Proposed algebra questions

1. Let G be a group. A proper subgroup H of G is called maximal if every subgroup of G containing H is equal to either H or G. Prove that a normal and maximal subgroup of G must have finite index p, where p is a prime number.
Solution: Let H be a normal and maximal subgroup of G. By the fourth (or lattice) isomorphism theorem, the maximality of H implies that the only subgroups of $\bar{G}=G / H$ are $\{1\}$ and \bar{G}. Since H is a proper subgroup of $G, \bar{G} \neq\{1\}$. Let $x \in \bar{G}$ be any non-identity element. Then we must have $\langle x\rangle=\bar{G}$, and thus \bar{G} is cyclic. If $\bar{G} \cong \mathbf{Z}$ then there are clearly non-identity subgroups of \bar{G}. So $\bar{G} \cong \mathbf{Z} / n \mathbf{Z}$ for some integer $n \geq 2$. As the subgroups of $\mathbf{Z} / n \mathbf{Z}$ correspond bijectively to divisors of n, it follows that $n=p$ is prime. So $[G: H]=|G / H|=p$ as desired.
2. Let p be a prime number. Determine all possibilities for the number of conjugacy classes in a group G of order p^{3}.
Solution: Let Z be the center of G. The class equation for G reads

$$
|G|=|Z|+\sum_{i=1}^{m}\left[G: C_{G}\left(x_{i}\right)\right]
$$

where x_{1}, \ldots, x_{m} are representatives for the distinct non-trivial conjugacy classes of $G,\left[G: C_{G}\left(x_{i}\right)\right]$ is the number of elements in the conjugacy class of x_{i}, and $C_{G}\left(x_{i}\right)$ is the centralizer of x_{i}. Since G is a p-group, Z is a non-trivial subgroup of G. If $p^{2}| | Z \mid$ then $|G / Z| \mid p$ and thus G / Z is cyclic. This implies that G is abelian, in which case G has exactly p^{3} conjugacy classes. Otherwise G is non-abelian and we must have $|Z|=p$. In this case, the class equation is

$$
p^{3}=p+\sum_{i=1}^{m}\left[G: C_{G}\left(x_{i}\right)\right]
$$

Since $\left\langle x_{i}, Z\right\rangle \leq C_{G}\left(x_{i}\right)$ and $x_{i} \notin Z$, we must have $\left|C_{G}\left(x_{i}\right)\right|=p^{2}$ for each i. Therefore $p^{3}=p+m p$ so $m=p^{2}-1$, and thus there are $p^{2}+p-1$ conjugacy classes in this case. As there exist both abelian and non-abelian groups of order p^{3}, both types of class equations are realized and thus the possibilities for the number of conjugacy classes in G are p^{3} and $p^{2}+p-1$.
3. Let R be a commutative ring with identity $1 \neq 0$.
a. If R is a finite integral domain, prove that R is a field.
b. Suppose $P \subset R$ is a prime ideal, and that there are elements $a_{1}, \ldots, a_{n} \in$ R such that for each $a \in R$, there exists $i \in\{1, \ldots n\}$ with $a-a_{i} \in P$. Prove that P is a maximal ideal.
Solution: a. Fix $x \in R$ with $x \neq 0$, and consider the map $m_{x}: R \rightarrow R$ given by $m_{x}(r)=r x$. This map is injective, since $r x=s x$ implies $r=s$ in an integral domain. As R is finite, the injective map m_{x} is also surjective. Thus there exists $r \in R$ with $r x=1$, which implies that x has a multiplicative inverse. As x was an arbitrary nonzero element, this implies that R is a field.
b. By hypothesis, the image of every element of R in R / P under the natural homomorphism is equal to the image of some a_{i}. Thus R / P has finitely many elements. Since P is a prime ideal, R / P is an integral domain. By part (a), R / P is a field, which implies that P is a maximal ideal.
4. Let p be a prime number, and let \mathbf{F}_{p} be the field with p elements. How many elements of \mathbf{F}_{p} have cube roots in \mathbf{F}_{p} ?
Solution: Since \mathbf{F}_{p}^{*} is abelian, the map $\phi: \mathbf{F}_{p}^{*} \rightarrow \mathbf{F}_{p}^{*}$ given by $\phi(x)=x^{3}$ is a group homomorphism. Since every element of the kernel of ϕ has order dividing 3 , if $3 \nmid p-1$ then ϕ is injective and hence surjective. Thus every element of \mathbf{F}_{p} has a cube root if $p \not \equiv 1(\bmod 3)$. If $3 \mid p-1$, then the cyclic group \mathbf{F}_{p}^{*} has a unique subgroup of order 3, and thus $\operatorname{Ker}(\phi)$ has order 3. By the first isomorphism theorem, $\mathbf{F}_{p}^{*} / \operatorname{Ker}(\phi) \cong \operatorname{Im}(\phi)$, so $\operatorname{Im}(\phi)$ has $(p-1) / 3$ elements. It follows that if $p \equiv 1(\bmod 3)$, then (counting zero) there are $1+(p-1) / 3=(p+2) / 3$ elements of \mathbf{F}_{p} with cube roots in \mathbf{F}_{p}. In summary, the answer to the question is $(p+2) / 3$ if $p \equiv 1(\bmod 3)$, and p if $p \not \equiv 1(\bmod 3)$.
5. Let p be an odd prime, let \mathbf{F} be a finite field of order p^{2}, and let \mathbf{F}_{p} denote the prime subfield of \mathbf{F}.
a. Show that there exists $\omega \in \mathbf{F}$ such that $\omega^{2} \in \mathbf{F}_{p}$ but $\omega \notin \mathbf{F}_{p}$.
b. With ω as in part (a), show that $(x+y \omega)^{p}=x-y \omega$ for all $x, y \in \mathbf{F}_{p}$.

Solution: a. Let g be a generator of the cyclic group \mathbf{F}_{p}^{*} of order $p-1$. Then there does not exist an element $x \in \mathbf{F}_{p}^{*}$ such that $x^{2}=g$, for otherwise writing $x=g^{k}$ we would have $g^{2 k}=g$ and thus $g^{2 k-1}=1$, which is impossible since g has even order. Since \mathbf{F} is the unique quadratic extension of \mathbf{F}_{p}, g has a square root ω in \mathbf{F}, which by the preceding discussion cannot lie in \mathbf{F}_{p}.
b. By the binomial theorem and Fermat's little theorem, $(x+y \omega)^{p}=$ $x^{p}+y^{p} \omega^{p}=x+y \omega^{p}$, so it suffices to show that $\omega^{p}=-\omega$, or equivalently, that $\omega^{p-1}=-1$. Since $\omega^{2} \in \mathbf{F}_{p}^{*}$, we have $\left(\omega^{p-1}\right)^{2}=\left(\omega^{2}\right)^{p-1}=1$. Since a polynomial of degree $d \geq 1$ over \mathbf{F} can have at most d roots in \mathbf{F}, and since $1^{2}=(-1)^{2}=1$ in \mathbf{F}, it follows that $\omega^{p-1} \in\{ \pm 1\}$. But an element $\alpha \in \mathbf{F}$ is in \mathbf{F}_{p} if and only if $\alpha^{p}=\alpha$. It follows that $\omega^{p-1} \neq 1$ and thus $\omega^{p-1}=-1$ as desired.
6. Let A be a square matrix with real entries such that $A^{2}=-I$, where I denotes the identity matrix. Prove $\operatorname{det}(A)=1$.
Solution: Let λ be an arbitrary eigenvalue of A. Then λ^{2} is an eigenvalue of A^{2}, and hence, of $-I$. Therefore, $\lambda^{2}=-1$. This implies that no eigenvalue of A is real, which means that eigenvalues of A come in conjugate pairs. Hence, $\operatorname{det}(A)>0$ and $\operatorname{det}\left(A^{2}\right)=1$ (because I must have even number of rows). So $\operatorname{det}(A)=1$.
7. Let V be the set consisting of all convergent sequences of real numbers. Then V is a vector space under the following operations: for any $\left\{x_{n}\right\},\left\{y_{n}\right\} \in V$ and for any real number $c,\left\{x_{n}\right\}+\left\{y_{n}\right\}=\left\{x_{n}+y_{n}\right\}$ and $c\left\{x_{n}\right\}=\left\{c x_{n}\right\}$. Let $T: V \rightarrow V$ be the linear transformation defined as $T\left(\left\{x_{n}\right\}\right)=\left\{\left(\lim _{n \rightarrow \infty} x_{n}\right)-x_{n}\right\}$. Find all eigenvalues of T and describe their eigenvectors.
Solution: Let λ be an eigenvalue of T. Then there exists a nonzero sequence $\left\{x_{n}\right\}$ such that $T\left(\left\{x_{n}\right\}\right)=\lambda\left\{x_{n}\right\}$. Hence, we have $\lambda x_{n}=$ $\left(\lim x_{n}\right)-x_{n}$ for all n. This implies that $(\lambda+1) x_{n}=\lim x_{n}$. Hence, either $\lambda=-1$ and $\lim x_{n}=0$, or $\lambda=0$ and $\left\{x_{n}\right\}$ is a constant sequence. Therefore, T has two distinct eigenvalues -1 and 0 . The eigenvectors of -1 are the nonzero sequences which converge to 0 , and the eigenvectors of 0 are the nonzero constant sequences.

