Qualifying Exam Problems

1 Let \mathcal{M} be the σ algebra of Lesbegue measu reable substes of the real line. Is it true that for every $E \in \mathcal{M}$, there is an F_{σ} set A (count able intersection of closed sets) so that $E=A \cup B$ where B is a null set? Prove this or give a counterexample.
IDEA OF SOLUTION: This is true; it uses the regularity of Lebesgue measur e, and the countable additivity. Approximate E on the inside by a sequence of compact sets....
2 Produce an explicit example of a continuous function of two variables $x \geq 1$ and $t \geq 1$, such that

$$
\int_{1}^{\infty}\left(\int_{1}^{\infty} f(x, t) \mathrm{d} x\right) \mathrm{d} t \neq \int_{1}^{\infty}\left(\int_{1}^{\infty} f(x, t) \mathrm{d} t\right) \mathrm{d} x
$$

IDEA OF SOLUTION Violate Fubini's Theorem by having non-integrability. Use something like $f(x, t)=(x-t) e^{-x t}$.

3 Let (X, \mathcal{S}, μ) be a finite measure space. Suppose that $\left\{f_{n}\right\}$ is a sequence of real valued measurable functions, and that $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for almost every x. Suppose that $\|f\|_{1}>0$. Show that there for some $\epsilon>0$, there is a strictly positive number b so that for all n sufficiently large there is a set E_{n} with $\mu\left(E_{n}\right)>\epsilon$ and $\left|f_{n}(x)\right|>b$ for all $x \in E_{n}$.

IDEA OF SOLUTION Usual convergence theorems.
4 Give an example of a dense but not closed linear manifold M in a Banach space X.
5 Prove or find a counter example to the statement: if E is a convex subset of a Hilbert space and $\left\{x_{n}\right\} \subset E$ satisfies $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\inf \{\|x\|: x \in E\}$ then $\left\{x_{n}\right\}$ is a Cauchy sequence.

6 Let (X, \mathcal{S}, μ) be a finite measure space. Let $\left\{f_{n}\right\}$ be a sequence functions in $L^{p}(X, \mathcal{S}, \mu)$, $1<p<\infty$. Suppose that for all $g \in L^{q}(X, \mathcal{S}, \mu)$ where $q=p /(p-1)$,

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} g \mathrm{~d} \mu=\int_{X} f g \mathrm{~d} \mu
$$

for some function $f \in L^{p}(X, \mathcal{S}, \mu)$. Show that if $\lim _{n \rightarrow \infty} \mid f_{n}\left\|_{p}=\right\| f \|_{p}$, then there is a subsequence $\left\{f_{n_{k}}\right\}$ so that $\lim _{k \rightarrow \infty} f_{n_{k}}(x)=f(x)$ almost everywhere, an d give a counterexample showing that this need not be true without the hypothesis that $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}=\|\left. f\right|_{p}$.
7 Let A be an $n \times n$ matrix. Let $\rho(A)$ be the spectra 1 radius of A, which is, by definition the largest of the absolute values of the eigenvalues of A. Show that $\lim _{n \rightarrow \infty} A^{n}=0$ if and only if $\rho(A)<1$. Do not assume that A is diagonalizable.
IDEA OF SOLUTION Schur's theorem and "almost diagonalizability".
8 Suppose that $\left\{\lambda_{p}\right\}_{p=1}^{\infty}$ is a sequence of complex numbers that lie outside the unit disc and that each of $\left\{\phi_{p}\right\}_{p=1}^{\infty}$ and $\left\{\theta_{p}\right\}_{p=1}^{\infty}$ is a maximal orthonormal family in a Hilbert space X. Let

$$
D(A)=\left\{x: x \in X \text { and } \sum_{p=1}^{\infty}\left|\lambda_{p}\right|^{2}\left|\left\langle x, \phi_{p}\right\rangle\right|^{2}<\infty\right\}
$$

Define a linear operator (not necesarily bounded) A by:

$$
\mathbf{A} x=\sum_{p=1}^{\infty} \lambda_{p}\left\langle x, \phi_{p}\right\rangle \theta_{p}
$$

Answer the following questions. If the answer is yes, explain why. If the answer is no, what extra hypothesis must be added to make it yes?
a) Is \mathbf{A} self adjoint?
b) Is there an inverse for \mathbf{A} ?
c) Is \mathbf{A} a compact operator?
d) Is \mathbf{A} a continuous operator?
e) Is A a closed operator?
f) Is A a normal operator?
g) Is the domain of \mathbf{A} all of X ?

