Solutions to Analysis Comprehensive Exam - January 2007

A linear map T on a normed space X is called a strict contraction in case there is constant $c<1$ so that $\|T f\| \leq c\|f\|$ for all $f \in X$.

For $1 \leq p \leq \infty$, define $T: L^{p}([0,1]) \rightarrow L^{p}([0,1])$ by

$$
T f(t)=\int_{0}^{t} f(s) \mathrm{d} s
$$

(a) Show that for $1<p<\infty, T$ is a strict contraction on $L^{p}([0,1])$.
(b) Show for $p=1$ and $p=\infty, T^{2}$ is a strict contraction on $L^{p}([0,1])$, but T is not.
(c) Show that for all $f \in L^{1}([0,1])$, the sequence $\left\{T^{n} f\right\}_{n \geq 1}$ converges in $L^{1}([0,1])$.

Solution: (a) By Hölder's inequality, for all t,

$$
|T f(t)|=\int_{[0,1]} 1_{[0, t]}(s) f(s) \mathrm{d} s \leq t^{1 / p^{\prime}}\|f\|_{p}
$$

Hence

$$
\|T f\|_{p} \leq\left(\int_{0}^{1} t^{p / p^{\prime}} \mathrm{d} t\right)^{1 / p}\|f\|_{p}=(1 / p)^{1 / p}\|f\|_{p}
$$

Hence we have $c_{p}=(1 / p)^{1 / p}$.
(b) For $p=1$, we have that

$$
|T f(t)| \leq \int_{0}^{1}|f(s)| \mathrm{d} s=\|f\|_{1}
$$

To see that this bound is sharp, consider $f_{n}(s)=n$ on $[0,1 / n]$ with $f_{n}(s)=0$ for $s>1 / n$. Then $T f_{n}(t)=\|f\|_{1}$ for all $t \geq 1 / n$. Thus, $\left\|T f_{n}\right\|_{1} \geq(1-1 / n)\left\|f_{n}\right\|_{1}$, and so T is not a strict contraction on L^{1}.

However, using the bound $|T f(t)| \leq\|f\|_{1}$, we have that

$$
T^{2} f(t) \leq t\|f\|_{1}
$$

and so

$$
\left\|T^{2} f\right\|_{1} \leq(1 / 2)\|f\|_{1}
$$

Hence T^{2} is a strict contraction on L^{1}.
For $p=\infty$, note that

$$
\begin{equation*}
|T f(t)| \leq \int_{0}^{t}|f(s)| \mathrm{d} s \leq t\|f\|_{\infty} \tag{*}
\end{equation*}
$$

There is equality if $f(t)=1$ for all t, and in this case we have $\|T f\|_{\infty}=\|f\|_{\infty}$, so that T is not a strict contraction on L^{∞}. However, from (*),

$$
T^{2} f(t) \leq\left(t^{2} / 2\right)\|f\|_{\infty}
$$

and so

$$
\left\|T^{2} f\right\|_{\infty} \leq(1 / 2)\|f\|_{\infty}
$$

(c) It follows from the above that

$$
\left\|T^{2 k+1} f\right\|_{1} \leq\left\|T^{2 k} f\right\|_{1} \leq(1 / 2)^{k}\|f\|_{1}
$$

Hence $T_{n} f$ converges to zero in L^{1}.

Question 2.

For $n \geq 1$, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be integrable. Assume that

$$
\lim _{k \rightarrow \infty} f_{k}=f \text { a.e. in }[0,1],
$$

where f is integrable over $[0,1]$. Prove that the following are equivalent:
(a)

$$
\lim _{k \rightarrow \infty} \int_{0}^{1}\left|f_{k}-f\right|=0
$$

(b) $\left\{f_{k}\right\}$ are uniformly integrable, that is the following property is true: $\forall \varepsilon>0$, there exists $\delta>0$ such that

$$
\begin{equation*}
E \subset[0,1] \text { and }|E|<\delta \Rightarrow\left|\int_{E} f_{k}\right|<\varepsilon \text { for all } k \geq 1 \tag{1}
\end{equation*}
$$

(You may assume that integrable functions have absolutely continuous integrals. That is, if g is integrable over $[0,1]$, then $\forall \varepsilon>0$, there exists $\delta>0$ such that

$$
\left.E \subset[0,1] \text { and }|E|<\delta \Rightarrow\left|\int_{E} g\right|<\varepsilon .\right)
$$

Solution

(b) \Rightarrow (a)

Let $\varepsilon>0$. Choose $\delta>0$ as in (b). By Egorov's theorem, there exists a (closed) set $F \subset[0,1]$ such that

$$
E=[0,1] \backslash F
$$

has $|E|<\delta$ and $\left\{f_{k}\right\}$ converges uniformly to f on F. Then as $k \rightarrow \infty$,

$$
\begin{equation*}
\int_{F}\left|f-f_{k}\right| \leq|F| \sup _{F}\left|f-f_{k}\right| \rightarrow 0 \tag{2}
\end{equation*}
$$

We now bound the integral over the complementary range $E=[0,1] \backslash F$. We use

$$
\begin{align*}
& \int_{E}\left|f-f_{k}\right| \\
& \leq \int_{E}|f|+\int_{E}\left|f_{k}\right| \\
& =\int_{E}|f|+\int_{E_{k}^{+}} f_{k}+\int_{E_{k}^{-}}\left(-f_{k}\right) \tag{3}
\end{align*}
$$

where

$$
\begin{aligned}
& E_{k}^{+}=\left\{x \in E: f_{k}(x) \geq 0\right\} \\
& E_{k}^{-}=\left\{x \in E: f_{k}(x)<0\right\} .
\end{aligned}
$$

Both these sets are measurable, as f_{k} and E are. Then

$$
\left|E_{k}^{ \pm}\right| \leq|E|<\delta,
$$

so our hypothesis gives

$$
\left|\int_{E_{k}^{+}} f_{k}\right|+\left|\int_{E_{k}^{-}} f_{k}\right|<2 \varepsilon .
$$

Combining this, (2), and (3), we obtain

$$
\begin{aligned}
& \limsup _{k \rightarrow \infty} \int_{0}^{1}\left|f-f_{k}\right| \\
\leq & \limsup _{k \rightarrow \infty}\left(\int_{F}\left|f-f_{k}\right|+\int_{E}\left|f-f_{k}\right|\right) \\
\leq & \int_{E}|f|+2 \varepsilon
\end{aligned}
$$

Finally, as f is integrable, its integral is absolutely continuous, so

$$
\int_{E}|f| \rightarrow 0 \text { as }|E| \rightarrow 0+
$$

(Alternatively, one can use dominated convergence). We deduce (1).
(a) \Rightarrow (b)

Let $\varepsilon>0$. There exists N such that

$$
k>N \Rightarrow \int_{0}^{1}\left|f_{k}-f\right|<\varepsilon / 2
$$

Since f and $f_{1}, f_{2}, \ldots, f_{N}$ are integrable, their integrals are absolutely continuous, so there exists $\delta>0$ such that

$$
|E|<\delta \Rightarrow \int_{E}|f|<\frac{\varepsilon}{2} \text { and } \int_{E}\left|f_{k}\right|<\frac{\varepsilon}{2}, k \leq N
$$

Then if $|E|<\delta$ and $k>N$,

$$
\begin{aligned}
\left|\int_{E} f_{k}\right| & \leq \int_{E}\left|f_{k}\right| \\
& \leq \int_{E}\left|f_{k}-f\right|+\int_{E}|f| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

If $k \leq N$, we already have what we need.

Question 3. Let A be a subset of a metric space X. Suppose that every continuous function on A is uniformly continuous. Show that A is closed. Is A necessarily compact?.
Solution: For any y in the complement of A, define f on A by

$$
f(x)=\frac{1}{d(x, y)} .
$$

Then f is the composition of continuous functions, and hence is continuous.
Suppose that y is a limit point of A that is in the complement of A. Then for any $\epsilon>0$, we can find an x_{1} in A with $d\left(x_{1}, y\right)<\epsilon$. We can then find an x_{2} in A with $d\left(x_{2}, y\right)<d\left(x_{1}, y\right) / 2$. Then

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=\frac{1}{d\left(x_{2}, y\right)}-\frac{1}{d\left(x_{1}, y\right)} \geq \frac{1}{d\left(x_{1}, y\right)} \geq \frac{1}{\epsilon} .
$$

However,

$$
d\left(x_{1}, x_{2}\right) \leq d\left(x_{1}, y\right)+d\left(x_{2}, y\right) \leq 2 \epsilon .
$$

Since $\epsilon>0$ is arbitrary, this is incompatible with the unifom continuity of f. Hence there are no limit points of A in the complement of A, and so A is closed.
A need not be compact. consider the set of natural numbers with the metric inherited from the reals.

Question 4.

Let $a>1$. Define a sequence $\left\{x_{n}\right\}$ by $x_{0}=1$ and

$$
x_{n+1}=\frac{1}{a+x_{n}}, n \geq 0 .
$$

Prove that

$$
\lim _{n \rightarrow \infty} x_{n}
$$

exists and evaluate the limit. For example, you may use the following steps:
(a) Show that for $n \geq 1$,

$$
x_{n+1}-x_{n}=-\frac{x_{n}-x_{n-1}}{\left(a+x_{n}\right)\left(a+x_{n-1}\right)}
$$

(b) Prove that

$$
\left|x_{n+1}-x_{n}\right| \leq \frac{\left|x_{n}-x_{n-1}\right|}{a^{2}}
$$

(c) Prove that

$$
\sum_{n=0}^{\infty}\left|x_{n+1}-x_{n}\right|<\infty
$$

(d) Hence complete the problem.

Solution

(a)

$$
\begin{aligned}
x_{n+1}-x_{n} & =\frac{1}{a+x_{n}}-\frac{1}{a+x_{n-1}} \\
& =\frac{x_{n-1}-x_{n}}{\left(a+x_{n}\right)\left(a+x_{n-1}\right)} .
\end{aligned}
$$

(b) Note that as $a>0$, and as $x_{0}=1>0$, so all $x_{n}>0$, by induction. Then from (a),

$$
\begin{aligned}
\left|x_{n+1}-x_{n}\right| & =\frac{\left|x_{n-1}-x_{n}\right|}{\left(a+x_{n}\right)\left(a+x_{n-1}\right)} \\
& \leq \frac{\left|x_{n-1}-x_{n}\right|}{a^{2}}
\end{aligned}
$$

so the desired inequality follows.
(c) We iterate the inequality of (b):

$$
\begin{aligned}
\left|x_{n+1}-x_{n}\right| & \leq \frac{\left|x_{n}-x_{n-1}\right|}{a^{2}} \\
& \leq\left(\frac{1}{a^{2}}\right)^{2}\left|x_{n-1}-x_{n-2}\right| \\
& \leq \cdots \\
& \leq\left(\frac{1}{a^{2}}\right)^{n}\left|x_{1}-x_{0}\right| .
\end{aligned}
$$

Then as $a>1$, comparison with the convergent geometric series

$$
\sum_{n=0}^{\infty}\left(\frac{1}{a^{2}}\right)^{n}
$$

gives

$$
\sum_{n=0}^{\infty}\left|x_{n+1}-x_{n}\right|<\infty
$$

(d) We have that

$$
\sum_{n=0}^{\infty}\left(x_{n+1}-x_{n}\right)
$$

converges absolutely and hence converges. Then

$$
\lim _{m \rightarrow \infty}\left(x_{m}-x_{0}\right)=\lim _{m \rightarrow \infty} \sum_{n=0}^{m-1}\left(x_{n+1}-x_{n}\right)
$$

exists. Let us set

$$
c=\lim _{m \rightarrow \infty} x_{m} .
$$

This is non-negative as all the $x_{n}>0$. We have from the defining relation,

$$
\begin{aligned}
c & =\lim _{m \rightarrow \infty} x_{m} \\
& =\lim _{m \rightarrow \infty} \frac{1}{a+x_{m-1}}=\frac{1}{a+c},
\end{aligned}
$$

so

$$
c^{2}+a c-1=0,
$$

so

$$
c=\frac{1}{2}\left(-a \pm \sqrt{a^{2}+4}\right) .
$$

Here in order that $c \geq 0$, we choose the positive sign of $\sqrt{ }$, so

$$
\lim _{m \rightarrow \infty} x_{m}=\frac{1}{2}\left(-a+\sqrt{a^{2}+4}\right) .
$$

Alternate Solution

Use the contraction mapping theorem.

Question 5. Let $(\Omega, \mathcal{S}, \mu)$ be a sigma finite measure space. For any non negative measurable function on Ω, define the distribution function of f, D_{f} by

$$
D_{f}(t)=\mu(\{x: f(x)>t\}),
$$

so that D_{f} is defined on $[0, \infty]$.
Show that for any non negative measurable function f on Ω,

$$
\int_{\Omega} f^{2}(x) \mathrm{d} \mu=\int_{0}^{\infty} \int_{0}^{\infty} \min \left\{D_{f}(s), D_{f}(t)\right\} \mathrm{d} s \mathrm{~d} t
$$

Solution: For $t \geq 0$, define A_{t} to be the set

$$
A_{t}=\{y: f(y)>t\} .
$$

We write

$$
f(x)=\int_{0}^{\infty} 1_{A_{t}}(x) \mathrm{d} t
$$

Then, by Fubini (here is where the sigma finiteness comes in),

$$
\begin{aligned}
\int_{\Omega} f^{2}(x) \mathrm{d} x & =\int_{\Omega}\left(\int_{0}^{\infty} 1_{A_{t}}(x) \mathrm{d} t \int_{0}^{\infty} 1_{A_{s}}(x) \mathrm{d} s\right) \mathrm{d} \mu \\
& =\int_{0}^{\infty} \int_{0}^{\infty}\left(\int_{\Omega} 1_{A_{t}}(x) 1_{A_{s}}(x) \mathrm{d} \mu\right) \mathrm{d} t \mathrm{~d} s
\end{aligned}
$$

Then since either $A_{t} \subset A_{s}$ or $A_{s} \subset A_{t}$,

$$
\int_{\Omega} 1_{A_{t}}(x) 1_{A_{s}}(x) \mathrm{d} \mu=\min \left\{D_{f}(s), D_{f}(t)\right\}
$$

Question 6.

(a) Let μ be a (nonnegative) measure on $[0,1]$ of mass 1 , that is $\mu([0,1])=1$. Let $f:[0,1] \rightarrow \mathbb{R}$ be measurable with respect to μ, and let ϕ be a function convex on the range of f. Prove Jensen's inequality:

$$
\phi\left(\int_{0}^{1} f d \mu\right) \leq \int_{0}^{1} \phi(f) d \mu
$$

(b) Use (a) to prove that if $a_{j} \in(0,1], j \geq 1$,

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{\log a_{j}}{2^{j}} \leq \log \left(\sum_{j=1}^{\infty} \frac{a_{j}}{2^{j}}\right) \tag{1}
\end{equation*}
$$

and

$$
\lim _{n \rightarrow \infty} \prod_{j=1}^{n} a_{j}^{1 / 2^{j}} \leq \sum_{j=1}^{\infty} \frac{a_{j}}{2^{j}}
$$

Solution

(a) As a set of measure 0 does not change the integrals, we assume that f is finite everywhere. Choose

$$
-\infty \leq a<b \leq \infty
$$

such that ϕ is convex in (a, b) and

$$
a<f(\mathbf{x})<b \text { for all } \mathbf{x} \in[0,1] .
$$

Let

$$
\gamma=\int_{0}^{1} f d \mu
$$

Then as f is integrable with respect to μ, γ is finite and we in fact see from our bounds on f that

$$
a<\gamma<b .
$$

(The case $b=\infty$ or $a=-\infty$ requires a little more care). Let us consider a line through the point $(\gamma, \phi(\gamma))$ which lies on or below the graph of ϕ throughout (a, b). We can take the slope of this line to be either $D^{+} \phi(\gamma)$ or $D^{-} \phi(\gamma)$. Let us call the slope m. Then

$$
\phi(\gamma)+m(t-\gamma) \leq \phi(t) \text { for all } t \in(a, b) .
$$

Hence, setting $t=f(\mathbf{x})$ for a.e. $\mathbf{x} \in(0,1)$,

$$
\phi(\gamma)+m(f(\mathbf{x})-\gamma) \leq \phi(f(\mathbf{x}))
$$

Integrating with respect to $d \mu$ gives

$$
\begin{aligned}
& \int_{0}^{1}[\phi(\gamma)+m(f(\mathbf{x})-\gamma)] d \mu(\mathbf{x}) \leq \int_{0}^{1} \phi(f(\mathbf{x})) d \mu(\mathbf{x}) \\
\Rightarrow & \phi(\gamma) \int_{0}^{1} d \mu+m\left(\int_{0}^{1} f d \mu-\gamma \int_{0}^{1} d \mu\right) \leq \int_{0}^{1} \phi(f) d \mu
\end{aligned}
$$

Here by the way we defined γ, and as $\int_{0}^{1} d \mu=1$, we have

$$
\int_{0}^{1} f d \mu-\gamma \int_{0}^{1} d \mu=0
$$

So

$$
\begin{gathered}
\phi(\gamma) \leq \int_{0}^{1} \phi(f) d \mu \\
\Rightarrow \phi\left(\int_{0}^{1} f d \mu\right) \leq \int_{0}^{1} \phi(f) d \mu
\end{gathered}
$$

(b) We choose μ to be a measure having mass $1 / 2^{j}$ at the point $1 / j, j \geq 1$. Then for any function f defined on $\{1 / j: j \geq 1\}$, we have

$$
\int_{0}^{1} f d \mu=\sum_{j=1}^{\infty} f(1 / j) / 2^{j}
$$

at least if $f \geq 0$, or if the series on the right-hand side is absolutely convergent. Note that

$$
\mu([0,1])=\sum_{j=1}^{\infty} \frac{1}{2^{j}}=1
$$

so μ fulfills the conditions of (a). Next, if

$$
\sum_{j=1}^{\infty} \frac{\log a_{j}}{2^{j}} \text { diverges to }-\infty
$$

then (1) is trivially true. So we assume that

$$
\sum_{j=1}^{\infty} \frac{\log a_{j}}{2^{j}}>-\infty
$$

As all $\log a_{j} \leq 0$, this forces

$$
\sum_{j=1}^{\infty} \frac{\left|\log a_{j}\right|}{2^{j}}<\infty
$$

Also, as $a_{j} \in(0,1]$, so

$$
\sum_{j=1}^{\infty} \frac{a_{j}}{2^{j}} \leq \sum_{j=1}^{\infty} \frac{1}{2^{j}}<\infty
$$

In particular, if we define

$$
f(1 / j)=\log a_{j}, j \geq 1
$$

then it follows that f is integrable with respect to μ, for

$$
\int_{0}^{1}|f| d \mu=\sum_{j=1}^{\infty} \frac{\left|\log a_{j}\right|}{2^{j}}<\infty
$$

We apply (a) with the convex function $\phi(x)=\exp (x)$ to deduce that

$$
\begin{aligned}
& \exp \left(\int_{0}^{1} f d \mu\right) \leq \int_{0}^{1} \exp (f) d \mu \\
& \Rightarrow \exp \left(\sum_{j=1}^{\infty} \frac{\log a_{j}}{2^{j}}\right) \leq \sum_{j=1}^{\infty} \frac{a_{j}}{2^{j}}
\end{aligned}
$$

Then (1) follows.
Finally, using continuity of exp,

$$
\begin{aligned}
\exp \left(\sum_{j=1}^{\infty} \frac{\log a_{j}}{2^{j}}\right) & =\exp \left(\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \frac{\log a_{j}}{2^{j}}\right) \\
& =\lim _{n \rightarrow \infty} \exp \left(\sum_{j=1}^{n} \frac{\log a_{j}}{2^{j}}\right) \\
& =\lim _{n \rightarrow \infty} \exp \left(\log \prod_{j=1}^{n} a_{j}^{1 / 2^{j}}\right)=\lim _{n \rightarrow \infty} \prod_{j=1}^{n} a_{j}^{1 / 2^{j}} .
\end{aligned}
$$

Question 7. Fix any p with $0<p<1$. Let $(\Omega, \mathcal{S}, \mu)$ be a sigma finite measure space. Define $L^{p}(\mu)$ to be the set of a.e. equivalence classes of measurable functions f on Ω such that

$$
\int_{\Omega}|f(x)|^{p} \mathrm{~d} \mu<\infty
$$

(a) Show that for all $s, t \geq 0$, and $0<p<1$,

$$
(s+t)^{p} \leq s^{p}+t^{p}
$$

(b) Show that any finite linear combination of functions in $L^{p}(\mu)$ again belongs to $L^{p}(\mu)$.
(c) Show that

$$
d_{p}(f, g)=\int_{\Omega}|f(x)-g(x)|^{p} \mathrm{~d} \mu
$$

defines a metric on $L^{p}(\mu)$. Show also that with this metric $L^{p}(\mu)$ is complete.

Solution: (a)

$$
\begin{aligned}
(s+t)^{p} & =\int_{0}^{s+t} p u^{p-1} \mathrm{~d} t=\int_{0}^{s} p u^{p-1} \mathrm{~d} t+\int_{0}^{t} p(u+s)^{p-1} \mathrm{~d} t \\
& \leq \int_{0}^{s} p u^{p-1} \mathrm{~d} t+\int_{0}^{t} p u^{p-1} \mathrm{~d} t=s^{p}+t^{p} .
\end{aligned}
$$

The inequality holds since $u \mapsto u^{p-1}$ is monotone decreasing for $0<p<1$.
(b) This is immediate given the inequality from (a).
(c) For f, g and h in $L^{p}(\mu)$,

$$
|f-h|=|(f-g)+(g-h)| \leq|f-g|+|g-h|
$$

By the inequality in (a), it is now clear that

$$
|f-h|^{p} \leq|f-g|^{p}+|g-h|^{p},
$$

and hence that

$$
d_{p}(f, h) \leq d_{p}(f, g)+d_{p}(g, h)
$$

This proves the triangle inequality, and the remaining requirement for d_{p} to be a metric are plainly satisfied.

As for the completeness, let $\left\{f_{n}\right\}$ be a Cauchy sequence. Pass to a subsequence $\left\{f_{n_{k}}\right\}$ such that

$$
d_{p}\left(f_{n_{k}}, f_{n_{k+1}}\right) \leq 2^{-k}
$$

Then by the monotone convergence theorem,

$$
F=\sum_{k=1}^{\infty}\left|f_{n_{k}}-f_{n_{k+1}}\right|^{p}
$$

is integrable with $\int_{\Omega} F \mathrm{~d} \mu \leq 1$.
Since $0<p<1$, it follows that $\sum_{k=1}^{\infty}\left|f_{n_{k}}-f_{n_{k+1}}\right|$ converges almost everywhere. Since absolute convergence implies convergence,

$$
\sum_{k=1}^{\infty}\left(f_{n_{k}}-f_{n_{k+1}}\right)
$$

converges almost everywhere. Let f denote the sum.
Next,

$$
\left|f-f_{n_{k}}\right|=\left|\sum_{\ell=k}^{\infty}\left(f_{n_{\ell}}-f_{n_{\ell+1}}\right)\right|
$$

almost everywhere, so once again using (a),

$$
\left|f-f_{n_{k}}\right|^{p} \leq \sum_{\ell=k}^{\infty}\left|f_{n_{\ell}}-f_{n_{\ell+1}}\right|^{p}
$$

so that

$$
d_{p}\left(f_{n_{k}}, f\right) \leq 2^{-k}
$$

Thus the subsequence converges to f. But then since the original sequence is Cauchy, the whole sequence converges to f. This proves the completeness.

Question 8. Let λ denote Lebesgue measure on $[0,1]$. Let f be any integrable function on $[0,1]$. For $p>0$, define f_{p} by

$$
f_{p}(t)=p t^{p-1} f\left(t^{p}\right)
$$

Prove that

$$
\lim _{p \rightarrow 1} \int_{[0,1]}\left|f_{p}(t)-f(t)\right| \mathrm{d} \lambda=0
$$

Solution: fix any $\epsilon>0$. Chose a function g that is continuous on [0, 1 , and satisifes $\|f-g\|_{1}<\epsilon$. By a simple calculuation, we also have $\left\|f_{p}-g_{p}\right\|_{1}<\epsilon$.

Now by the triangle inequality (Minkowski's inequality),

$$
\left\|f-f_{p}\right\|_{1} \leq\|f-g\|_{1}+\left\|g-g_{p}\right\|_{1}+\left\|g_{p}-f_{p}\right\|_{1} \leq\left\|g-g_{p}\right\|_{1}+2 \epsilon
$$

Now since g is continuous on $[0,1]$, and therefore bounded, we may use the constant bound in the dominated convergence theorem to conclude that

$$
\lim _{p \rightarrow 1}\left\|g-g_{p}\right\|_{1}=0
$$

Hence for all p sufficiently close to $1,\left\|f-f_{p}\right\|_{1} \leq 3 \epsilon$, which proves the result.

