G. Hence

x ∈ Z(y). Therefore xy = yx. So G is Abelian.

Proof of (b). Suppose for a contradiction that |C(G)| = 2. Let x ∈ G such that

Z(x) 6= Z(1) = G. Since Z(x) 6= G, there exists some y ∈ G\Z(x). That is, xy 6= yx.

Hence, x 6∈ Z(y). But this implies that Z(y) 6= Z(x) and Z(y) 6= G, contradicting the

assumption that |C(G)| = 2.

Proof of (c). Suppose for a contradiction that |C(G)| = 3. Let x ∈ G such that

Z(x) 6= Z(1) = G. Since Z(x) 6= G, there exists some y ∈ G\Z(x). As in the proof of

(b), we know that Z(y) 6= Z(x) and Z(y) 6= Z(1).

Now consider the element xy. We will derive a contradiction by showing that

Z(xy) 6∈ {Z(x), Z(y), Z(1)}. Since Z(x) 6= Z(y), xy 6= yx. Therefore, x(xy) 6=

x(yx) = (xy)x, and so, Z(xy) 6= Z(x) and Z(xy) 6= Z(1). Similarly, (xy)y 6= (yx)y =

y(xy) and so, Z(xy) 6= Z(y). Thus |C(G)| ≥ 4, a contradiction.

2. Proof of (a). We consider (yx)−1xy = x−1y−1xy. Since x−1y−1x ∈ x−1Kx = K

(because K is normal), x−1y−1xy ∈ K. Since y−1xy ∈ y−1Hy = H (because H is

normal), x−1y−1xy ∈ H. Since H∩K = {1}, we have x−1y−1xy = 1. Hence, xy = yx

for all x ∈ H and y ∈ K.

Proof of (b). First, we show that Q is a normal subgroup of G. Since Q is of

order q which is a prime number and q2 does not divide pq = |G|, Q is a Sylow

subgroup of G. Hence by Sylow’s theorem, |{g−1Qg : g ∈ G}| ≡ 1(mod q). We

claim that |{g−1Qg : g ∈ G}| = 1. For otherwise, |{g−1Qg : g ∈ G}| ≥ q + 1.

Since ∀ g, h ∈ G, either g−1Qg = h−1Qh or g−1Qg ∩ h−1Qh = {1}, we see that

|G| ≥ (q + 1)(q − 1) + 1 = q2 > pq = |G|, a contradiction. So |{g−1Qg : g ∈ G}| = 1,

and hence, g−1Qg = Q ∀ g ∈ G. Therefore, Q is a normal subgroup of G.

Now assume that P is normal in G. Since p < q and both p and q are primes,

P ∩ Q = {1}. Therefore, by (a), ∀ x ∈ P and y ∈ Q, xy = yx. Let P = 〈x〉

and Q = 〈y〉. Consider the element xy in G. Clearly (xy)pq = xpqypq = 1. Also

(xy)p = xpyp = yp 6= 1 and (xy)q = xqyq = xq 6= 1 (again because p, q are primes and

p < q). So the order of xy is pq, and hence G = 〈xy〉 (because |G| = pq).
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3. Proof of (a). Suppose

(
∞∑

n=0

anx
n

)

·

(
∞∑

n=0

bnx
n

)

∈ I. Then a0b0 = 0. Therefore,

since R is an integral domain, a0 = 0 or b0 = 0. If a0 = 0 then
∞∑

n=0

anx
n ∈ I, and if

b0 = 0 then

∞∑

n=0

bnx
n ∈ I. So I is a prime ideal.

Proof of (b). Suppose I is a maximal ideal. Let r ∈ R and assume r 6= 0. Then the

ideal generated by x and r must be equal to R{x}. Therefore, there exist

∞∑

n=0

anx
n,

∞∑

n=0

bnx
n in R{x} such that x ·

∞∑

n=0

anx
n+ r ·

∞∑

n=0

bnx
n = 1. This implies that rb0 = 1.

Hence, r has an inverse. Since r is arbitrary, R is a field.

Now assume that R is a field. Let

∞∑

n=0

anx
n ∈ R{x} − I. Then a0 6= 0. Consider

the ideal I ′ generated by x and
∞∑

n=0

anx
n, which contains the element

∞∑

n=1

(−an)x
n +

∞∑

n=0

anx
n = a0. Since a0 6= 0 and since R is a field, 1 ∈ I ′. So I ′ = R{x}. Since

∞∑

n=0

anx
n is arbitrary, I must be a maximal ideal in R{x}.

4. Proof. Let 0 and 1 denote the additive identity and multiplicative identity of F ,

respectively. Since F is finite, there is a positive integer p such that 1 + · · ·+ 1
︸ ︷︷ ︸

p

= 0

(because the sequence 1, 1+1, 1+1+1, . . .must repeat). Choose such p to be minimum.

Then p must be a prime number. For otherwise, there exist integers m, q such

that 2 ≤ m, q < p and p = mq. Then (1 + · · ·+ 1)
︸ ︷︷ ︸

m

(1 + · · ·+ 1)
︸ ︷︷ ︸

q

= 1 + · · ·+ 1
︸ ︷︷ ︸

p

= 0.

Since F is a field, either 1 + · · ·+ 1
︸ ︷︷ ︸

m

= 0 or 1 + · · ·+ 1
︸ ︷︷ ︸

q

= 0, contradicting the choice of

p.

Let Zp =






0, 1, 1 + 1, . . . , 1 + · · ·+ 1

︸ ︷︷ ︸

p−1






. Then Zp is closed under both operations

of F . So Zp is a subfield of F .

We may view F as an extension of Zp. Since F is finite, [F : Zp] is finite. Let

n = [F : Zp], and let v1, . . . , vn be a basis of F as a vector space over Zp. Then
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F = {c1v1 + · · ·+ cnvn : ci ∈ Zp, i = 1, . . . , n}. Hence |F | = pn.

5. Proof. First, we show that Zp[x]/(f(x)) under addition is an Abelian group. Let

[g(x)], [h(x)], [k(x)] ∈ Zp[x]/(f(x)). Then

([g(x)] + [h(x)]) + [k(x)] = [g(x) + h(x)] + [k(x)](1)

= [(g(x) + h(x)) + k(x)] = [g(x) + (h(x) + k(x))]

= [g(x)] + [h(x) + k(x)] = [g(x)] + ([h(x)] + [k(x)]),

[g(x)] + [h(x)] = [g(x) + h(x)] = [h(x) + g(x)] = [h(x)] + [g(x)],(2)

[0] + [g(x)] = [0 + g(x)] = [g(x)], and(3)

[−g(x)] + [g(x)] = [−g(x) + g(x)] = [0],(4)

where

−g(x) =
n∑

i=0

(−ai)x
i if g(x) =

n∑

i=0

aix
i.

Next, we prove distribution property.

[g(x)]([h(x)] + [k(x)]) = [g(x)][h(x) + k(x)]

= [g(x)(h(x) + k(x))]

= [g(x)h(x) + g(x)k(x)]

= [g(x)h(x)] + [g(x)k(x)]

= [g(x)][h(x)] + [g(x)][k(x)].

Now we show that Zp[x]/(f(x))−{[0]} under multiplication is an Abelian group. Note

(1), (2), (3) are the same as for additions (with [1] replacing [0] in (3)). We only show

(4), the existence of a multiplicative inverse.

For each [g(x)] ∈ Zp[x]/(f(x)), we may assume the degree of g(x) is less than n.

For, if degree of g(x) is ≥ n, then by division algorithm, there exists q(x), r(x) ∈ Zp[x]

such that g(x) = q(x)f(x)+r(x) and degree of r(x) is less than n. Hence [g(x)] = [r(x)]

(since [f(x)] = [0]) and we could use r(x) instead of g(x).

Let [g(x)] ∈ Zp[x]/(f(x))− {[0]}. Since f(x) is irreducible and because g(x) 6= 0

and the degree of g(x) is less than n, we have gcd(g(x), f(x)) = 1. By Euclidean
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algorithm, there exist s(x), t(x) ∈ Zp[x] such that s(x)g(x)+ t(x)f(x) = 1. Therefore

[s(x)][g(x)] + [t(x)][f(x)] = [1]. Since [f(x)] = [0], [s(x)][g(x)] = [1]. So [g(x)] has a

multiplicative inverse.

Finally, we show that Zp[x]/(f(x)) has pn elements. For any [g(x)], [h(x)] ∈

Zp[x]/(f(x)), we see that [g(x)] = [h(x)] if and only if g(x) = h(x) (from previous

assumptions that both g(x) and h(x) have degree < n). Therefore, since coefficients

of g(x) are in Zp, we see that Zp[x]/(f(x)) has p
n elements.

6. Proof of (a). It is easy to see that

〈A,B〉 = trace(ABT )

is symmetric and linear in the first variable. Further, AAT is positive semidefi-

nite, hence diagonalizable with real nonnegative eigenvalues. Since trace(AAT ) is

the sum of the eigenvalues we have 〈A,A〉 ≥ 0 for all A, and 〈A,A〉 = 0 if and

only if all eigenvalues are 0, in which case AAT = 0. [AAT is diagonalizable]. Since

rank(AAT ) = rank A, A is 0 as well.

Proof of (b). We claim the orthogonal complement of the skew-symmetric matrices,

SK, is the subspace, S, of symmetric matrices. If A = (aij) is symmetric and B = (bij)

is skew symmetric, then
〈A,B〉 = trace(ABT )

=
∑

i

·
∑

j

aijbij

=
∑

i,j

aijbij = 0

since aij = aji and bij = −bji for all i 6= j and bii = 0 for all i. Thus S ⊂ SK⊥.

Now dim(SK) =
(n− 1)n

2
so dim(SK⊥) = n2 −

(n− 1)n

2
=
n2

2
−
n

2
. But dim(S) =

(n− 1)(n)

2
+ n =

n2

2
−
n

2
and since dim(S) = dim(SK⊥), we have S = SK⊥.

7. Proof. IfD1 = S−1AS andD2 = S−1BS are diagonal, thenAB = SD1S
−1SD2S

−1 =

SD1D2S
−1 = SD2D1S

−1 = BA. The other direction is harder. Suppose AB = BA.

We will use the following fact.

A matrix is diagonalizable if and only if its minimal polynomial factors as

(x− λ1) · · · (x− λk) where λ1, . . . , λk are the distinct eigenvalues.
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We can assume (by diagonalizing A) that

A =















λ1

. . .

λ1 0
. . .

0 λk
. . .

λk















.

where each diagonal block






λj
. . .

λj




 corresponds to an invariant subspace Ej =

{eigenvectors of A with eigenvalue λj} and

R
n = E1 ⊕ · · · ⊕ Ek.

Claim: Each Ei is an invariant subspace for B.

Proof: If v ∈ Ei, then Av = λiv. Therefore, A(Bv) = BAv = B(λiv) = λi(Bv).

Thus, Bv ∈ Ei. Therefore, B has block diagonal form





B1 0
. . .

0 Bk





(with each block Bj the same size as the corresponding λj block of A).

Claim: Each Bi is diagonalizable on Ei.

Proof: Note that the minimal polynomial mB of B acts blockwise. That is,

MB(B) =






mB(B1)
. . .

mB(Bk)




 = (0).

Therefore, if mj is the minimal polynomial of Bj , then mj | mB . According to the

fact stated at the beginning, mj must consist of distinct factors (x− µ1) · · · (x− µ`).

Therefore Bj is diagonalizable.

Pick a basis in each Ej that diagonalizes Bj . Combining these basis elements

gives a basis for R
n that diagonalizes B. Since each basis element comes from one of

the Ei, it is an eigenvector of A and A keeps the same (diagonal) form.
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SOLUTIONS: Real Analysis

1. If

∫ 1/2

0

f(x)dx = 1/2 we take A =

[

0,
1

2

]

and we’re done. Otherwise, assume

∫ 1/2

0

f(x)dx < 1/2. Then

∫ 1

1/2

f(x)dx > 1/2, and the function

g(t) =

∫ t+1/2

t

f(x)dx is continuous in t,

so there exists t0, 0 < t0 < 1/2 such that g(t0) = 1/2. Taking A =

[

t0, t0 +
1

2

]

, we

are done. If

∫ 1/2

0

f(x)dx > 1/2, the same argument applies.

2. Proof of (a).

µ(A) = inf







∞∑

j=1

(bj − aj) : A ⊂
∞⋃

j=1

[aj , bj ]







on the same algebraM given for H.

Counting measure is given by cardinality on all subsets.

Proof of (b). Claim: µ = H. If {Ij} are intervals covering A and having
∑
|Ij | <

µ(A) + ε, then we can break them into subintervals of length less than r to see that

H(A) ≤ µ(A) + ε. Since ε is arbitrary, we have half of the claim. To see the other

half, simply note that the infimum in the definition of H is a nondecreasing function

of r. Therefore, we can replace each Aj with an interval Ij ⊃ Aj and having the same

diameter. Therefore, µ(A) ≤
∑

|Ij | ≤ H(A).

We see then that H = µ¿ ν because if ν(A) = 0, then it doesn’t have any points;

µ ¿ H and H ¿ µ because they are equal; that ν ¿ µ or H is false because any

countable set has Lebesgue measure zero but infinitely many points; take for example

{1/n : n = 1, 2, . . .}.

Proof of (c). If there were such a function, then

f(x) ≡

∫

{x}

f dν = µ{x} = 0.

Therefore f ≡ 0. But 1 = µ[0, 1] 6=

∫

[0,1]

f dν. (There is no such function.)
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The point here is that the Radon-Nikodym Theorem requires sigma finite measure

spaces.

3. Let ε > 0 and choose a simple function φ such that ‖φ− g‖∞ < ε/3. Then

∣
∣
∣
∣

∫

fnφ−

∫

fng

∣
∣
∣
∣
≤ ‖fn‖1‖φ− g‖∞ < ε/3

and
∣
∣
∣
∣

∫

fφ−

∫

fg

∣
∣
∣
∣
≤ ‖f‖1‖φ− g‖ < ε/3

[No problem: Take ‖f − g‖∞ < max

(
ε

3

‖φ‖, ε

3‖f‖

)

.] Next, by linearity of

∫

, find N

such that

n > N ⇒

∣
∣
∣
∣

∫

fnφ−

∫

fφ

∣
∣
∣
∣
<
ε

3
.

Then n > N ⇒
∣
∣
∣
∣

∫

fng −

∫

fg

∣
∣
∣
∣
≤

∣
∣
∣
∣

∫

fng −

∫

fnφ

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

fnφ−

∫

fφ

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

fφ−

∫

fg

∣
∣
∣
∣
< 3

(
ε

3

)

= ε.

4. Proof of (a). Counterexample: Let f ≡ 0. Let

fn =

{
1/n −∞ < x ≤ n
1

2
+

1

n
n < x <∞

Thus fn ↘ 0, strictly decreasing,

∫

fn =∞ ∀n, yet

∫

f = 0.

Proof of (b). Additional hypothesis f1 ∈ L
1(−∞,∞). This result follows immedi-

ately from LDCT.

5. Use Jensen’s Inequality which relates φ
(∫
f
)
and

∫
φ ◦ f where φ is a convex function

and the integral is over a probability space (total measure 1). If you can’t remember

which way the inequality goes, just let f be constant on each half interval of the unit

interval with Lebesgue measure, and the convexity of φ will tell you what must be

true. In any event, you get

φ

(∫

f

)

≤

∫

φ ◦ f.
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Notice that since ‖β‖ = 1, we can use the βn to partition [0, 1] into disjoint subin-

tervals In of length βn. In this way,
∑
βnγn =

∫

[0,1]
f where f is defined to have the

(constant) value γn on the interval In of length βn. This turns sums into integrals,

which in one way or another, is probably the easiest thing to do in this problem.

Now, let’s start by taking log of the left side:

log
N∏

n=1

αβn

n =
N∑

n=1

βn logαn

=

∫

⋃
N

j=1
Ij

log

[
N∑

n=1

αnχIn

]

.

Applying exp to both sides and applying Jensen, we get

N∏

n=1

αβn

n ≤

∫

⋃
N

j=1
Ij

N∑

n=1

αnχIn

↗
∞∑

n=1

αnβn.

Taking
∑N

n=1αnβn separately, we see by Hölder’s inequality that this is always

smaller than ‖α‖‖β‖ <∞. This shows that all quantities involved are finite.

6. The Reisz Representation Theorem: If Λ is a bounded linear functional on Lp

for some p ∈ [1,∞), then there is a unique g ∈ Lq (where q = 1 − 1/p when p 6= ∞

and p = 1 otherwise) such that

Λ(f) =

∫

fg

for all f ∈ Lp.

To see the uniqueness, assume there is some g̃ with

∫

fg =

∫

fg̃

for all f ∈ Lp. If the measure of {x : g(x) 6= g̃(x)} is nonzero, then we may assume that

for some ε,N > 0 the set A = {x ∈ [−N,N ] : g(x)− g̃(x) > ε} has positive measure.

Note that f = χA ∈ L
p, but

∫

fg −

∫

fg̃ > µ(A)ε > 0. This is a contradiction.

7. Proof of (a). If y 6∈ A, then there is ε > 0 and set E of positive measure such that

|g(x)| < 1− ε ∀ x ∈ E.
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Then for f ∈ A we have

‖f − g‖1 =

∫ 1

0

|f − g| ≥

∫

E

|f − g| ≥ εµ(E)

Thus ‖f − g‖ < εµ(E)⇒ f 6∈ A⇒ Ã is open ⇒ A is norm chosed in L1.

Proof of (b). A is not weakly closed in L1. Consider f0(x) =

{
1 0 ≤ x ≤ 1/2
−1 1/2 ≤ s ≤ 1

,

extended periodically and fn(x) = f(2nx). Then ∀ g ∈ L∞,

∫

fng → 0, so fn → 0

weakly, but f ≡ 0 6∈ A.
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