Comprehensive Exam, Spring 2005 (Analysis)

Problem 1: Show that the closed interval $[0,1]$ is not the disjoint union of a countably infinite family of disjoint nonempty closed sets $\left\{A_{n}\right\}_{n \geq 1}$.

Solution: Suppose $[0,1]=\sum_{n \geq 1} A_{n}$. Denote $U_{n}=\operatorname{int} A_{n}$. Then

$$
\emptyset \neq X=[0,1] \backslash \sum_{n \geq 1} U_{n}=\sum_{n \geq 1}\left(A_{n} \backslash U_{n}\right)
$$

is complete with metric inherited from $[0,1]$. Therefore by the Baire Category Theorem there exist n_{0} and an open interval V such that $\emptyset \neq X \cap V \subset A_{n_{0}}$. We claim that then $V \cap U_{n}=\emptyset$ for $n \neq n_{0}$.

Let $V=(a, b)$ and let $x \in X \cap V$. Suppose that $y \in V \cap U_{n}$. Without loss of generality we may assume that $x<y$. Then there must exist a point $z \in A_{n} \backslash U_{n}$ such that $a<x<z<y<b$. This implies that $z \in X \cap V$, which implies that $z \in A_{n_{0}}$. This is a contradiction as A_{n} and $A_{n_{0}}$ are disjoint.

Therefore we must have $V \subset X \cup U_{n_{0}}$ and so $V=(V \cap X) \cup\left(V \cap U_{n_{0}}\right) \subset A_{n_{0}}$. Thus $V \subset U_{n_{0}}$ which contradicts that $\emptyset \neq X \cap V$.

Problem 2: Let $\mu(\Omega)<+\infty$ and let $f_{n}: \Omega \rightarrow \mathbb{R}, n \geq 1, f: \Omega \rightarrow \mathbb{R}$ be integrable functions such that $0 \leq f_{n} \rightarrow f$ a.e., and $\int f_{n} d \mu \rightarrow \int f d \mu$ as $n \rightarrow \infty$. Show that

$$
\lim _{a \rightarrow \infty} \sup _{n \geq 1} \int_{\left\{f_{n} \geq a\right\}} f_{n} d \mu=0
$$

Solution: Let $\epsilon>0$ and let $\delta>0$ be such that whenever $\mu(E) \leq \delta$ then $\int_{E} f d \mu \leq \epsilon$. (This is possible since f is integrable.) Since $\int f_{n} d \mu \rightarrow \int f d \mu, \int f_{n} d \mu$ are uniformly bounded. Therefore there exists a_{1} such that $\mu\left(\left\{f_{n} \geq a_{1}\right\}\right) \leq \delta$ for all $n \geq 1$.

Denote $B_{n}=\left\{\left|f_{n}-f\right| \leq \epsilon\right\}$. By Egoroff's Theorem there exists n_{1} such that $\mu\left(\Omega \backslash B_{n}\right) \leq \delta$ for $n \geq n_{1}$. Finally let n_{2} be such that

$$
\int_{\Omega}\left(f_{n}-f\right) d \mu \leq \epsilon
$$

for $n \geq n_{2}$. Then for $n \geq \max \left(n_{1}, n_{2}\right)$ and $a \geq a_{1}$ we have

$$
\begin{aligned}
& \int_{\left\{f_{n} \geq a\right\}} f_{n} d \mu \leq \int_{\left\{f_{n} \geq a\right\} \cap B_{n}} f_{n} d \mu+\int_{\Omega \backslash B_{n}} f_{n} d \mu \\
& \leq \int_{\left\{f_{n} \geq a\right\} \cap B_{n}}\left(\left|f_{n}-f\right|+f\right) d \mu+\int_{\Omega \backslash B_{n}}\left(f_{n}-f\right) d \mu+\int_{\Omega \backslash B_{n}} f d \mu \\
& \leq \int_{\left\{f_{n} \geq a\right\} \cap B_{n}}(\epsilon+f) d \mu+\int_{\Omega}\left(f_{n}-f\right) d \mu+\int_{B_{n}}\left|f_{n}-f\right| d \mu+\int_{\Omega \backslash B_{n}} f d \mu \\
& \quad \leq \delta \epsilon+\epsilon+\epsilon+\mu(\Omega) \epsilon+\epsilon=\epsilon(3+\delta+\mu(\Omega)) .
\end{aligned}
$$

We now take a_{2} such that

$$
\int_{\left\{f_{n} \geq a_{2}\right\}} f_{n} d \mu \leq \epsilon \quad \text { for } n=1, \ldots, \max \left(n_{1}, n_{2}\right) .
$$

Then for $a \geq \max \left(a_{1}, a_{2}\right)$ and all $n \geq 1$ we have

$$
\sup _{n \geq 1} \int_{\left\{f_{n} \geq a\right\}} f_{n} d \mu \leq \epsilon(3+\delta+\mu(\Omega))
$$

which proves the claim.

Problem 3: Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $0<p<1$ and $-\infty<q<0$ be such that $\frac{1}{p}+\frac{1}{q}=1$. Let f, g be positive measurable functions such that f^{p} and g^{q} are integrable. Assume also that $f g$ is integrable. Prove that

$$
\left(\int_{\Omega} f^{p} d \mu\right)^{\frac{1}{p}}\left(\int_{\Omega} g^{q} d \mu\right)^{\frac{1}{q}} \leq \int_{\Omega} f g d \mu
$$

Solution: Set $r=\frac{1}{p}, s=-\frac{q}{p}$. Then

$$
\frac{1}{r}+\frac{1}{s}=p-\frac{p}{q}=p\left(1-\frac{1}{q}\right)=1
$$

Moreover $(f g)^{p} \in L^{r}, g^{-p} \in L^{s}$. Therefore by Hölder inequality

$$
\begin{aligned}
\int_{\Omega} f^{p} d \mu & =\int_{\Omega}(f g)^{p} g^{-p} d \mu \leq\left(\int_{\Omega}(f g)^{\frac{p}{p}} d \mu\right)^{p}\left(\int_{\Omega} g^{-p\left(-\frac{q}{p}\right)} d \mu\right)^{-\frac{p}{q}} \\
& =\left(\int_{\Omega} f g d \mu\right)^{p}\left(\int_{\Omega} g^{q} d \mu\right)^{-\frac{p}{q}}
\end{aligned}
$$

Therefore we obtain that

$$
\left(\int_{\Omega} f^{p} d \mu\right)^{\frac{1}{p}} \leq\left(\int_{\Omega} f g d \mu\right)\left(\int_{\Omega} g^{q} d \mu\right)^{-\frac{1}{q}}
$$

which proves the inequality.

Problem 4: Let $\left\{x_{n}\right\}$ be a sequence of pairwise orthogonal vectors in a Hilbert space H. Show that the following are equivalent:
(a) $\sum_{n=1}^{\infty} x_{n}$ converges in the norm topology of H.
(b) $\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{2}<+\infty$.
(c) $\sum_{n=1}^{\infty}<x_{n}, y>$ converges for every $y \in H$.

Solution: $(b) \Rightarrow(a)$: Since $<x_{i}, x_{j}>=0$ if $i \neq j$, we have

$$
\left\|x_{n}+\ldots+x_{m}\right\|^{2}=\left\|x_{n}\right\|^{2}+\ldots+\left\|x_{m}\right\|^{2}
$$

whenever $n \leq m$. Therefore (b) implies that the partial sums of $\sum x_{n}$ form a Cauchy sequence in H which, by completeness of H implies (a).
$(a) \Rightarrow(c)$ By the Schwarz inequality

$$
\left|<x_{n}, y>+\ldots+<x_{m}, y>\right| \leq\left\|x_{n}+\ldots+x_{m}\right\|\|y\|
$$

whenever $n \leq m$ and so the series in (c) converges.
$(c) \Rightarrow(b)$ Denote $y_{n}=x_{1}+\ldots+x_{n}$ for $n \geq 1$. Then (c) implies that $\left(y_{n}\right)$ converges weakly in H and so there exists C such that $\left\|y_{n}\right\| \leq C$. But since the x_{n} are pairwise orthogonal we have

$$
\left\|x_{1}\right\|^{2}+\ldots+\left\|x_{n}\right\|^{2}=\left\|x_{1}+\ldots+x_{n}\right\|^{2}=\left\|y_{n}\right\|^{2} \leq C^{2}
$$

for every $n \geq 1$. This implies (b).

Problem 5: Let $\left\{E_{k}\right\}_{k=1}^{\infty}$ be a sequence of Lebesgue measurable subsets of \mathbb{R}^{n} such that $m\left(E_{k}\right) \rightarrow 0$, where $m(A)$ denote the Lebesgue measure of $A \subset \mathbb{R}^{n}$.
(a) Show that there exists a subsequence $\left\{E_{k_{n}}\right\}$ such that $\limsup _{n \rightarrow \infty} E_{k_{n}}=\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} E_{k_{n}}$ has Lebesgue measure zero.
(b) In general, does $m\left(E_{k}\right) \rightarrow 0$ imply $m\left(\underset{k \rightarrow \infty}{\limsup } E_{k}\right)=0$?

Solution:

(a) Choose an increasing sequence $k_{n} \uparrow \infty$ such that $m\left(E_{k_{n}}\right)<2^{-n}$. In order for this to hold, we just need to pick large enough k_{n}, since $\lim _{k \rightarrow \infty} m\left(E_{k}\right)=0$.
Denote $E=\limsup _{n \rightarrow \infty} E_{k_{n}}$. For every N, we have $E \subset \bigcup_{n=N}^{\infty} E_{k_{n}}$ and hence

$$
m(E) \leq m\left(\bigcup_{n=N}^{\infty} E_{k_{n}}\right) \leq \sum_{n=N}^{\infty} m\left(E_{k_{n}}\right)
$$

From $m\left(E_{k_{n}}\right)<2^{-n}$ it follows that $\sum_{n=1}^{\infty} m\left(E_{k_{n}}\right)<\sum_{n=1}^{\infty} 2^{-n}<\infty$. Hence, the partial $\operatorname{sum} \sum_{n=N}^{\infty} m\left(E_{k_{n}}\right)$ converges to 0 as $N \rightarrow \infty$. Thus, $m(E)=0$.
(b)
(b) Answer: No.

Example: Let

$$
\begin{aligned}
& E_{1}=[0,1 / 2], E_{2}=[1 / 2,1] \\
& E_{3}=[0,1 / 3], E_{4}=[1 / 3,2 / 3], E_{5}=[2 / 3,1] \\
& \cdots \\
& {[0,1 / n],[1 / n, 2 / n], \cdots,[(n-1) / n, 1]}
\end{aligned}
$$

Clearly, $m\left(E_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. However, every point $x \in[0,1]$ belongs to infinitely many E_{k} 's; that is, $\limsup _{k \rightarrow \infty} E_{k}=[0,1]$.

Problem 6: Let (X, d) be a compact metric space and $f: X \rightarrow X$ be a map satisfying

$$
\begin{equation*}
d(f(x), f(y))<d(x, y) \quad \text { for all } x \in X, y \in X, x \neq y \tag{*}
\end{equation*}
$$

(a) Show that the function $g: X \rightarrow \mathbb{R}, g(x)=d(x, f(x))$, is uniformly continuous on X.
(b) Show that $\min _{x \in X} g(x)=0$.
(c) Show that there exists a unique $x_{0} \in X$ such that $f\left(x_{0}\right)=x_{0}$.

Solution:

(a) Let $x \in X, y \in X$. Estimate using the triangle inequality and (*):

$$
\begin{aligned}
|d(x, f(x))-d(y, f(y))| & \leq|d(x, f(x))-d(y, f(x))|+|d(y, f(x))-d(y, f(y))| \\
& \leq d(x, y)+d(f(x), f(y)) \\
& \leq 2 d(x, y)
\end{aligned}
$$

Thus, g is Lipschitz continuous with Lipschitz constant 2. This shows the uniform continuity of g.
(b) Since g is continuous on a compact space X, it attains its minimum value on X. Let $x_{0} \in X$ be a minimum point. Suppose on the contrary that $g\left(x_{0}\right)=d\left(x_{0}, f\left(x_{0}\right)\right)>0$. This means $f\left(x_{0}\right) \neq x_{0}$. Condition ($*$) implies

$$
d\left(f\left(x_{0}\right), f^{2}\left(x_{0}\right)\right)<d\left(x_{0}, f\left(x_{0}\right)\right)
$$

That is $g\left(f\left(x_{0}\right)\right)<g\left(x_{0}\right)$, contradicting $g\left(x_{0}\right)=\min g$.
(c) Existence: Part (b) shows that at a minimum point x_{0} of g, we have $f\left(x_{0}\right)=x_{0}$.

Uniqueness: Let $x \neq x_{0}$. Condition $(*)$ implies $d\left(f(x), f\left(x_{0}\right)\right)<d\left(x, x_{0}\right)$. Since $f\left(x_{0}\right)=x_{0}$, it follows that $d\left(f(x), x_{0}\right)<d\left(x, x_{0}\right)$. Thus, $f(x) \neq x$.

Problem 7: Let $f \in L^{2}\left(\mathbb{R}^{2}\right) \cap L^{1}\left(\mathbb{R}^{2}\right)$. For $y \in \mathbb{R}$, define

$$
u(y)=\int_{\mathbb{R}}|f(x, y)| d x
$$

For $x \in \mathbb{R}$, define

$$
v(x)=\left(\int_{\mathbb{R}}|f(x, y)|^{2} d y\right)^{1 / 2}
$$

(a) Show that $u \in L^{1}(\mathbb{R})$ and $v \in L^{2}(\mathbb{R})$.
(b) Show that for any Lebesgue measurable function $g \geq 0$,

$$
\int_{\mathbb{R}} u(y) g(y) d y \leq\left(\int_{\mathbb{R}} v(x) d x\right)\left(\int_{\mathbb{R}} g(y)^{2} d y\right)^{1 / 2}
$$

(c) Show that

$$
\int_{\mathbb{R}} u(y)^{2} d y \leq \int_{\mathbb{R}} v(x) d x
$$

(In particular, if $\int_{\mathbb{R}} u(y)^{2} d y=\infty$, then $\int_{\mathbb{R}} v(x) d x=\infty$.)

Solution:

(a) For u : Since

$$
\|f\|_{L^{1}\left(\mathbb{R}^{2}\right)}=\int_{\mathbb{R}^{2}}|f|<\infty
$$

the Fubini-Tonelli theorem implies that the function

$$
u(y)=\int_{\mathbb{R}}|f(x, y)| d x
$$

is Lebesgue integrable on \mathbb{R} with $\|u\|_{L^{1}(\mathbb{R})}=\|f\|_{L^{1}\left(\mathbb{R}^{2}\right)}$.
For v : Since

$$
\|f\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=\int_{\mathbb{R}^{2}}|f|^{2}<\infty
$$

the Fubini-Tonelli theorem implies that the function

$$
v(x)^{2}=\int_{\mathbb{R}}|f(x, y)|^{2} d y
$$

is Lebesgue integrable on \mathbb{R} with $\int_{\mathbb{R}} v(x)^{2} d x=\int_{\mathbb{R}^{2}}|f|^{2}$. This means $v \in L^{2}(\mathbb{R})$.
(b) By Fubini-Tonelli and Cauchy-Schwarz,

$$
\begin{aligned}
\int_{\mathbb{R}} u(y) g(y) d y & =\int_{\mathbb{R}}\left(\int_{\mathbb{R}}|f(x, y)| g(y) d x\right) d y \\
& =\int_{\mathbb{R}}\left(\int_{\mathbb{R}}|f(x, y)| g(y) d y\right) d x \\
& \leq \int_{\mathbb{R}}\left(\int_{\mathbb{R}}|f(x, y)|^{2} d y\right)^{1 / 2}\left(\int_{\mathbb{R}} g(y)^{2} d y\right)^{1 / 2} d x \\
& =\left(\int_{\mathbb{R}} v(x) d x\right)\left(\int_{\mathbb{R}} g(y)^{2} d y\right)^{1 / 2}
\end{aligned}
$$

(c) If $u \in L^{2}(\mathbb{R})$, just let $g=u$ in (b) and we are done.

If $u \notin L^{2}(\mathbb{R})$, we have $\int_{\mathbb{R}} u(y)^{2} d y=\infty$. We need to show that $\int_{\mathbb{R}} v(x) d x=\infty$. Let

$$
u_{n}(x)= \begin{cases}u(x) & \text { for }|y|<n \text { where } u(y)<n \\ n & \text { for }|y|<n \text { where } n \leq u(y) \leq \infty \\ 0 & \text { for }|y| \geq n\end{cases}
$$

Then, every $u_{n} \in L^{2}(\mathbb{R})$. Moreover, $u_{n}(y) \uparrow u(y)$ pointwise everywhere in \mathbb{R}. The monotone convergence theorem implies

$$
\int_{\mathbb{R}} u_{n}(x)^{2} d x \uparrow \int_{\mathbb{R}} u(x)^{2} d x=\infty
$$

Applying (b) to $g=u_{n}$, we obtain

$$
\int_{\mathbb{R}} u(y) u_{n}(y) d y \leq\left(\int_{\mathbb{R}} v(x) d x\right)\left(\int_{\mathbb{R}} u_{n}(x)^{2} d x\right)^{1 / 2}
$$

Since $u_{n} \leq u$, the integral on the left hand side is no less than $\int_{\mathbb{R}} u_{n}(x)^{2} d x$. Hence,

$$
\left(\int_{\mathbb{R}} u_{n}(x)^{2} d x\right)^{1 / 2} \leq \int_{\mathbb{R}} v(x) d x
$$

Passing to the limit $n \rightarrow \infty$, this shows $\int_{\mathbb{R}} v(x) d x=\infty$.

Problem 8: Let (Ω, Σ, μ) be a measure space with $\mu(\Omega)<\infty$. Let $\psi: \Omega \rightarrow \Omega$ be a map satisfying
(i) $\psi^{-1}(A) \in \Sigma$ for any $A \in \Sigma$;
(ii) if $A \in \Sigma$ and $\mu(A)=0$, then $\mu\left(\psi^{-1}(A)\right)=0$.

Prove the following statements (a)-(b):
(a) There exists a unique nonnegtaive $h \in L^{1}(\Omega, \mu)$ such that

$$
\mu\left(\psi^{-1}(A)\right)=\int_{A} h(x) d \mu
$$

for any $A \in \Sigma$.
(b) For any $f \in L^{1}(\Omega, \mu)$.

$$
\int_{\Omega} f \circ \psi(x) d \mu=\int_{\Omega} f(x) h(x) d \mu .
$$

Solution:

(a) Consider $\nu(A)=\mu\left(\psi^{-1}(A)\right)$ for $A \in \Sigma$. ν defines a measure on Σ : if $\cup_{n} A_{n}$ is a countable disjoint union of sets $A_{n} \in \Sigma$, then so is $\psi^{-1}\left(\cup_{n} A_{n}\right)=\cup_{n} \psi^{-1}\left(A_{n}\right)$. Hence,

$$
\nu\left(\cup_{n} A_{n}\right)=\mu\left(\cup_{n} \psi^{-1}\left(A_{n}\right)\right)=\sum_{n} \mu\left(\psi^{-1}\left(A_{n}\right)\right)=\sum_{n} \nu\left(A_{n}\right) .
$$

Moreover, condition (ii) implies the absolutely continuity of ν with respect to μ.
By the Radon-Nikodym theorem, there exists a unique nonnegtaive $h \in L^{1}(\Omega, \mu)$ such that

$$
\nu(A)=\int_{A} h(x) d \mu
$$

for any $A \in \Sigma$.
(b) It suffices to prove the integral identity for a real-valued nonnegative L^{1} function f. (For a complex-valued f, consider $f=\operatorname{Re} f+i \operatorname{Im} f$. For a real-valued sign-changing f, consider $f=f_{+}-f_{-}$.)
First for $f \in L^{1}(\Omega)$ that are nonnegative and simple, the required integral identity is an immediate consequence of part (a). Details follow: Let f be a finite sum: $f=\sum_{n} a_{n} \chi_{A_{n}}$, where A_{n} 's are measurable and pairwise disjoint and a_{n} are distinct values.

$$
\begin{aligned}
\int_{\Omega} f \circ \psi(x) d \mu & =\int_{\Omega} \sum_{n} a_{n} \chi_{A_{n}} \circ \psi(x) d \mu \\
& =\sum_{n} a_{n} \int_{\Omega} \chi_{\psi^{-1}\left(A_{n}\right)}(x) d \mu \\
& =\sum_{n} a_{n} \mu\left(\psi^{-1}\left(A_{n}\right)\right) \\
& =\sum_{n} a_{n} \int_{A_{n}} h(x) d \mu \quad \text { (used (a) here) } \\
& =\sum_{n} a_{n} \int_{\Omega} \chi_{A_{n}}(x) h(x) d \mu \\
& =\int_{\Omega} f(x) h(x) d \mu
\end{aligned}
$$

Next let $f \in L^{1}(\Omega)$ be nonnegative. Take a sequence of nonnegative simple functions $f_{n} \in L^{1}(\Omega)$ such that $f_{n}(x) \uparrow f(x)$ a.e. in Ω. For f_{n} we have already shown that

$$
\begin{equation*}
\int_{\Omega} f_{n} \circ \psi(x) d \mu=\int_{\Omega} f_{n}(x) h(x) d \mu . \tag{*}
\end{equation*}
$$

Now we take the limit as $n \rightarrow \infty$. Since $f_{n}(x) \uparrow f(x)$ a.e. in Ω and h is nonnegative, we have $f_{n}(x) h(x) \uparrow f(x) h(x)$ a.e. in Ω. By the Monotone Convergence Theorem, the right hand side of $(*)$ converges to $\int_{\Omega} f(x) h(x) d \mu$. Similarly, if we can show

$$
\begin{equation*}
f_{n} \circ \psi(x) \uparrow f \circ \psi(x) \quad \text { a.e. in } \Omega \tag{**}
\end{equation*}
$$

then the left hand side of $(*)$ converges to $\int_{\Omega} f \circ \psi(x) d \mu$ and we are done. Now we prove $(* *)$. By the assumption, there is a set $Z \in \Sigma$ such that $\mu(Z)=0$ and $f_{n}(x) \uparrow f(x)$ for every $x \in \Omega \backslash Z$. Hence, $f_{n} \circ \psi(x) \uparrow f \circ \psi(x)$ for every x such that $\psi(x) \in \Omega \backslash Z$, or , equivalently, for every $x \in \psi^{-1}(\Omega \backslash Z)=\Omega \backslash \psi^{-1}(Z)$. Condition (ii) guarantees $\mu\left(\psi^{-1}(Z)\right)=0$. Thus, $(* *)$ holds and the proof is complete.

