Comprehensive Exam Spring 2006

PROPOSED ALGEBRA QUESTIONS

Let G be a group. A proper subgroup H of G is called mazimal if every
subgroup of G containing H is equal to either H or G. Prove that a
normal and maximal subgroup of G must have finite index p, where p is
a prime number.

Solution: Let H be a normal and maximal subgroup of G. By the fourth
(or lattice) isomorphism theorem, the maximality of H implies that the
only subgroups of G = G/H are {1} and G. Since H is a proper subgroup
of G, G # {1}. Let z € G be any non-identity element. Then we must
have (r) = G, and thus G is cyclic. If G = Z then there are clearly
non-identity subgroups of G. So G = Z/nZ for some integer n > 2. As
the subgroups of Z/nZ correspond bijectively to divisors of n, it follows
that n = p is prime. So [G : H| = |G/H| = p as desired.

Let p be a prime number. Determine all possibilities for the number of
conjugacy classes in a group G of order p3.

Solution: Let Z be the center of G. The class equation for G reads
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where z1, ..., x,, are representatives for the distinct non-trivial conjugacy
classes of G, [G : Cg(x;)] is the number of elements in the conjugacy class
of z;, and Cg(z;) is the centralizer of x;. Since G is a p-group, Z is a
non-trivial subgroup of G. If p? | |Z| then |G/Z| | p and thus G/Z is
cyclic. This implies that G is abelian, in which case G has exactly p3
conjugacy classes. Otherwise G is non-abelian and we must have |Z| = p.
In this case, the class equation is
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Since (z;, Z) < Cg(w;) and z; € Z, we must have |Cg(x;)| = p? for each
i. Therefore p* = p + mp so m = p? — 1, and thus there are p> +p — 1
conjugacy classes in this case. As there exist both abelian and non-abelian
groups of order p?, both types of class equations are realized and thus the
possibilities for the number of conjugacy classes in G are p* and p?+p—1.

Let R be a commutative ring with identity 1 # 0.
a. If R is a finite integral domain, prove that R is a field.

b. Suppose P C R is a prime ideal, and that there are elements a4, ..., a, €
R such that for each a € R, there exists i € {1,...n} with a —a; € P.
Prove that P is a maximal ideal.

Solution: a. Fix x € R with x # 0, and consider the map m, : R — R
given by m,(r) = rx. This map is injective, since rz = sz implies
r = s in an integral domain. As R is finite, the injective map m, is also
surjective. Thus there exists » € R with rx = 1, which implies that x
has a multiplicative inverse. As x was an arbitrary nonzero element, this
implies that R is a field.

b. By hypothesis, the image of every element of R in R/P under the
natural homomorphism is equal to the image of some a;. Thus R/P has
finitely many elements. Since P is a prime ideal, R/P is an integral
domain. By part (a), R/P is a field, which implies that P is a maximal
ideal.

Let p be a prime number, and let F, be the field with p elements. How
many elements of F,, have cube roots in F,,?

Solution: Since F} is abelian, the map ¢ : F — F} given by ¢(z) = 2

is a group homomorphism. Since every element of the kernel of ¢ has
order dividing 3, if 31 p—1 then ¢ is injective and hence surjective. Thus
every element of F,, has a cube root if p # 1 (mod 3). If 3 | p — 1, then
the cyclic group F has a unique subgroup of order 3, and thus Ker(¢)
has order 3. By the first isomorphism theorem, F}/Ker(¢) = Im(¢), so
Im(¢) has (p — 1)/3 elements. It follows that if p = 1 (mod 3), then
(counting zero) there are 1+ (p — 1)/3 = (p + 2)/3 elements of F, with
cube roots in F,. In summary, the answer to the question is (p + 2)/3 if
p=1 (mod 3), and pif p Z1 (mod 3).

. Let p be an odd prime, let F be a finite field of order p?, and let F,, denote
the prime subfield of F.



a. Show that there exists w € F such that w? € F, but w € F,,.
b. With w as in part (a), show that (z +yw)? =z —yw for all x,y € F,,.

Solution: a. Let g be a generator of the cyclic group F}, of order p — 1.
Then there does not exist an element x € F) such that 2?2 = g, for
otherwise writing * = ¢* we would have ¢?* = ¢ and thus ¢! = 1,
which is impossible since g has even order. Since F' is the unique quadratic
extension of F,, g has a square root w in F, which by the preceding
discussion cannot lie in F,,.

b. By the binomial theorem and Fermat’s little theorem, (z + yw)? =

P + yPwP = x + ywP, so it suffices to show that w? = —w, or equivalently,
that w?~! = —1. Since w? € F%, we have (wP™')* = (w?)?"! = 1. Since

a polynomial of degree d > 1 over F can have at most d roots in F, and
since 12 = (—1)? = 1 in F, it follows that w?~! € {£+1}. But an element
a € Fisin F,, if and only if o = a. It follows that w?~! # 1 and thus
wP~t = —1 as desired.

Let A be a square matrix with real entries such that A? = —I, where I
denotes the identity matrix. Prove det(A) = 1.

Solution: Let A\ be an arbitrary eigenvalue of A. Then A\? is an eigen-
value of A%, and hence, of —I. Therefore, A2 = —1. This implies that
no eigenvalue of A is real, which means that eigenvalues of A come in
conjugate pairs. Hence, det(A) > 0 and det(A4%) = 1 (because I must
have even number of rows). So det(A) = 1.

Let V be the set consisting of all convergent sequences of real num-
bers. Then V is a vector space under the following operations: for any
{zn}, {yn} € V and for any real number ¢, {z,} + {y.} = {z, + y.} and
c{x,} = {cx,}. Let T : V — V be the linear transformation defined as
T({z,}) = {(lim, 0o ©,) — z,}. Find all eigenvalues of T' and describe
their eigenvectors.

Solution: Let A be an eigenvalue of 7. Then there exists a nonzero
sequence {z,} such that T({z,}) = M=z,}. Hence, we have \z, =
(limx,) — z,, for all n. This implies that (A 4+ 1)z, = limz,. Hence,
either A = —1 and limz,, =0, or A = 0 and {z,,} is a constant sequence.
Therefore, T" has two distinct eigenvalues -1 and 0. The eigenvectors of
—1 are the nonzero sequences which converge to 0, and the eigenvectors
of 0 are the nonzero constant sequences.



