Comprehensive Exam, Spring 2005 (Analysis)

Problem 1: Show that the closed interval [0,1] is not the disjoint union of a countably
infinite family of disjoint nonempty closed sets {A, }n>1.

Solution: Suppose [0,1] =}, ., Ay,. Denote U, = intA,. Then

04X =101\ U= (A4, \Uy)

n>1 n>1

is complete with metric inherited from [0, 1]. Therefore by the Baire Category Theorem there
exist ng and an open interval V' such that ) # X NV C A,,,. We claim that then VN U, =0
for n # nyg.

Let V = (a,b) and let x € X N'V. Suppose that y € V N U,. Without loss of generality we
may assume that x < y. Then there must exist a point z € A, \U, such that a <z < z <y < b.
This implies that z € X NV, which implies that z € A,,,. This is a contradiction as A,, and
A, are disjoint.

Therefore we must have VC XUU,, andso V = (VN X)u(VnU,,) C A,,. Thus V C U,,
which contradicts that ) £ X NV,

Problem 2: Let u(2) < +oo and let f,: @ - R,n>1, f: Q — R be integrable functions
such that 0 < f, — f a.e., and [ f,dp — [ fdp as n — oo. Show that

lim sup/ fndp = 0.
a—0o0 TLZl {fnza}

Solution: Let € > 0 and let § > 0 be such that whenever u(E) < 6 then [, fdu < e. (This
is possible since f is integrable.) Since [ f,du — [ fdu, [ f.dp are uniformly bounded.
Therefore there exists a; such that p({f, > a1}) < for all n > 1.

Denote B,, = {|f. — f| < €¢}. By Egoroft’s Theorem there exists n; such that u(Q\ B,) <4
for n > ny. Finally let ny be such that

/Q(fn—f)dﬂﬁe

for n > ny. Then for n > max(ny,ny) and a > a; we have



Jire = i 0
< Afn>a}mBn<rfn 4+ /Q\Bnm ~ fdu+ /Q\Bn i
< /{M}mfwf) dnt [ (o= Dducs [ 1= Al /Q\Bn  dy

n

<Je+e+e+pu(Qe+e=e(3++ u()).

We now take ay such that
/ fadp <e forn=1,.. max(ny,ns).
{fn>az2}

Then for a > max(a;, as) and all n > 1 we have

sup/ fodp < e(3+0+p(Q))
{fn>a}

n>1

which proves the claim.

Problem 3: Let (2, F, ) be a measure space. Let 0 < p < 1 and —oo < g < 0 be such
that % + % = 1. Let f, g be positive measurable functions such that f? and ¢? are integrable.

Assume also that fg is integrable. Prove that

</prd“); (/ngdu); < /Qfgdu.

Solution: Set r = ]l), s = —2. Then

Moreover (fg)? € L", g P € L*. Therefore by Holder inequality

/prduz /Q(fg)pg_pd:u < (/Q(fg)idﬂ)p (/ngg)dﬂ)
= (/Qfgdu>p (/ngdu)’;

(L) = (o) ([9)

Q3

Therefore we obtain that



which proves the inequality.

Problem 4: Let {x,} be a sequence of pairwise orthogonal vectors in a Hilbert space H.
Show that the following are equivalent:

(a) >>° @, converges in the norm topology of H.
(b) 302y [lal* < 4o0.
(c) Y07, < x,,y > converges for every y € H.

Solution: (b) = (a): Since < x;,z; >= 0if i # j, we have
|Zn + oo+ Tll? = |20l]? + oo+ |z

whenever n < m. Therefore (b) implies that the partial sums of > z,, form a Cauchy sequence
in H which, by completeness of H implies (a).
(a) = (c) By the Schwarz inequality

| <@ny >+t <y > | < lon+ o+ 2|yl

whenever n < m and so the series in (¢) converges.
(¢) = (b) Denote y, = x1 + ... + x, for n > 1. Then (c¢) implies that (y,) converges weakly in
H and so there exists C' such that ||y,|| < C. But since the x,, are pairwise orthogonal we have

Iz + e A zall® = llzs + o+ 2al* =yl < €2

for every n > 1. This implies (b).

Problem 5: Let {FE;}32, be a sequence of Lebesgue measurable subsets of R™ such that
m(Ex) — 0, where m(A) denote the Lebesgue measure of A C R™.

(a) Show that there exists a subsequence {Ej,} such that limsup Ey, = m U Ey, has

oo N=1n=N
Lebesgue measure zero.

(b) In general, does m(FEy) — 0 imply m(limsup Fj) = 07

k—o0

Solution:
(a) Choose an increasing sequence k,, 1 oo such that m(FEy,) < 27". In order for this to hold,
we just need to pick large enough k,, since limy_,., m(Ey) = 0.

Denote E = limsup,,_,, Ey,. For every N, we have E C |-\ Ej, and hence

oo oo

m(E) <m(| ) Ex) < m(E,).

n=N n=N



From m(Ey,) < 27" it follows that Y 2 m(Ey,) < Y>>, 27" < oo. Hence, the partial
sum »_ > m(Ey,) converges to 0 as N — co. Thus, m(E) = 0.

(b)
(b) Answer: No.
Example: Let

Ey = [07 1/2]7E2 = [1/27 1]a
E3 = [07 1/3]7E4 - [1/372/3]7E5 = [2/37 1]7

[07 1/”]7 [1/%, 2/”]’ e 7[(” - 1)/”7 1}7

Clearly, m(E)) — 0 as k — oo. However, every point = € [0, 1] belongs to infinitely many
E}’s; that is, limsup,_, . Ex = [0, 1].

Problem 6: Let (X,d) be a compact metric space and f : X — X be a map satisfying

d(f(x), fly)) < d(z,y) forallz € X,y e X, x #y. (%)

(a) Show that the function g : X — R, g(z) = d(z, f(x)), is uniformly continuous on X.
(b) Show that min g(x) =0.

(c) Show that there exists a unique zy € X such that f(z) = xo.

Solution:
(a) Let x € X,y € X. Estimate using the triangle inequality and (x):

|d(z, f(x)) = d(y, [(y))] |d(z, f(x)) = dy, f(2))| + |d(y, f(x)) = d(y, f())]

d(z,y) + d(f(x), f(y))
2d(z,y).

VANVANRPVAN

Thus, g is Lipschitz continuous with Lipschitz constant 2. This shows the uniform conti-
nuity of g.

(b) Since ¢ is continuous on a compact space X, it attains its minimum value on X. Let
zo € X be a minimum point. Suppose on the contrary that g(zo) = d(xo, f(x¢)) > 0. This
means f(xg) # xo. Condition () implies

d(f(xo), f*(w0)) < d(wo, f(w0))-
That is g(f(z0)) < g(zo), contradicting g(xy) = min g.



(c) Existence: Part (b) shows that at a minimum point xy of g, we have f(xy) = zo.

Uniqueness: Let  # xy. Condition (%) implies d(f(z), f(zo)) < d(x,x0). Since f(xq) = xo,
it follows that d(f(x),zo) < d(z,x). Thus, f(z) # .

Problem 7: Let f € L*(R?) N LY(R?). For y € R, define

uly) = / F (e y)de.

o) = ( [ 1rGean) "

(a) Show that v € L'(R) and v € L*(R).

For x € R, define

(b) Show that for any Lebesgue measurable function g > 0,

[ vwatmay < ([ viwac) ([ atwrar) "
[utwrin< [ owar

(In particular, if [, u(y)*dy = oo, then [, v(z)dz = co.)

(c) Show that

Solution:
(a) For u: Since
Il = [ 11 < s,
RZ

the Fubini-Tonelli theorem implies that the function

uly) = / f(e,y)|da

is Lebesgue integrable on R with ||u||z1@) = || || (r2)-

For v: Since
ey = [ 142 <0,
R2
the Fubini-Tonelli theorem implies that the function

o(x)? = / ) Pdy

is Lebesgue integrable on R with [, v(z)*dz =[5, |f]*. This means v € L*(R).



(b) By Fubini-Tonelli and Cauchy-Schwarz,

/RU(y)g(y)dy = A(/ﬂ{lf(w>y)lg(y)dw) dy
= A(AIf(x,y)lg(y)dy) dx

< A(A|f(x,y)l2dy>l/2 (/Rg(y)Qdyy/de
= (/Rv(x)dw) (/Rg(y)Qdy)l/Q.

(c) If uw € L*(R), just let g = u in (b) and we are done.
If u ¢ L*(R), we have [, u(y)?dy = co. We need to show that [, v(z)de = oco. Let

u(z) for |y| < n where u(y) < n;
up(x) =< n for |y| < n where n < u(y) < oo;
0 for |y| > n.

Then, every u, € L*(R). Moreover, u,(y) 1 u(y) pointwise everywhere in R. The mono-
tone convergence theorem implies

/Run(x)de 1 /Ru(x)2dx = 0.

Applying (b) to g = u,, we obtain

/Ru(y)un(y)dy < (/Rfu(x)dx) (/Run(x)de) 1/2.

Since u, < u, the integral on the left hand side is no less than [ u,(z)*dz. Hence,

( /R un(x)de> " /R o(x)da.

Passing to the limit n — oo, this shows [ v(z)dz = co.

Problem 8: Let (2,%, 1) be a measure space with p(€2) < oo. Let ¢ : Q@ — Q be a map
satisfying

(i) v~ 1(A) € X for any A € 3;
(i) if A € X and p(A) =0, then pu(=1(A)) = 0.

Prove the following statements (a)-(b):



(a) There exists a unique nonnegtaive h € L'(£2, 1) such that

p((A) = | hiz)dp,
for any A € X.
(b) For any f € LY(Q, p).

/Q fou(x)du = /Q F(@)h(z)dp.

Solution:

(a) Consider v(A) = u(p~1(A)) for A € 3. v defines a measure on X: if U, A, is a countable
disjoint union of sets A, € X, then so is ¥ 1 (U,A,) = U071 (A,,). Hence,

v(UnAy) = p(Unp ™ (Ay)) = Z pp~H(Ay) = Z v(Ap).

n

Moreover, condition (ii) implies the absolutely continuity of v with respect to p.

By the Radon-Nikodym theorem, there exists a unique nonnegtaive h € L*(£2, 1) such that

v(4) = [ nain

for any A € X.

(b) It suffices to prove the integral identity for a real-valued nonnegative L' function f. (For a
complex-valued f, consider f = Re f +¢Im f. For a real-valued sign-changing f, consider
f=f=r)

First for f € L'(Q) that are nonnegative and simple, the required integral identity is an
immediate consequence of part (a). Details follow: Let f be a finite sum: f =" a,xa,,
where A,,’s are measurable and pairwise disjoint and a,, are distinct values.

[rov@in = [ e, ovlan

- Zan/ h(x)du (used (a) here)



Next let f € L'(Q2) be nonnegative. Take a sequence of nonnegative simple functions
fn € LY(Q) such that f,(z) T f(z) a.e. in Q. For f, we have already shown that

/Q fu 0 )y = / ful@)h(w)dp. (+)

Now we take the limit as n — oo. Since f,(z) T f(z) a.e. in Q and h is nonnegative, we
have f,(z)h(z) T f(z)h(z) a.e. in 2. By the Monotone Convergence Theorem, the right
hand side of (x) converges to [, f()h(z)dp. Similarly, if we can show

frnot(z) 1 fot(x) a.e. in €, (%)

then the left hand side of (%) converges to [, f o ¢(x)dp and we are done. Now we prove
(#%). By the assumption, there is a set Z € ¥ such that u(Z) = 0 and f,(z) T f(z)
for every z € Q\ Z. Hence, f, o ¢(x) T fot(x) for every x such that ¢(z) € Q\ Z,
or , equivalently, for every z € ¥~ 1(Q\ Z) = Q\ v }(Z). Condition (ii) guarantees
wu(v=1(Z)) = 0. Thus, (xx) holds and the proof is complete.



