Algebra Comprehensive Exam — Spring 2007 -

Instructions: Complete five of the eight problems below. If you attempt more than five questions, then clearly indicate which five should be graded.
(1) Let A be a commutative ring. The ring A is called Artinian if it satisfies the decreasing chain condition: if $I_{1} \supseteq I_{1} \supseteq, \ldots$ is a sequence of ideals in A then there is some N such that $I_{N}=I_{N+1}=\ldots$. If A is an Artinian integral domain show that A is a field. (Hint: given a non-zero element consider the ideal generated by it.)
Solution. Consider a non-zero element $a \in A$. Assume a is not a unit then $I=(a)$ is a proper ideal of A. The idea $I^{n}=\left(a^{n}\right)$. Notice that I^{k+1} is a proper subset of I^{k}. To see this suppose that $a^{k} \in I^{k+1}$, then $a^{k}=a^{k+1} g$ for some $g \in A$. So $a^{k}(1-a g)=0$. Since A is an integral domain either $a^{k}=0$ or $1-a g=0$. But we cannot have $s^{k}=0$ since if k is the smallest positive integer such that $a^{k}=0$ then a and a^{k-1} are zero divisors which don't exist in an integral domain. So we know $1-a g=0$ and hence g is the inverse of a and a is a unit. This contradicts a not being a unit so I^{k+1} is a proper subset of I^{k} for all k. But this contradicts A being Artinian, thus a must be a unit.
(2) Let G be a group of order p^{n}, where p is a prime number and n is a positive integer. If N is a normal subgroup of G of order p then show N is in the center of G.

Solution. Note that the conjugate of any element in N by any element of G remains in N since N is normal. Thus the orbit of any element of N under the action of conjugation by elements of G is contained in N. The size of the orbit of $x \in N$ is given by $\left[G: G_{x}\right]$ where G_{x} is the stabilizer of x under the action of conjugation. Since $|G|=\left[G: G_{x}\right]\left|G_{x}\right|$ we know that [$G: G_{x}$] is a power of p. But since this is the size of the orbit of x it must be less than or equal to p since the orbit is contained in N. If the size of the orbit were p then conjugation by G is transitive on N, but this is not possible since $1 \in N$ is fixed by conjugation. Thus the orbit of x cannot have size p and hence must have size 1 . Of course any element whose conjugacy orbit has size 1 is in the center of the group. Thus N is in the center of G.
(3) In which of the following rings is every ideal principal? Justify your answer.
(i) $\mathbb{Z} \oplus \mathbb{Z}$,
(ii) $\frac{\mathbb{Z}}{(4)}$,
(iii) $\frac{\mathbb{Z}}{(6)}[x]$,
(iv) $\frac{\mathbb{Z}}{(4)}[x]$.

Solution. Note that every ideal of the ring $A \oplus B$ is of the form $\mathfrak{a} \oplus \mathfrak{b}$ for ideals $\mathfrak{a} \subset A$ and $\mathfrak{b} \subset B$. If $\mathfrak{a}=(a)$ and $\mathfrak{b}=(b)$, then it is easily seen that $\mathfrak{a} \oplus \mathfrak{b}$ is generated by the element $(a, b) \in A \oplus B$, hence is a principal ideal.
(i) Since \mathbb{Z} is a principal ideal domain, the above shows that every ideal of $\mathbb{Z} \oplus \mathbb{Z}$ is principal.
(ii) Every ideal of $\mathbb{Z} /(4)$ is the image of an ideal of \mathbb{Z}, hence is principal.
(iii) The Chinese remainder theorem implies that $\frac{\mathbb{Z}}{(6)}[x] \approx \frac{\mathbb{Z}}{(2)}[x] \oplus \frac{\mathbb{Z}}{(3)}[x]$. Since each of $\frac{\mathbb{Z}}{(2)}[x]$ and $\frac{\mathbb{Z}}{(3)}[x]$ is a principal ideal domain, it follows that every ideal of $\frac{\mathbb{Z}}{(6)}[x]$ is principal.
(iv) Suppose the ideal $(2, x)$ of $\mathbb{Z} /(4)[x]$ is principal, then so is its image in the ring $\mathbb{Z}[x] /\left(4, x^{2}\right)$. Consequently there exist $a, b \in \mathbb{Z} /(4)$ with $(2, x)=(a+b x)$ in $\mathbb{Z}[x] /\left(4, x^{2}\right)$. Examining this modulo x and modulo 2, we see that $a=2$ and $b= \pm 1$, i.e., without loss of
generality, we have $(2, x)=(2+x)$ in $\mathbb{Z}[x] /\left(4, x^{2}\right)$. In particular, $2=(2+x)(c+d x)$ and so $2 c=2$ and $c+2 d=0$ in $\mathbb{Z} /(4)$. But this gives a contradiction, so $(2, x)$ in not a principal ideal of $\mathbb{Z} /(4)[x]$.
(4) Let F be a field extension of K of degree n.
(a) Show for each $\alpha \in F$, multiplication by α induces a linear map of F to itself (recall F is a vector space over K).
(b) Show every field extension of K of degree n is (ring) isomorphic to a subring of $G L(n, K)$. ($G L(n, K)$ is the ring of $n \times n$ matrices with entries in K.)

Solution. (a) Let α be an element of F. Clearly $f_{\alpha}: K \rightarrow K$ is a well-defined map. Note $f_{\alpha}(a+b)=\alpha(a+b)=\alpha a+\alpha b=f_{\alpha}(a)+f_{\alpha}(b)$ for all a and b in F. Moreover $f_{\alpha}(a b)=\alpha a b=a(\alpha b)=a f_{\alpha}(b)$ for $a \in K$ and $b \in F$. Thus f_{α} is a linear map.
(b) Let b_{1}, \ldots, b_{n} be a basis for K thought of as a vector space over F. So $f_{\alpha}\left(b_{i}\right)=\sum c_{i j} b_{j}$. Thus if we set M_{α} to be the matrix $\left(c_{i j}\right)$ then we get a matrix representing the map f_{α}. Moreover, this matrix is in $G L(n, K)$. Thus we have defined a map $\phi: F \rightarrow G L(n, K)$ that sends α to M_{α} (we will use the same basis b_{i} for all $\alpha \in F$). We must now show ϕ is a homomorphism. To this end let α and β be elements of F. Then $f_{\alpha \beta}(a)=\alpha \beta(a)=\beta \alpha(a)=$ $f_{\beta}(\alpha(a))=f_{\alpha} \circ f_{\beta}(a)$ and recall that matrix multiplication correspond to composition of the associated map. Thus $M_{\alpha \beta}=M_{\alpha} M_{\beta}$ and $\phi(\alpha \beta)=\phi(\alpha) \phi(\beta)$. Similarly $f_{\alpha+\beta}(a)=(\alpha+\beta) a=$ $\alpha a+\beta a=f_{\alpha}(a)+f_{\beta}(a)$ and so $M_{\alpha+\beta}=M_{\alpha}+M_{\beta}$. Thus ϕ is a ring homomorphism. Finally it is clear that ϕ is not the trivial homomorphism since $\phi(\alpha)(a)=\alpha a \neq 0$ if α and a not equal to zero. Thus, since the only ideals in F are the trivial ideal and F, the kernel of ϕ is the trivial idea. And ϕ is a monomorphism from K to $G L(n, K)$.
(5) Let k be a field of characteristic $\neq 2,3$. Prove that the following statements are equivalent:
(a) Any sum of squares in k is itself a square.
(b) Whenever a cubic polynomial f factors completely in k, so does its derivative f^{\prime}.

Solution. $(\mathrm{a}) \Rightarrow(\mathrm{b})$: Let $f(X)=(X-a)(X-b)(X-c)$, with $a, b, c \in k$. Then, $f^{\prime}(X)=$ $3 X^{2}-2(a+b+c) X+(a b+b c+c a)$. Consider, the discriminant of f^{\prime} namely,

$$
4(a+b+c)^{2}-12(a b+b c+c a)=2\left((a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right)
$$

The righthand side is a sum of square and hence itself a square say d^{2}. Then, $f^{\prime}(X)=$ $3\left(X-\frac{2(a+b+c)+d}{6}\right)\left(X-\frac{2(a+b+c)-d}{6}\right)$.
$(\mathrm{b}) \Rightarrow(\mathrm{a}):$ Let $\alpha, \beta \in k$. Consider the cubic polynomial, $f(X)=(X-\alpha)(X-\beta)(X+\alpha)$. Since, the discriminant of f^{\prime} has to be a square we have that, $2\left((\alpha-\beta)^{2}+(\beta+\alpha)^{2}+(2 \alpha)^{2}\right)=$ $4\left(3 \alpha^{2}+\beta^{2}\right)$ is a square. Hence, $3 \alpha^{2}+\beta^{2}$ is square for all $\alpha, \beta \in k$.

Now, let $x, y \in$. Then, $x^{2}+y^{2}=3\left(x^{2} / 3\right)+y^{2}$. We claim that, $x^{2} / 3$ is a square. This is true because, $x^{2} / 3=3(x / 3)^{2}+0^{2}$ which is a square as proved earlier. Thus, $x^{2}+y^{2}=3\left(x^{2} / 3\right)+y^{2}$ is a square too. The rest follows by induction on the number of terms in the sum of squares.

I

(6) Assume B is an $n \times n$ real symmetric matrix that and satisfies $v^{T} B v>0$ for all non-zero vectors v. (Here v^{T} means the transpose of v.) Show that there is a real matrix C such that $C^{2}=B$. (Hint: diagonalize.)
Solution. Since B is diagonalizable there is a matrix E and a diagonal matrix D such that $B=E D E^{-1}$. Note that since B is diagonalizable there is a basis of eigenvectors. Since B is symmetric, eigenvectors for distinct eigenvalues are orthogonal and we can assume this
eigen-bases is othonormal (just apply Gram-Schmidt to each eigenspace). Recall we can take E^{-1} to be the matrix whose columns consist of the eigenvectors. Thus it is easy to check that $E^{-1}=E^{T}$ and we have $B=E D E^{T}$. We claim that all the diagonal entries in D are positive. Indeed, let e_{i} be a standard basis vector in \mathbb{R}^{n} and let $v_{i}=E e_{i}$. Then $e_{i}^{T} D e_{i}=$ $\left(E^{T} v_{i}\right)^{T} D\left(E^{T} v_{i}\right)=v_{i}^{T} E D E^{T} v_{i}=v_{i}^{T} B v_{i}>0$. But $e_{i}^{T} D d_{i}$ is the $i^{\text {th }}$ diagonal element in D. Let D^{\prime} the diagonal matrix with diagonal entries equal to the square root of the diagonal entries on D. Set $C=E D^{\prime} E^{T}$. So $C^{2}=E D^{\prime} E^{T} E D^{\prime} E^{T}=E\left(D^{\prime} D^{\prime}\right) E^{T}=E D E^{T}=B$.
(7) Let G be a non-abelian group of order $p^{2} q$ where $p>q$ are prime.
(a) Show G contains a normal subgroup.
(b) Can the Sylow p and Sylow q-subgroups of G both be normal? Justify your answer.

Solution. (a) Let G be a group of order $p^{2} q$.. Let n_{p} be the number of Syow p-subgroups of G. We know $n_{p}=1+m p$ for some non-negative integer m. Moreover $n_{p} \mid q$ and since $q<p$ we see that $m=0$ and the Sylow p-subgroup is normal.
(b) No the Sylow q-subgroup cannot be normal. From above we know there is a unique Sylow p-subgroup P and it is normal. If there is a Sylow q-subgroup Q that is normal then notice that $Q \cap P=\{1\}$ since elements of Q are powers of q and elements of P are powers of p. In addition $P Q$ will be a subgroup of G whose order is larger than p^{2} so by Lagrange's theorem we know $P Q=G$. Thus $G=P \times Q$. We also know that P is abelian since all groups of order a prime squared are abelian. Finally Q is abelian since groups of order a prime are cyclic. Thus G is the product of two abelian groups and therefore must be abelian. This contradicts the fact that G is non-abelian. So the Sylow q-subgroup cannot be normal.
(8) Let G be a finite group with an automorphism φ such that $\varphi(x)=x$ if and only if $x=e$.
(a) Show that every element of G can be written as $x^{-1} \varphi(x)$.
(b) If p is a prime dividing $|G|$, prove that G has a unique p-Sylow subgroup P satisfying $\varphi(P)=P$.
Solution. (a) If $x^{-1} \varphi(x)=y^{-1} \varphi(y)$, then $y x^{-1}=\varphi\left(y x^{-1}\right)$, and so we must have $y x^{-1}=e$, i.e., $y=x$. Consequently the map $f: G \longrightarrow G$ with $f(x)=x^{-1} \varphi(x)$ is injective. Since G is finite, it must be surjective as well.
(b) Let $P_{0}<G$ be a p-Sylow subgroup. The order of every element of $\varphi\left(P_{0}\right)$ is a power of p, and so $\varphi\left(P_{0}\right)$ is also a p-Sylow subgroup of G. Consequently there exists $g \in G$ such that $\varphi\left(P_{0}\right)=g P_{0} g^{-1}$. There exists $x \in G$ such that $g^{-1}=x^{-1} \varphi(x)$. Then

$$
\varphi\left(x P_{0} x^{-1}\right)=\varphi(x) g P_{0} g^{-1} \varphi\left(x^{-1}\right)=x P_{0} x^{-1}
$$

Consequently $P=x P_{0} x^{-1}$ is a p-Sylow subgroup with $\varphi(P)=P$.
Next, suppose that $y \in N_{P}$. Then $\varphi\left(y P y^{-1}\right)=\varphi(P)$, i.e., $\varphi(y) P \varphi\left(y^{-1}\right)=P$, and so $\varphi(y) \in N_{P}$. This implies that $\varphi\left(N_{P}\right) \subseteq N_{P}$, and since φ is injective, we have $\varphi\left(N_{P}\right)=N_{P}$. Since N_{P} is a group with an automorphism φ with no fixed points except e, by part (a), every element of N_{P} can be written uniquely as $n^{-1} \varphi(n)$ with $n \in N_{P}$.

Now suppose $z P z^{-1}$ is another p-Sylow subgroup of G satisfying $\varphi\left(z P z^{-1}\right)=z P z^{-1}$, then $\varphi(z) P \varphi\left(z^{-1}\right)=z P z^{-1}$, and so $z^{-1} \varphi(z) \in N_{P}$. By the observation above, we must have $z \in N_{P}$, and so $z P z^{-1}=P$.

