Algebra Comprehensive Exam
 — Spring 2008 -

Instructions: Complete five of the seven problems below. If you attempt more than five questions, then clearly indicate which five should be graded.
(1) (a) Prove that a finite abelian group is a direct product of its Sylow subgroups.
(b) How many finite abelian groups of order 135 are there, up to isomorphism?

Solution. (a) Let G be a finite abelian group. Since G is abelian, every Sylow subgroup is normal. Moreover, every two Sylow subgroups commute. It follows that G is the direct product of its Sylow subgroups.
(b) Since $135=27 \cdot 5$, and every finite abelian p-group is a direct sum of cyclic subgroups, there are exactly 3 abelian groups of order 135 : $\mathbb{Z} / 135 \mathbb{Z}, \mathbb{Z} / 45 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ and $\mathbb{Z} / 15 \mathbb{Z} \times$ $\mathbb{Z} / 9 \mathbb{Z}$.
(2) Let k be a field and $G=\mathrm{G} l_{n}(k)$ be the group of $n \times n$ invertible matrices with entries in k. Let $U \subset G$ be the set of upper triangular matrices with all diagonal entries equal to 1 .
(a) Prove that U is a subgroup of G.
(b) Now let p be a prime, $k=\mathbb{Z} / p \mathbb{Z}$ and G and U as above. Prove that U is a p-Sylow subgroup of G.
(c) Describe a non-abelian group of order 27.

Solution. (a)Let $X, Y \in U$. We prove that $X Y$ as well as $X^{-1} \in U$. This will show that U is a subgroup of G, since clearly the identity matrix is in U.

We have that

$$
(X Y)_{i j}=\sum_{k=1}^{n} X_{i k} Y_{k j}
$$

Since $X, Y \in U$, we have that $X_{i j}=Y_{i j}=0$ if $j<i$, and $X_{i i}=Y_{i i}=1$. If $j<i$ then, for all $k \geq i, Y_{k j}=0$ and for all $k<i X_{i k}=0$, implying that $(X Y)_{i j}=0$. If $i=j$, then for all $k>i, Y_{k j}=0$ and for all $k<i X_{i k}=0$, implying that $(X Y)_{i i}=X_{i i} Y_{i i}=1$. This shows that $X Y \in U$.

Alternatively, we can write X and Y as

$$
\begin{aligned}
& X=I+N_{1} \\
& Y=I+N_{2}
\end{aligned}
$$

where N_{1}, N_{2} are strictly upper-triangular matrices. Then,

$$
X Y=\left(I+N_{1}\right)\left(I+N_{2}\right)=I+N_{2}+N_{1}+N_{1} N_{2}
$$

Since the sum and the product of two strictly upper-triangular matrices is again upper triangular we have that $X Y \in U$.

To show that $X^{-1} \in U$ notice that $X=I-N$ where N is a strictly upper triangular and hence nilpotent matrix. Then,

$$
X^{-1}=I+N+N^{2}+\cdots+N^{m}
$$

for some $m \geq 0$. Moreover, all positive powers of N are strictly upper triangular, and hence $X^{-1} \in U$.
(b) We first prove that the order of the group $\mathrm{G} l_{n}(\mathbb{Z} / p \mathbb{Z})$ is $\left(p^{n}-1\right)\left(p^{n}-p\right) \cdots\left(p^{n}-p^{n-1}\right)$. To see this observe that the number of ways to choose the first row of a matrix in $\mathrm{G} l_{n}(\mathbb{Z} / p \mathbb{Z})$
is $p^{n}-1$ (only the all 0 row is disallowed). More generally, having chosen the first $i-1$ rows the number of ways to choose the i-th row is $p^{n}-p^{i-1}$ (one has to avoid picking a linear combination of the first $i-1$ rows and there are p^{i-1} such combinations which are all distinct since the first $i-1$ rows are linearly independent). The highest power of p dividing $\left(p^{n}-1\right)\left(p^{n}-p\right) \cdots\left(p^{n}-p^{n-1}\right)$ is clearly $p^{n-1} \cdot p^{n-2} \cdots 1$ which is also the order of U. Hence, U is a p-Sylow subgroup of G.
(c) Let $n=3$ and $p=3$. The corresponding group U has order 27 and is non-abelian.
(3) Let $Q=\{ \pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group, i.e., $(-1)^{2}=1$ is the identity element, $i^{2}=j^{2}=k^{2}=-1$, and

$$
i j=k=-j i, \quad j k=i=-k j, \quad k i=j=-i k .
$$

(a) Determine all subgroups of Q and prove that they are normal.
(b) What is the order of $\operatorname{Aut}(Q)$?

Solution. (a) Aside from e, the group Q consists of six elements of order 4 and one element of order 2 , namely -1 . Consequently the only subgroups of Q are

$$
Q, \quad\langle i\rangle, \quad\langle j\rangle, \quad\langle k\rangle, \quad\langle-1\rangle, \quad\{e\} .
$$

(b) Any two elements of order four, which are not powers of each other, constitute a generating set for Q. Any automorphism $\varphi \in \operatorname{Aut}(Q)$ is determined by its behavior on a generating set, and must take a generating set to a generating set. Consider the generating set $\{i, j\}$. Then

$$
\varphi(i) \in\{ \pm i, \pm j, \pm k\} \quad \text { and } \quad \varphi(j) \in\{ \pm i, \pm j, \pm k\} \backslash\{ \pm \varphi(i)\}
$$

Consequently $|\operatorname{Aut}(Q)|=24$.
(4) Let A be a commutative ring and M a finitely generated A module. For $m \in M$ let $\operatorname{Ann}(m)=\{a \in A \mid a m=0\}$.
(a) Prove that for each $m \in M, \operatorname{Ann}(m)$ is an ideal of A.
(b) Let $P=\{\operatorname{Ann}(m) \mid m \in M, m \neq 0\}$. Prove that a maximal element of P is a prime ideal.

Solution. (a) Clearly, if $a, b \in \operatorname{Ann}(m)$ then so is $a+b$ and $-a$. Moreover, $0 \in \operatorname{Ann}(m)$. Finally, if $a \in \operatorname{Ann}(m)$ and $c \in A, c a \in \operatorname{Ann}(m)$ showing that $\operatorname{Ann}(m)$ is an ideal.
(b) Let $m \in M$ be an element such that $\operatorname{Ann}(m)$ is a maximal element of P. Let $x y \in \operatorname{Ann}(m)$, but $x \notin \operatorname{Ann}(m)$. Then, $x m \neq 0$. But $\operatorname{Ann}(x m)$ contains $\operatorname{Ann}(m)$ and hence must be equal to $\operatorname{Ann}(m)$ since $\operatorname{Ann}(m)$ is maximal in P. Since, $y \in \operatorname{Ann}(x m)$ it follows that $y \in \operatorname{Ann}(m)$, proving that $\operatorname{Ann}(m)$ is prime.
(5) Recall that a commutative ring A is called Noetherian if every ideal of A is finitely generated.
(a) Prove that A is Noetherian if and only if every ascending sequence of ideals of A eventually stabilize.
(b) Let k be a field. Show that the ring $A=k\left[T^{2}, T^{3}\right]$ is Noetherian.
(c) Let $C[-1,1]$ denote the ring of continuous functions on the interval $[-1,1]$. Prove that $C[-1,1]$ is not Noetherian.

Solution. (a) Suppose every ascending sequence of ideals of A stabilize. Let $I \subset A$ be an ideal. Let $a_{0} \in I$ and let $I_{0}=\left(a_{0}\right)$. If $I=I_{0}$ then I is finitely generated. Otherwise, choose $a_{1} \in I \backslash I_{0}$ and let $I_{1}=\left(a_{0}, a_{1}\right)$ and so on. The sequence $I_{0} \subset I_{1} \subset I_{2} \cdots$ must terminate by at some I_{n} by hypothesis. Then $I=I_{n}=\left(a_{0}, \ldots, a_{n}\right)$ is finitely generated.

Conversely, if every ideal of A is finitely generated and we have an ascending sequence, $I_{0} \subset I_{1} \subset \cdots \subset I_{n} \subset \cdots$ of ideals, then consider the ideal $I=\cup_{0 \leq j} I_{j}$. Then I is finitely generated. Let $I=\left(a_{0}, \ldots, a_{m}\right)$. There must exist some n such that $a_{i} \in I_{n}, 0 \leq i \leq m$. Then, $I_{n}=I_{n+1}=\cdots=I$, proving that the sequence $I_{0} \subset I_{1} \subset \cdots \subset I_{n} \subset \cdots$ stabilizes.
(b) The ring $k\left[T^{2}, T^{3}\right] \cong k[X, Y] /\left(X^{3}-Y^{2}\right)$. By Hilbert's theorem we know that $k[X, Y]$ is Noetherian, and quotients of Noetherian rings are again Noetherian.
(c) Let $I_{n} \subset C[-1,1]$ be the ideal of functions vanishing on the interval $[-1 / n, 1 / n]$. Then the sequence $I_{1} \subset I_{2} \subset I_{3} \cdots$ is a strictly ascending sequence of ideals that does not stabilize.
(6) Let k be an infinite field, V a k-vector space and $A \in \operatorname{End}(V)$. For $v \in V$, the minimal polynomial of v (with respect to the the endomorphism A) is the monic polynomial p of smallest possible degree such that $p(A) v=0$. Prove that for any endomorphism A there exists an element $v \in V$ whose minimal polynomial (with respect to A) coincides with that of A.

Solution. For any $v \in V$, let $I_{v} \subset k[X]$ be the ideal defined by $I_{v}=\{P \in k[X] \mid P(A) \cdot v=$ $0\}$. Let $I_{v}=\left(P_{v}\right)$ for some monic polynomial P_{v} since $k[X]$ is a PID. Let P_{A} be the minimal polynomial of A. Since $P_{A} \in I_{v}, P_{v} \mid P_{A}$. Hence, as v runs over the whole of V, we have a finite number of choices for P_{v}. Let these be P_{1}, \ldots, P_{k}. Then, V is contained in the union of subspaces, $V_{i}=\left\{v \in V \mid P_{i}(A) \cdot v=0\right\}, 1 \leq i \leq k$, and hence $V=V_{i}$ for some i (say i_{0}). Then, $P_{i_{0}}(A) \cdot V=0$. Hence, $P_{A} \mid P_{i_{0}}$ and hence $P_{A}=P_{i_{0}}$.
(7) (a) Prove that the sum of two algebraic numbers is an algebraic number.
(b) Compute the degree of the extension $\mathbb{Q}\left(2^{1 / 2}, 2^{1 / 3}\right): \mathbb{Q}$.
(c) What is the degree of the minimal polynomial of $2^{1 / 2}+2^{1 / 3}$ over \mathbb{Q} ?

Solution. (a) α is an algebraic number iff the extension $\mathbb{Q}(\alpha): \mathbb{Q}$ is finite. If α and β are algebraic numbers, then $\mathbb{Q}(\alpha): \mathbb{Q}$ and $\mathbb{Q}(\beta): \mathbb{Q}$ are finite. Therefore $\mathbb{Q}(\alpha, \beta): \mathbb{Q}$ is finite, and since $\mathbb{Q} \subset \mathbb{Q}(\alpha+\beta) \subset \mathbb{Q}(\alpha, \beta)$, then $\mathbb{Q}(\alpha+\beta): \mathbb{Q}$ is finite. The result follows.
(b) $\mathbb{Q}\left(2^{1 / 3}\right): \mathbb{Q}$ and $\mathbb{Q}\left(2^{1 / 2}\right): \mathbb{Q}$ are finite extensions of comprime degrees 3 and 2 respectively. Thus, $\mathbb{Q}\left(2^{1 / 2}, 2^{1 / 3}\right): \mathbb{Q}$ is an extension of degree $2 \cdot 3=6$.
(c) By (a) and (b) it follows that the degree $\mathbb{Q}\left(2^{1 / 2}+2^{1 / 3}\right): \mathbb{Q}$ divides 6 . Since it is strictly bigger than 1 , it follows that it is 2,3 or 6 . If the degree is 2 , then look at the chain: $\mathbb{Q} \subset \mathbb{Q}\left(2^{1 / 2}+2^{1 / 3}\right) \subset \mathbb{Q}\left(2^{1 / 2}+2^{1 / 3}, 2^{1 / 2}\right)=\mathbb{Q}\left(2^{1 / 2}, 2^{1 / 3}\right)$ where the degree of the extension $\mathbb{Q}\left(2^{1 / 2}+2^{1 / 3}\right) \subset \mathbb{Q}\left(2^{1 / 2}+2^{1 / 3}, 2^{1 / 2}\right)$ is 1 or 2 . It follows that the degree of $\mathbb{Q} \subset \mathbb{Q}\left(2^{1 / 2}, 2^{1 / 3}\right)$ is 2 or 4 absurd. Likewise, if the degree of $\mathbb{Q}\left(2^{1 / 2}+2^{1 / 3}\right): \mathbb{Q}$ is 3 we reach a contradiction by looking at the chain $\mathbb{Q} \subset \mathbb{Q}\left(2^{1 / 2}+2^{1 / 3}\right) \subset \mathbb{Q}\left(2^{1 / 2}+2^{1 / 3}, 2^{1 / 3}\right)=\mathbb{Q}\left(2^{1 / 2}, 2^{1 / 3}\right)$. It follows that the degree $\mathbb{Q}\left(2^{1 / 2}+2^{1 / 3}\right): \mathbb{Q}$ is 6 , thus the minimal polynomial of $2^{1 / 2}+2^{1 / 3}$ over \mathbb{Q} has degree 6 .

