Algebra Comprehensive Exam
— Spring 2007 —

Instructions: Complete five of the eight problems below. If you attempt more than five questions,
then clearly indicate which five should be graded.

(1)

Let A be a commutative ring. The ring A is called Artinian if it satisfies the decreasing
chain condition: if I; D I; DO,.... is a sequence of ideals in A then there is some N such
that Iy = Iyy1 = .... If A is an Artinian integral domain show that A is a field. (Hint:
given a non-zero element consider the ideal generated by it.)

Solution. Consider a non-zero element a € A. Assume a is not a unit then I = (a) is a
proper ideal of A. The idea I"™ = (a™). Notice that I**! is a proper subset of I*. To see this
suppose that a® € I**1 then a* = a**'g for some g € A. So a*(1 — ag) = 0. Since A is
an integral domain either a* = 0 or 1 — ag = 0. But we cannot have s* = 0 since if k is
the smallest positive integer such that a* = 0 then a and a*~! are zero divisors which don’t
exist in an integral domain. So we know 1 — ag = 0 and hence g is the inverse of a and a
is a unit. This contradicts a not being a unit so I**! is a proper subset of I* for all k. But
this contradicts A being Artinian, thus a¢ must be a unit. O

Let G be a group of order p™, where p is a prime number and n is a positive integer. If N
is a normal subgroup of G of order p then show N is in the center of G.

Solution. Note that the conjugate of any element in N by any element of G remains in N
since NN is normal. Thus the orbit of any element of N under the action of conjugation by
elements of G is contained in N. The size of the orbit of z € N is given by [G : G| where G,
is the stabilizer of x under the action of conjugation. Since |G| = [G : G,||G.| we know that
G : G,] is a power of p. But since this is the size of the orbit of z it must be less than or
equal to p since the orbit is contained in N. If the size of the orbit were p then conjugation
by G is transitive on N, but this is not possible since 1 € N is fixed by conjugation. Thus
the orbit of x cannot have size p and hence must have size 1. Of course any element whose
conjugacy orbit has size 1 is in the center of the group. Thus N is in the center of G. [

In which of the following rings is every ideal principal? Justify your answer.
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Solution. Note that every ideal of the ring A @ B is of the form a @ b for ideals a C A and
b C B. If a= (a) and b = (b), then it is easily seen that a @ b is generated by the element
(a,b) € A® B, hence is a principal ideal.

(1) Since Z is a principal ideal domain, the above shows that every ideal of Z @ Z is
principal.

(17) Every ideal of Z/(4) is the image of an ideal of Z, hence is principal.

(i) Z® Z, (i1)

Z Z Z
(¢4) The Chinese remainder theorem implies that @[{L’] ~ @[x] ® @[x] Since each of
Z
—[z] and ——[z] is a principal ideal domain, it follows that every ideal of —[z] is principal.

(2) (3) (6)

(tv) Suppose the ideal (2,z) of Z/(4)[x] is principal, then so is its image in the ring
Z|x]/(4,2%). Consequently there exist a,b € Z/(4) with (2,x) = (a + bx) in Z[z]/ (4, x?).
Examining this modulo x and modulo 2, we see that a = 2 and b = +1, i.e., without loss of
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(6)

generality, we have (2,z) = (2+x) in Z[z]/(4,2?). In particular, 2 = (2+ z)(c+ dz) and so
2c=2and c+2d =01in Z/(4). But this gives a contradiction, so (2, x) in not a principal
ideal of Z/(4)|x]. O

Let F' be a field extension of K of degree n.

(a) Show for each o € F, multiplication by « induces a linear map of F' to itself (recall F
is a vector space over K).

(b) Show every field extension of K of degree n is (ring) isomorphic to a subring of
GL(n,K). (GL(n, K) is the ring of n X n matrices with entries in K.)

Solution. (a) Let a be an element of F. Clearly f, : K — K is a well-defined map.
Note fo(a +0) = ala+0b) = aa+ ab = fola) + fo(b) for all @ and b in F. Moreover
falab) = aab = a(ab) = af,(b) for a € K and b € F. Thus f, is a linear map.

(b) Let by, ..., b, be a basis for K thought of as a vector space over F. So fo(b;) = > ¢;;b;.
Thus if we set M, to be the matrix (¢;;) then we get a matrix representing the map f,.
Moreover, this matrix is in GL(n, K). Thus we have defined a map ¢ : F — GL(n, K) that
sends a to M, (we will use the same basis b; for all @ € F). We must now show ¢ is a
homomorphism. To this end let o and 3 be elements of F. Then f,3(a) = af(a) = fala) =
fs(a(a)) = fao fz(a) and recall that matrix multiplication correspond to composition of the
associated map. Thus M,z = M, Mg and ¢p(aff) = ¢(a)@(F). Similarly fois(a) = (a+8)a =
aa+ fa = fao(a)+ fz(a) and so M3 = M, + Mg. Thus ¢ is a ring homomorphism. Finally
it is clear that ¢ is not the trivial homomorphism since ¢(a)(a) = aa # 0 if @ and a not
equal to zero. Thus, since the only ideals in F' are the trivial ideal and F), the kernel of ¢ is
the trivial idea. And ¢ is a monomorphism from K to GL(n, K). O

Let k be a field of characteristic # 2, 3. Prove that the following statements are equivalent:
(a) Any sum of squares in k is itself a square.
(b) Whenever a cubic polynomial f factors completely in &, so does its derivative f’.

Solution. (a) = (b): Let f(X) = (X —a)(X —b)(X —¢), with a,b,c € k. Then, f'(X) =
3X% —2(a+b+ )X + (ab+ bc + ca). Consider, the discriminant of f’ namely,

4(a+b+c)* —12(ab+ be+ ca) = 2((a — b)* + (b —¢)* + (c — a)?).

The righthand side is a sum of square and hence itself a square say d?. Then, f/(X) =

3(X B 2(a+b+c)+d)(X i 2(a+b+c)—d)
6 6 .
(b) = (a): Let o, 3 € k. Consider the cubic polynomial, f(X) = (X — a)(X — 8)(X + «).

Since, the discriminant of f” has to be a square we have that, 2((a— )%+ (8+a)?+ (2a)?)
4(3a? 4 (3%) is a square. Hence, 3a? + (32 is square for all a, 3 € k.

Now, let z,y €. Then, 22 +y* = 3(2?/3)+y> We claim that, #2/3 is a square. This is true
because, ¥?/3 = 3(x/3)?+0% which is a square as proved earlier. Thus, 2*+y?* = 3(2%/3)+1>
is a square too. The rest follows by induction on the number of terms in the sum of
squares. [

I
Assume B is an n x n real symmetric matrix that and satisfies vZ Bv > 0 for all non-zero
vectors v. (Here v7 means the transpose of v.) Show that there is a real matrix C' such that
C? = B. (Hint: diagonalize.)

Solution. Since B is diagonalizable there is a matrix £ and a diagonal matrix D such that
B = EDE~!. Note that since B is diagonalizable there is a basis of eigenvectors. Since B
is symmetric, eigenvectors for distinct eigenvalues are orthogonal and we can assume this
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eigen-bases is othonormal (just apply Gram-Schmidt to each eigenspace). Recall we can
take E~! to be the matrix whose columns consist of the eigenvectors. Thus it is easy to
check that E~! = E7 and we have B = EDET. We claim that all the diagonal entries in D
are positive. Indeed, let e; be a standard basis vector in R™ and let v; = Ee;. Then el De; =
(ETv)'D(E™v;) = vl EDETv; = v} Bv; > 0. But €] Dd; is the i diagonal element in D.
Let D’ the diagonal matrix with diagonal entries equal to the square root of the diagonal
entries on D. Set C' = ED'ET. So C? = ED'ETED'ET = E(D'D')ET = EDET" =B. [

Let G be a non-abelian group of order p*q where p > ¢ are prime.
(a) Show G contains a normal subgroup.
(b) Can the Sylow p and Sylow g-subgroups of G both be normal? Justify your answer.

Solution. (a) Let G be a group of order p?q.. Let n, be the number of Syow p-subgroups
of G. We know n,, = 1+ mp for some non-negative integer m. Moreover n,|q and since g < p
we see that m = 0 and the Sylow p-subgroup is normal.

(b) No the Sylow g-subgroup cannot be normal. From above we know there is a unique
Sylow p-subgroup P and it is normal. If there is a Sylow g-subgroup ) that is normal then
notice that @ N P = {1} since elements of () are powers of ¢ and elements of P are powers
of p. In addition PQ will be a subgroup of G whose order is larger than p? so by Lagrange’s
theorem we know P(Q) = G. Thus G = P x (). We also know that P is abelian since all groups
of order a prime squared are abelian. Finally @) is abelian since groups of order a prime are
cyclic. Thus G is the product of two abelian groups and therefore must be abelian. This
contradicts the fact that GG is non-abelian. So the Sylow g-subgroup cannot be normal. [

Let G be a finite group with an automorphism ¢ such that ¢(z) = x if and only if z = e.
(a) Show that every element of G' can be written as z = p(x).
(b) If p is a prime dividing |G|, prove that G' has a unique p-Sylow subgroup P satisfying
p(P)=P.
1

Solution. (a) If 27 p(z) = y~to(y), then yz~t = p(yx~!), and so we must have yz=! = e,
i.e., y = x. Consequently the map f: G — G with f(z) = 27 ¢(z) is injective. Since G is
finite, it must be surjective as well.

(b) Let Py < G be a p-Sylow subgroup. The order of every element of ¢(F) is a power
of p, and so ¢(FPp) is also a p-Sylow subgroup of GG. Consequently there exists g € G such
that p(Py) = gPyg~!. There exists z € G such that g~ = 27 p(x). Then

p(rPur™") = p(x)gPog ' p(a™") = xR ™.
Consequently P = zPyx~"! is a p-Sylow subgroup with ¢(P) = P.

Next, suppose that y € Np. Then p(yPy~1) = ¢(P), ie., p(y)Po(y™) = P, and so
¢(y) € Np. This implies that ¢(Np) C Np, and since ¢ is injective, we have ¢(Np) = Np.
Since Np is a group with an automorphism ¢ with no fixed points except e, by part (a),
every element of Np can be written uniquely as n~'¢(n) with n € Np.

Now suppose zPz~! is another p-Sylow subgroup of G satisfying p(zPz7!) = 2zPz7!,
then o(2)Pp(271) = 2Pz7!, and so 27 1p(z) € Np. By the observation above, we must have
2 € Np, and so zPz"! = P. O



