
Algebra Comprehensive Exam
— Spring 2007 —

Instructions: Complete five of the eight problems below. If you attempt more than five questions,
then clearly indicate which five should be graded.

(1) Let A be a commutative ring. The ring A is called Artinian if it satisfies the decreasing
chain condition: if I1 ⊇ I1 ⊇, . . . . is a sequence of ideals in A then there is some N such
that IN = IN+1 = . . . . If A is an Artinian integral domain show that A is a field. (Hint:
given a non-zero element consider the ideal generated by it.)

Solution. Consider a non-zero element a ∈ A. Assume a is not a unit then I = (a) is a
proper ideal of A. The idea In = (an). Notice that Ik+1 is a proper subset of Ik. To see this
suppose that ak ∈ Ik+1, then ak = ak+1g for some g ∈ A. So ak(1 − ag) = 0. Since A is
an integral domain either ak = 0 or 1 − ag = 0. But we cannot have sk = 0 since if k is
the smallest positive integer such that ak = 0 then a and ak−1 are zero divisors which don’t
exist in an integral domain. So we know 1 − ag = 0 and hence g is the inverse of a and a
is a unit. This contradicts a not being a unit so Ik+1 is a proper subset of Ik for all k. But
this contradicts A being Artinian, thus a must be a unit. �

(2) Let G be a group of order pn, where p is a prime number and n is a positive integer. If N
is a normal subgroup of G of order p then show N is in the center of G.

Solution. Note that the conjugate of any element in N by any element of G remains in N
since N is normal. Thus the orbit of any element of N under the action of conjugation by
elements of G is contained in N. The size of the orbit of x ∈ N is given by [G : Gx] where Gx

is the stabilizer of x under the action of conjugation. Since |G| = [G : Gx]|Gx| we know that
[G : Gx] is a power of p. But since this is the size of the orbit of x it must be less than or
equal to p since the orbit is contained in N. If the size of the orbit were p then conjugation
by G is transitive on N, but this is not possible since 1 ∈ N is fixed by conjugation. Thus
the orbit of x cannot have size p and hence must have size 1. Of course any element whose
conjugacy orbit has size 1 is in the center of the group. Thus N is in the center of G. �

(3) In which of the following rings is every ideal principal? Justify your answer.

(i) Z ⊕ Z, (ii)
Z

(4)
, (iii)

Z

(6)
[x], (iv)

Z

(4)
[x].

Solution. Note that every ideal of the ring A⊕B is of the form a⊕ b for ideals a ⊂ A and
b ⊂ B. If a = (a) and b = (b), then it is easily seen that a ⊕ b is generated by the element
(a, b) ∈ A ⊕ B, hence is a principal ideal.

(i) Since Z is a principal ideal domain, the above shows that every ideal of Z ⊕ Z is
principal.

(ii) Every ideal of Z/(4) is the image of an ideal of Z, hence is principal.

(iii) The Chinese remainder theorem implies that
Z

(6)
[x] ≈

Z

(2)
[x] ⊕

Z

(3)
[x]. Since each of

Z

(2)
[x] and

Z

(3)
[x] is a principal ideal domain, it follows that every ideal of

Z

(6)
[x] is principal.

(iv) Suppose the ideal (2, x) of Z/(4)[x] is principal, then so is its image in the ring
Z[x]/(4, x2). Consequently there exist a, b ∈ Z/(4) with (2, x) = (a + bx) in Z[x]/(4, x2).
Examining this modulo x and modulo 2, we see that a = 2 and b = ±1, i.e., without loss of
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generality, we have (2, x) = (2 + x) in Z[x]/(4, x2). In particular, 2 = (2 + x)(c + dx) and so
2c = 2 and c + 2d = 0 in Z/(4). But this gives a contradiction, so (2, x) in not a principal
ideal of Z/(4)[x]. �

(4) Let F be a field extension of K of degree n.
(a) Show for each α ∈ F, multiplication by α induces a linear map of F to itself (recall F

is a vector space over K).
(b) Show every field extension of K of degree n is (ring) isomorphic to a subring of

GL(n, K). (GL(n, K) is the ring of n × n matrices with entries in K.)

Solution. (a) Let α be an element of F. Clearly fα : K → K is a well-defined map.
Note fα(a + b) = α(a + b) = αa + αb = fα(a) + fα(b) for all a and b in F. Moreover
fα(ab) = αab = a(αb) = afα(b) for a ∈ K and b ∈ F. Thus fα is a linear map.

(b) Let b1, . . . , bn be a basis for K thought of as a vector space over F. So fα(bi) =
∑

cijbj.
Thus if we set Mα to be the matrix (cij) then we get a matrix representing the map fα.
Moreover, this matrix is in GL(n, K). Thus we have defined a map φ : F → GL(n, K) that
sends α to Mα (we will use the same basis bi for all α ∈ F ). We must now show φ is a
homomorphism. To this end let α and β be elements of F. Then fαβ(a) = αβ(a) = βα(a) =
fβ(α(a)) = fα ◦fβ(a) and recall that matrix multiplication correspond to composition of the
associated map. Thus Mαβ = MαMβ and φ(αβ) = φ(α)φ(β). Similarly fα+β(a) = (α+β)a =
αa+βa = fα(a)+fβ(a) and so Mα+β = Mα +Mβ. Thus φ is a ring homomorphism. Finally
it is clear that φ is not the trivial homomorphism since φ(α)(a) = αa 6= 0 if α and a not
equal to zero. Thus, since the only ideals in F are the trivial ideal and F, the kernel of φ is
the trivial idea. And φ is a monomorphism from K to GL(n, K). �

(5) Let k be a field of characteristic 6= 2, 3. Prove that the following statements are equivalent:
(a) Any sum of squares in k is itself a square.
(b) Whenever a cubic polynomial f factors completely in k, so does its derivative f ′.

Solution. (a) ⇒ (b): Let f(X) = (X − a)(X − b)(X − c), with a, b, c ∈ k. Then, f ′(X) =
3X2 − 2(a + b + c)X + (ab + bc + ca). Consider, the discriminant of f ′ namely,

4(a + b + c)2 − 12(ab + bc + ca) = 2((a − b)2 + (b − c)2 + (c − a)2).

The righthand side is a sum of square and hence itself a square say d2. Then, f ′(X) =

3(X − 2(a+b+c)+d

6
)(X − 2(a+b+c)−d

6
).

(b) ⇒ (a): Let α, β ∈ k. Consider the cubic polynomial, f(X) = (X − α)(X − β)(X + α).
Since, the discriminant of f ′ has to be a square we have that, 2((α−β)2+(β+α)2+(2α)2) =
4(3α2 + β2) is a square. Hence, 3α2 + β2 is square for all α, β ∈ k.

Now, let x, y ∈. Then, x2+y2 = 3(x2/3)+y2. We claim that, x2/3 is a square. This is true
because, x2/3 = 3(x/3)2+02 which is a square as proved earlier. Thus, x2+y2 = 3(x2/3)+y2

is a square too. The rest follows by induction on the number of terms in the sum of
squares. �

I
(6) Assume B is an n × n real symmetric matrix that and satisfies vT Bv > 0 for all non-zero

vectors v. (Here vT means the transpose of v.) Show that there is a real matrix C such that
C2 = B. (Hint: diagonalize.)

Solution. Since B is diagonalizable there is a matrix E and a diagonal matrix D such that
B = EDE−1. Note that since B is diagonalizable there is a basis of eigenvectors. Since B
is symmetric, eigenvectors for distinct eigenvalues are orthogonal and we can assume this
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eigen-bases is othonormal (just apply Gram-Schmidt to each eigenspace). Recall we can
take E−1 to be the matrix whose columns consist of the eigenvectors. Thus it is easy to
check that E−1 = ET and we have B = EDET . We claim that all the diagonal entries in D
are positive. Indeed, let ei be a standard basis vector in R

n and let vi = Eei. Then eT
i Dei =

(ET vi)
T D(ET vi) = vT

i EDET vi = vT
i Bvi > 0. But eT

i Ddi is the ith diagonal element in D.
Let D′ the diagonal matrix with diagonal entries equal to the square root of the diagonal
entries on D. Set C = ED′ET . So C2 = ED′ET ED′ET = E(D′D′)ET = EDET = B. �

(7) Let G be a non-abelian group of order p2q where p > q are prime.
(a) Show G contains a normal subgroup.
(b) Can the Sylow p and Sylow q-subgroups of G both be normal? Justify your answer.

Solution. (a) Let G be a group of order p2q.. Let np be the number of Syow p-subgroups
of G. We know np = 1+mp for some non-negative integer m. Moreover np|q and since q < p
we see that m = 0 and the Sylow p-subgroup is normal.

(b) No the Sylow q-subgroup cannot be normal. From above we know there is a unique
Sylow p-subgroup P and it is normal. If there is a Sylow q-subgroup Q that is normal then
notice that Q ∩ P = {1} since elements of Q are powers of q and elements of P are powers
of p. In addition PQ will be a subgroup of G whose order is larger than p2 so by Lagrange’s
theorem we know PQ = G. Thus G = P ×Q. We also know that P is abelian since all groups
of order a prime squared are abelian. Finally Q is abelian since groups of order a prime are
cyclic. Thus G is the product of two abelian groups and therefore must be abelian. This
contradicts the fact that G is non-abelian. So the Sylow q-subgroup cannot be normal. �

(8) Let G be a finite group with an automorphism ϕ such that ϕ(x) = x if and only if x = e.
(a) Show that every element of G can be written as x−1ϕ(x).
(b) If p is a prime dividing |G|, prove that G has a unique p-Sylow subgroup P satisfying

ϕ(P ) = P .

Solution. (a) If x−1ϕ(x) = y−1ϕ(y), then yx−1 = ϕ(yx−1), and so we must have yx−1 = e,
i.e., y = x. Consequently the map f : G −→ G with f(x) = x−1ϕ(x) is injective. Since G is
finite, it must be surjective as well.

(b) Let P0 < G be a p-Sylow subgroup. The order of every element of ϕ(P0) is a power
of p, and so ϕ(P0) is also a p-Sylow subgroup of G. Consequently there exists g ∈ G such
that ϕ(P0) = gP0g

−1. There exists x ∈ G such that g−1 = x−1ϕ(x). Then

ϕ(xP0x
−1) = ϕ(x)gP0g

−1ϕ(x−1) = xP0x
−1.

Consequently P = xP0x
−1 is a p-Sylow subgroup with ϕ(P ) = P .

Next, suppose that y ∈ NP . Then ϕ(yPy−1) = ϕ(P ), i.e., ϕ(y)Pϕ(y−1) = P , and so
ϕ(y) ∈ NP . This implies that ϕ(NP ) ⊆ NP , and since ϕ is injective, we have ϕ(NP ) = NP .
Since NP is a group with an automorphism ϕ with no fixed points except e, by part (a),
every element of NP can be written uniquely as n−1ϕ(n) with n ∈ NP .

Now suppose zPz−1 is another p-Sylow subgroup of G satisfying ϕ(zPz−1) = zPz−1,
then ϕ(z)Pϕ(z−1) = zPz−1, and so z−1ϕ(z) ∈ NP . By the observation above, we must have
z ∈ NP , and so zPz−1 = P . �


