
Comprehensive Exam, Spring 2005 (Analysis)

Problem 1: Show that the closed interval [0, 1] is not the disjoint union of a countably
infinite family of disjoint nonempty closed sets {An}n≥1.

Solution: Suppose [0, 1] =
∑

n≥1An. Denote Un = intAn. Then

∅ 6= X = [0, 1] \
∑
n≥1

Un =
∑
n≥1

(An \ Un)

is complete with metric inherited from [0, 1]. Therefore by the Baire Category Theorem there
exist n0 and an open interval V such that ∅ 6= X ∩ V ⊂ An0 . We claim that then V ∩ Un = ∅
for n 6= n0.

Let V = (a, b) and let x ∈ X ∩ V . Suppose that y ∈ V ∩ Un. Without loss of generality we
may assume that x < y. Then there must exist a point z ∈ An\Un such that a < x < z < y < b.
This implies that z ∈ X ∩ V , which implies that z ∈ An0 . This is a contradiction as An and
An0 are disjoint.

Therefore we must have V ⊂ X ∪Un0 and so V = (V ∩X)∪ (V ∩Un0) ⊂ An0 . Thus V ⊂ Un0

which contradicts that ∅ 6= X ∩ V .

Problem 2: Let µ(Ω) < +∞ and let fn : Ω → R, n ≥ 1, f : Ω → R be integrable functions
such that 0 ≤ fn → f a.e., and

∫
fn dµ→

∫
f dµ as n→∞. Show that

lim
a→∞

sup
n≥1

∫
{fn≥a}

fn dµ = 0.

Solution: Let ε > 0 and let δ > 0 be such that whenever µ(E) ≤ δ then
∫
E
f dµ ≤ ε. (This

is possible since f is integrable.) Since
∫
fn dµ →

∫
f dµ,

∫
fn dµ are uniformly bounded.

Therefore there exists a1 such that µ({fn ≥ a1}) ≤ δ for all n ≥ 1.
Denote Bn = {|fn − f | ≤ ε}. By Egoroff’s Theorem there exists n1 such that µ(Ω \ Bn) ≤ δ

for n ≥ n1. Finally let n2 be such that∫
Ω

(fn − f) dµ ≤ ε

for n ≥ n2. Then for n ≥ max(n1, n2) and a ≥ a1 we have



∫
{fn≥a}

fn dµ ≤
∫
{fn≥a}∩Bn

fn dµ+

∫
Ω\Bn

fn dµ

≤
∫
{fn≥a}∩Bn

(|fn − f |+ f) dµ+

∫
Ω\Bn

(fn − f) dµ+

∫
Ω\Bn

f dµ

≤
∫
{fn≥a}∩Bn

(ε+ f) dµ+

∫
Ω

(fn − f) dµ+

∫
Bn

|fn − f | dµ+

∫
Ω\Bn

f dµ

≤ δε+ ε+ ε+ µ(Ω)ε+ ε = ε(3 + δ + µ(Ω)).

We now take a2 such that∫
{fn≥a2}

fn dµ ≤ ε for n = 1, ...,max(n1, n2).

Then for a ≥ max(a1, a2) and all n ≥ 1 we have

sup
n≥1

∫
{fn≥a}

fn dµ ≤ ε(3 + δ + µ(Ω))

which proves the claim.

Problem 3: Let (Ω,F , µ) be a measure space. Let 0 < p < 1 and −∞ < q < 0 be such
that 1

p
+ 1

q
= 1. Let f, g be positive measurable functions such that fp and gq are integrable.

Assume also that fg is integrable. Prove that(∫
Ω

fp dµ

) 1
p
(∫

Ω

gq dµ

) 1
q

≤
∫

Ω

fg dµ.

Solution: Set r = 1
p
, s = − q

p
. Then

1

r
+

1

s
= p− p

q
= p(1− 1

q
) = 1.

Moreover (fg)p ∈ Lr, g−p ∈ Ls. Therefore by Hölder inequality

∫
Ω

fp dµ =

∫
Ω

(fg)pg−p dµ ≤
(∫

Ω

(fg)
p
p dµ

)p (∫
Ω

g−p(−
q
p
) dµ

)− p
q

=

(∫
Ω

fg dµ

)p (∫
Ω

gq dµ

)− p
q

Therefore we obtain that (∫
Ω

fp dµ

) 1
p

≤
(∫

Ω

fg dµ

) (∫
Ω

gq dµ

)− 1
q



which proves the inequality.

Problem 4: Let {xn} be a sequence of pairwise orthogonal vectors in a Hilbert space H.
Show that the following are equivalent:

(a)
∑∞

n=1 xn converges in the norm topology of H.

(b)
∑∞

n=1 ‖xn‖2 < +∞.

(c)
∑∞

n=1 < xn, y > converges for every y ∈ H.

Solution: (b) ⇒ (a): Since < xi, xj >= 0 if i 6= j, we have

‖xn + ...+ xm‖2 = ‖xn‖2 + ...+ ‖xm‖2

whenever n ≤ m. Therefore (b) implies that the partial sums of
∑
xn form a Cauchy sequence

in H which, by completeness of H implies (a).
(a) ⇒ (c) By the Schwarz inequality

| < xn, y > +...+ < xm, y > | ≤ ‖xn + ...+ xm‖‖y‖

whenever n ≤ m and so the series in (c) converges.
(c) ⇒ (b) Denote yn = x1 + ... + xn for n ≥ 1. Then (c) implies that (yn) converges weakly in
H and so there exists C such that ‖yn‖ ≤ C. But since the xn are pairwise orthogonal we have

‖x1‖2 + ...+ ‖xn‖2 = ‖x1 + ...+ xn‖2 = ‖yn‖2 ≤ C2

for every n ≥ 1. This implies (b).

Problem 5: Let {Ek}∞k=1 be a sequence of Lebesgue measurable subsets of Rn such that
m(Ek) → 0, where m(A) denote the Lebesgue measure of A ⊂ Rn.

(a) Show that there exists a subsequence {Ekn} such that lim sup
n→∞

Ekn =
∞⋂
N=1

∞⋃
n=N

Ekn has

Lebesgue measure zero.

(b) In general, does m(Ek) → 0 imply m(lim sup
k→∞

Ek) = 0?

Solution:

(a) Choose an increasing sequence kn ↑ ∞ such that m(Ekn) < 2−n. In order for this to hold,
we just need to pick large enough kn, since limk→∞m(Ek) = 0.

Denote E = lim supn→∞Ekn . For every N , we have E ⊂
⋃∞
n=N Ekn and hence

m(E) ≤ m(
∞⋃
n=N

Ekn) ≤
∞∑
n=N

m(Ekn).



From m(Ekn) < 2−n it follows that
∑∞

n=1m(Ekn) <
∑∞

n=1 2−n < ∞. Hence, the partial
sum

∑∞
n=N m(Ekn) converges to 0 as N →∞. Thus, m(E) = 0.

(b)

(b) Answer: No.

Example: Let

E1 = [0, 1/2], E2 = [1/2, 1],

E3 = [0, 1/3], E4 = [1/3, 2/3], E5 = [2/3, 1],

· · ·
[0, 1/n], [1/n, 2/n], · · · , [(n− 1)/n, 1],

· · · .

Clearly, m(Ek) → 0 as k →∞. However, every point x ∈ [0, 1] belongs to infinitely many
Ek’s; that is, lim supk→∞Ek = [0, 1].

Problem 6: Let (X, d) be a compact metric space and f : X → X be a map satisfying

d(f(x), f(y)) < d(x, y) for all x ∈ X, y ∈ X, x 6= y. (∗)

(a) Show that the function g : X → R, g(x) = d(x, f(x)), is uniformly continuous on X.

(b) Show that min
x∈X

g(x) = 0.

(c) Show that there exists a unique x0 ∈ X such that f(x0) = x0.

Solution:

(a) Let x ∈ X, y ∈ X. Estimate using the triangle inequality and (∗):

|d(x, f(x))− d(y, f(y))| ≤ |d(x, f(x))− d(y, f(x))|+ |d(y, f(x))− d(y, f(y))|
≤ d(x, y) + d(f(x), f(y))

≤ 2d(x, y).

Thus, g is Lipschitz continuous with Lipschitz constant 2. This shows the uniform conti-
nuity of g.

(b) Since g is continuous on a compact space X, it attains its minimum value on X. Let
x0 ∈ X be a minimum point. Suppose on the contrary that g(x0) = d(x0, f(x0)) > 0. This
means f(x0) 6= x0. Condition (∗) implies

d(f(x0), f
2(x0)) < d(x0, f(x0)).

That is g(f(x0)) < g(x0), contradicting g(x0) = min g.



(c) Existence: Part (b) shows that at a minimum point x0 of g, we have f(x0) = x0.

Uniqueness: Let x 6= x0. Condition (∗) implies d(f(x), f(x0)) < d(x, x0). Since f(x0) = x0,
it follows that d(f(x), x0) < d(x, x0). Thus, f(x) 6= x.

Problem 7: Let f ∈ L2(R2) ∩ L1(R2). For y ∈ R, define

u(y) =

∫
R
|f(x, y)|dx.

For x ∈ R, define

v(x) =

(∫
R
|f(x, y)|2dy

)1/2

.

(a) Show that u ∈ L1(R) and v ∈ L2(R).

(b) Show that for any Lebesgue measurable function g ≥ 0,∫
R
u(y)g(y)dy ≤

(∫
R
v(x)dx

) (∫
R
g(y)2dy

)1/2

.

(c) Show that ∫
R
u(y)2dy ≤

∫
R
v(x)dx.

(In particular, if
∫

R u(y)
2dy = ∞, then

∫
R v(x)dx = ∞.)

Solution:

(a) For u: Since

‖f‖L1(R2) =

∫
R2

|f | <∞,

the Fubini-Tonelli theorem implies that the function

u(y) =

∫
R
|f(x, y)|dx

is Lebesgue integrable on R with ‖u‖L1(R) = ‖f‖L1(R2).

For v: Since

‖f‖2
L2(R2) =

∫
R2

|f |2 <∞,

the Fubini-Tonelli theorem implies that the function

v(x)2 =

∫
R
|f(x, y)|2dy

is Lebesgue integrable on R with
∫

R v(x)
2dx =

∫
R2 |f |2. This means v ∈ L2(R).



(b) By Fubini-Tonelli and Cauchy-Schwarz,∫
R
u(y)g(y)dy =

∫
R

(∫
R
|f(x, y)|g(y)dx

)
dy

=

∫
R

(∫
R
|f(x, y)|g(y)dy

)
dx

≤
∫

R

(∫
R
|f(x, y)|2dy

)1/2 (∫
R
g(y)2dy

)1/2

dx

=

(∫
R
v(x)dx

) (∫
R
g(y)2dy

)1/2

.

(c) If u ∈ L2(R), just let g = u in (b) and we are done.

If u 6∈ L2(R), we have
∫

R u(y)
2dy = ∞. We need to show that

∫
R v(x)dx = ∞. Let

un(x) =


u(x) for |y| < n where u(y) < n;

n for |y| < n where n ≤ u(y) ≤ ∞;

0 for |y| ≥ n.

Then, every un ∈ L2(R). Moreover, un(y) ↑ u(y) pointwise everywhere in R. The mono-
tone convergence theorem implies∫

R
un(x)

2dx ↑
∫

R
u(x)2dx = ∞.

Applying (b) to g = un, we obtain∫
R
u(y)un(y)dy ≤

(∫
R
v(x)dx

) (∫
R
un(x)

2dx

)1/2

.

Since un ≤ u, the integral on the left hand side is no less than
∫

R un(x)
2dx. Hence,(∫

R
un(x)

2dx

)1/2

≤
∫

R
v(x)dx.

Passing to the limit n→∞, this shows
∫

R v(x)dx = ∞.

Problem 8: Let (Ω,Σ, µ) be a measure space with µ(Ω) < ∞. Let ψ : Ω → Ω be a map
satisfying

(i) ψ−1(A) ∈ Σ for any A ∈ Σ;

(ii) if A ∈ Σ and µ(A) = 0, then µ(ψ−1(A)) = 0.

Prove the following statements (a)-(b):



(a) There exists a unique nonnegtaive h ∈ L1(Ω, µ) such that

µ(ψ−1(A)) =

∫
A

h(x)dµ,

for any A ∈ Σ.

(b) For any f ∈ L1(Ω, µ). ∫
Ω

f ◦ ψ(x)dµ =

∫
Ω

f(x)h(x)dµ.

Solution:

(a) Consider ν(A) = µ(ψ−1(A)) for A ∈ Σ. ν defines a measure on Σ: if ∪nAn is a countable
disjoint union of sets An ∈ Σ, then so is ψ−1(∪nAn) = ∪nψ−1(An). Hence,

ν(∪nAn) = µ(∪nψ−1(An)) =
∑
n

µ(ψ−1(An)) =
∑
n

ν(An).

Moreover, condition (ii) implies the absolutely continuity of ν with respect to µ.

By the Radon-Nikodym theorem, there exists a unique nonnegtaive h ∈ L1(Ω, µ) such that

ν(A) =

∫
A

h(x)dµ,

for any A ∈ Σ.

(b) It suffices to prove the integral identity for a real-valued nonnegative L1 function f . (For a
complex-valued f , consider f = Re f + i Im f . For a real-valued sign-changing f , consider
f = f+ − f−.)

First for f ∈ L1(Ω) that are nonnegative and simple, the required integral identity is an
immediate consequence of part (a). Details follow: Let f be a finite sum: f =

∑
n anχAn ,

where An’s are measurable and pairwise disjoint and an are distinct values.∫
Ω

f ◦ ψ(x)dµ =

∫
Ω

∑
n

anχAn ◦ ψ(x)dµ

=
∑
n

an

∫
Ω

χψ−1(An)(x)dµ

=
∑
n

anµ(ψ−1(An))

=
∑
n

an

∫
An

h(x)dµ (used (a) here)

=
∑
n

an

∫
Ω

χAn(x)h(x)dµ

=

∫
Ω

f(x)h(x)dµ.



Next let f ∈ L1(Ω) be nonnegative. Take a sequence of nonnegative simple functions
fn ∈ L1(Ω) such that fn(x) ↑ f(x) a.e. in Ω. For fn we have already shown that∫

Ω

fn ◦ ψ(x)dµ =

∫
Ω

fn(x)h(x)dµ. (∗)

Now we take the limit as n → ∞. Since fn(x) ↑ f(x) a.e. in Ω and h is nonnegative, we
have fn(x)h(x) ↑ f(x)h(x) a.e. in Ω. By the Monotone Convergence Theorem, the right
hand side of (∗) converges to

∫
Ω
f(x)h(x)dµ. Similarly, if we can show

fn ◦ ψ(x) ↑ f ◦ ψ(x) a.e. in Ω, (∗∗)

then the left hand side of (∗) converges to
∫

Ω
f ◦ ψ(x)dµ and we are done. Now we prove

(∗∗). By the assumption, there is a set Z ∈ Σ such that µ(Z) = 0 and fn(x) ↑ f(x)
for every x ∈ Ω \ Z. Hence, fn ◦ ψ(x) ↑ f ◦ ψ(x) for every x such that ψ(x) ∈ Ω \ Z,
or , equivalently, for every x ∈ ψ−1(Ω \ Z) = Ω \ ψ−1(Z). Condition (ii) guarantees
µ(ψ−1(Z)) = 0. Thus, (∗∗) holds and the proof is complete.


