
Analysis Comprehensive Exam

January 13, 2006

Complete FIVE of the SEVEN problems below.

1. Let X be a compact metric space, and let {xn} be a sequence in X. Suppose that every
convergent subsequence of {xn} converges to the same element x0 of X. Show that {xn}
converges to x0.

Solution:

We claim that {xn} converges to x0. Suppose not. Then there exists an open
neighborhood O of x0 such that xn 6∈ O for infinitely many n. It follows that there
exists a subsequence s of {xn} such that every term of s lies in X − O. Since O

is open, X − O is closed in X. Since X is compact, s has a subsequence t that
converges, and its limit must lie in the closed set X −O. In particular, the limit of t

is not x0. But t is also a subsequence of {xn}, which contradicts the fact that every
convergent subsequence of {xn} converges to x0.

2. Let {fn} be a sequence of continuous non–negative functions that converges pointwise
on [0, 1] to a function f .

(a) Suppose that
∫ 1

0
f dx = 0 and the sequence of integrals

∫ 1

0
fn dx is bounded. Must

we have limn→∞

∫ 1

0
fn dx = 0? Give a proof or a counterexample.

(b) Suppose that
∫ 1

0
f dx = 0 and that {fn} is non-increasing. Must we have limn→∞

∫ 1

0
fn dx =

0? Give a proof or a counterexample.

(c) Suppose that f is equal to zero everywhere, and that {fn} is non-increasing. Show
that {fn} is uniformly convergent on [0,1].

Solution:

(a) No. Let f1 take the values f1(0) = 0, f1(
1
2
) = 2, f1(1) = 0, and be piecewise

linear in between. Then f1 is non negative, and has integral one. For n = 2, 3, . . .
set

fn(x) =

{
0 1

n
< x ≤ 1

nf1(nx) 0 ≤ x ≤ 1
n

Then, the integral of each fn is one. All functions are continuous, and they
converge pointwise to zero.

(b) Yes. The functions {fn} are bounded above by f1 and below by zero, so this
follows from the monotone convergence theorem (or the dominated convergence
theorem, or the bounded convergence theorem. . .).
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(c) Fix ε > 0. For each x ∈ [0, 1] there exists a positive integer nx such that fnx
< ε

whenever n ≥ nx. For each x, the set Ux = {fnx
< ε} is an open neighborhood

of x in [0, 1] (with the relative topology), since each fn is continuous. Since
{fn} is monotone, z ∈ Ux implies that fn(z) < ε for all n with n ≥ nx. Since
the collection {Ux : x ∈ [0, 1]} covers the compact space [0, 1], there is a finite
subcover {Ux1

, . . . , UxN
}.

Let M = sup{Nx1
, . . . , NxN

}. Let n ≥ M and y ∈ [0, 1]. Then y ∈ Uxj
for some

1 ≤ j ≤ N . Hence fn(y) < ε. Since y was arbitrary in [0, 1], we have fn(y) < ε

for all y in [0, 1] and all n ≥ M . It follows that {fn} converges uniformly on
[0, 1] to zero.

3. Let g(x) = (x log x)−1 on the interval [3,∞). Let fn = cnχ
An

where cn ≥ 0 and An is a
measurable subset of [3,∞). Assume that 0 ≤ fn ≤ g(x), and that fn −→ 0 a. e.

(a) Show that for all 3 < N < ∞, we have
∫ N

3
fn(x) dx −→ 0.

(b) Show that
∫ ∞

3
fn(x) dx −→ 0.

Solution:

(a) While g(x) is not integrable on [3,∞), it is integrable on every finite length
interval [3, N ]. Lebesgue Dominated Convergence Theorem then implies that∫ N

3
fn(x) dx −→ 0.

(b) Fix a large fixed N > 3. Since 0 ≤ fn ≤ g, observe that we must have 0 < cn <

[(3 + |An|) log(3 + |An|)]
−1. Moreover, if fn is non zero on the interval [N,∞),

we must have cn < [(3 + |An|) logN ]−1 Therefore,

∫ ∞

N

fn dx ≤
|An|

(3 + |An|) log N
≤ (log N)−1 .

But, by the first part, we have
∫ N

3
fn(x) dx −→ 0, hence

lim sup
n

∫ ∞

3

fn(x) dx ≤ (log N)−1 .

As N > 3 was arbitrary, we have finished the proof.

4. For each set S let P(S) denote the power set of S, i.e., the set of all subsets of S.

(a) Show that if S is infinite, then P(S) is uncountable.

(b) Let C be the product of countably many copies of the two-point space {0, 1}. Show
that C is uncountable.
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(c) Show that the Cantor ternary set is uncountable.

The Cantor ternary set is
⋂∞

n=0 Cn where Cn is the sequence of closed sets

C0 = [0, 1] , C1 = C0 − (1
3
, 2

3
) , C2 = C1 − {(1

9
, 2

9
) ∪ (7

9
, 8

9
)} , . . .

Solution:

(a) Every infinite set S contains a countably infinite set T , for which we have
P(T ) ⊂ P(S) . If P(T ) is uncountable, then P(S) is uncountable, so it suffices
to prove the result for countably infinite S. Suppose then that S is countably
infinite, and let s1, s2, . . . be an enumeration of S. Since each singleton set {si}
is an element of P(S) , P(S) is clearly infinite. Let f(i) = Si be any injection
of the positive integers into P(S). We form a subset W of S as follows: for
each positive integer i, we let si be an element of W if and only if si is not an
element of Si. Then for each i, W is distinct from Si, since si lies in W if and
only if si does not lie in si. This means that f does not map onto P(S) . Thus
P(S) is not in one-to-one correspondence with the positive integers. Since P(S)
is infinite, it is uncountable.

(b) Observe that C is in one-to-one correspondence with the power set P(N) of the
positive integers: if x is an element of C, then S(x) = {i : xi = 1} is a subset
of N , and x → S(x) is a bijection of C with P(N). The result now follows from
part 1.

(c) The Cantor ternary set is the set of real numbers between zero and one whose
ternary expansion uses no one. Thus it is in one-to-one correspondence with
the product of countably infinitely many copies of the two-point space {0, 2},
which in turn is in one-to-one correspondence with the product C of part 2.

5. A function is absolutely continuous on [0, 1] iff for every ε > 0 there is a δ > 0 such that
for all disjoint subintervals [aj, bj) ⊂ [0, 1], j = 1, 2, . . ., with

∑
j(bj − aj) < δ, we have∑

j|f(bj) − f(aj)| < ε.

(a) Show that every absolutely continuous function is of bounded variation.

(b) Give an example of a continuous function which is not absolutely continuous.

Solution:

This is a very standard exercise.

6. (a) Give an example of a measure space (X, Ω, µ) for which we have the inclusion
Lp(X) ⊆ Lq(X) for all 1 ≤ p < q ≤ ∞.
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(b) Give an example of a measure space (X, Ω, µ) for which we have the inclusion
Lp(X) ⊇ Lq(X) for all 1 ≤ p < q ≤ ∞.

In both instances, the space Lp(X) should be infinite dimensional. And the inclusions
are to be proved.

Solution:

(a) Take X to be the integers N, and the measure space is the one associated to
counting measure on N. That is, Lp(X) = `p(N). For 1 ≤ p < q ≤ ∞, and
f ∈ `p(N), we have

∑

n∈N

|f(n)|q ≤ sup
n∈N

|f(n)|q−p ×
∑

n∈N

|f(n)|p

≤
(∑

n∈N

|f(n)|p
)q/p−1

‖f‖p
p

≤ ‖f‖q/p+p−1
p .

That is, f ∈ `p implies f ∈ `q.

(b) Take X = [0, 1], Ω to be the Lebesgue measurable sets of [0, 1] and µ to be
Lebesgue measure. For 1 ≤ p < q ≤ ∞, and f ∈ `p(N), we have

‖f‖p
p =

∫ 1

0

|f |p dx

=

∫

|f |≤1

|f |p dx +

∫

|f |≥1

|f |p dx

≤ 1 +

∫

|f |≥1

|f |q dx

≤ 1 + ‖f‖q
q .

That is, f ∈ Lq([0, 1]) implies f ∈ Lp([0, 1]).

7. Consider [0, 1] with addition modulo one. Show that a function f : [0, 1) −→ C, with
f ∈ L4(0, 1) for which ∫ 1

0

∣∣
∫ 1

0

f(x)f(x − s) dx
∣∣2 ds = 0

is zero a. e. [Hint: Use the exponential basis on L2(0, 1).]

Solution:
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Write the function f =
∑

n∈Z
f̂(n) e2πinx, where f̂(n) =

∫ 1

0
f(x) e−2πinx dx. Observe

that f(x)f(x − s) is square integrable, and that

∫ 1

0

f(x)f(x − s) =
∑

m,n∈Z

f̂(m)f̂(n) e2πins

∫ 1

0

e2πi(m−n)x dx

=
∑

n

|f̂(n)|2 e2πins .

The assumption is that this last sum has zero L2 norm. That means that each Fourier
coefficient must be zero. Hence f is zero a. e.

Page 5


