
Comprehensive Exam Spring 2006

Proposed algebra questions

1. Let G be a group. A proper subgroup H of G is called maximal if every
subgroup of G containing H is equal to either H or G. Prove that a
normal and maximal subgroup of G must have finite index p, where p is
a prime number.

Solution: Let H be a normal and maximal subgroup of G. By the fourth
(or lattice) isomorphism theorem, the maximality of H implies that the
only subgroups of G = G/H are {1} and G. Since H is a proper subgroup
of G, G 6= {1}. Let x ∈ G be any non-identity element. Then we must
have 〈x〉 = G, and thus G is cyclic. If G ∼= Z then there are clearly
non-identity subgroups of G. So G ∼= Z/nZ for some integer n ≥ 2. As
the subgroups of Z/nZ correspond bijectively to divisors of n, it follows
that n = p is prime. So [G : H] = |G/H| = p as desired.

2. Let p be a prime number. Determine all possibilities for the number of
conjugacy classes in a group G of order p3.

Solution: Let Z be the center of G. The class equation for G reads

|G| = |Z| +
m∑

i=1

[G : CG(xi)],

where x1, . . . , xm are representatives for the distinct non-trivial conjugacy
classes of G, [G : CG(xi)] is the number of elements in the conjugacy class
of xi, and CG(xi) is the centralizer of xi. Since G is a p-group, Z is a
non-trivial subgroup of G. If p2 | |Z| then |G/Z| | p and thus G/Z is
cyclic. This implies that G is abelian, in which case G has exactly p3

conjugacy classes. Otherwise G is non-abelian and we must have |Z| = p.
In this case, the class equation is

p3 = p +
m∑

i=1

[G : CG(xi)]
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Since 〈xi, Z〉 ≤ CG(xi) and xi 6∈ Z, we must have |CG(xi)| = p2 for each
i. Therefore p3 = p + mp so m = p2 − 1, and thus there are p2 + p − 1
conjugacy classes in this case. As there exist both abelian and non-abelian
groups of order p3, both types of class equations are realized and thus the
possibilities for the number of conjugacy classes in G are p3 and p2+p−1.

3. Let R be a commutative ring with identity 1 6= 0.

a. If R is a finite integral domain, prove that R is a field.

b. Suppose P ⊂ R is a prime ideal, and that there are elements a1, . . . , an ∈
R such that for each a ∈ R, there exists i ∈ {1, . . . n} with a−ai ∈ P .
Prove that P is a maximal ideal.

Solution: a. Fix x ∈ R with x 6= 0, and consider the map mx : R → R
given by mx(r) = rx. This map is injective, since rx = sx implies
r = s in an integral domain. As R is finite, the injective map mx is also
surjective. Thus there exists r ∈ R with rx = 1, which implies that x
has a multiplicative inverse. As x was an arbitrary nonzero element, this
implies that R is a field.

b. By hypothesis, the image of every element of R in R/P under the
natural homomorphism is equal to the image of some ai. Thus R/P has
finitely many elements. Since P is a prime ideal, R/P is an integral
domain. By part (a), R/P is a field, which implies that P is a maximal
ideal.

4. Let p be a prime number, and let Fp be the field with p elements. How
many elements of Fp have cube roots in Fp?

Solution: Since F
∗

p is abelian, the map φ : F
∗

p → F
∗

p given by φ(x) = x3

is a group homomorphism. Since every element of the kernel of φ has
order dividing 3, if 3 - p−1 then φ is injective and hence surjective. Thus
every element of Fp has a cube root if p 6≡ 1 (mod 3). If 3 | p − 1, then
the cyclic group F

∗

p has a unique subgroup of order 3, and thus Ker(φ)
has order 3. By the first isomorphism theorem, F

∗

p/Ker(φ) ∼= Im(φ), so
Im(φ) has (p − 1)/3 elements. It follows that if p ≡ 1 (mod 3), then
(counting zero) there are 1 + (p − 1)/3 = (p + 2)/3 elements of Fp with
cube roots in Fp. In summary, the answer to the question is (p + 2)/3 if
p ≡ 1 (mod 3), and p if p 6≡ 1 (mod 3).

5. Let p be an odd prime, let F be a finite field of order p2, and let Fp denote
the prime subfield of F.
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a. Show that there exists ω ∈ F such that ω2 ∈ Fp but ω 6∈ Fp.

b. With ω as in part (a), show that (x + yω)p = x− yω for all x, y ∈ Fp.

Solution: a. Let g be a generator of the cyclic group F
∗

p of order p − 1.
Then there does not exist an element x ∈ F

∗

p such that x2 = g, for
otherwise writing x = gk we would have g2k = g and thus g2k−1 = 1,
which is impossible since g has even order. Since F is the unique quadratic
extension of Fp, g has a square root ω in F, which by the preceding
discussion cannot lie in Fp.

b. By the binomial theorem and Fermat’s little theorem, (x + yω)p =
xp + ypωp = x+ yωp, so it suffices to show that ωp = −ω, or equivalently,
that ωp−1 = −1. Since ω2 ∈ F

∗

p, we have (ωp−1)2 = (ω2)p−1 = 1. Since
a polynomial of degree d ≥ 1 over F can have at most d roots in F, and
since 12 = (−1)2 = 1 in F, it follows that ωp−1 ∈ {±1}. But an element
α ∈ F is in Fp if and only if αp = α. It follows that ωp−1 6= 1 and thus
ωp−1 = −1 as desired.

6. Let A be a square matrix with real entries such that A2 = −I, where I
denotes the identity matrix. Prove det(A) = 1.

Solution: Let λ be an arbitrary eigenvalue of A. Then λ2 is an eigen-
value of A2, and hence, of −I. Therefore, λ2 = −1. This implies that
no eigenvalue of A is real, which means that eigenvalues of A come in
conjugate pairs. Hence, det(A) > 0 and det(A2) = 1 (because I must
have even number of rows). So det(A) = 1.

7. Let V be the set consisting of all convergent sequences of real num-
bers. Then V is a vector space under the following operations: for any
{xn}, {yn} ∈ V and for any real number c, {xn} + {yn} = {xn + yn} and
c{xn} = {cxn}. Let T : V → V be the linear transformation defined as
T ({xn}) = {(limn→∞ xn) − xn}. Find all eigenvalues of T and describe
their eigenvectors.

Solution: Let λ be an eigenvalue of T . Then there exists a nonzero
sequence {xn} such that T ({xn}) = λ{xn}. Hence, we have λxn =
(lim xn) − xn for all n. This implies that (λ + 1)xn = lim xn. Hence,
either λ = −1 and lim xn = 0, or λ = 0 and {xn} is a constant sequence.
Therefore, T has two distinct eigenvalues -1 and 0. The eigenvectors of
−1 are the nonzero sequences which converge to 0, and the eigenvectors
of 0 are the nonzero constant sequences.
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