
Algebra Comprehensive Exam
— Spring 2008 —

Instructions: Complete five of the seven problems below. If you attempt more than five questions,
then clearly indicate which five should be graded.

(1) (a) Prove that a finite abelian group is a direct product of its Sylow subgroups.
(b) How many finite abelian groups of order 135 are there, up to isomorphism?

Solution. (a) Let G be a finite abelian group. Since G is abelian, every Sylow subgroup
is normal. Moreover, every two Sylow subgroups commute. It follows that G is the direct
product of its Sylow subgroups.

(b) Since 135 = 27 ·5, and every finite abelian p-group is a direct sum of cyclic subgroups,
there are exactly 3 abelian groups of order 135: Z/135Z, Z/45Z × Z/3Z and Z/15Z ×
Z/9Z. �

(2) Let k be a field and G = Gln(k) be the group of n× n invertible matrices with entries in k.
Let U ⊂ G be the set of upper triangular matrices with all diagonal entries equal to 1.
(a) Prove that U is a subgroup of G.
(b) Now let p be a prime, k = Z/pZ and G and U as above. Prove that U is a p-Sylow

subgroup of G.
(c) Describe a non-abelian group of order 27.

Solution. (a)Let X, Y ∈ U . We prove that XY as well as X−1 ∈ U . This will show that U
is a subgroup of G, since clearly the identity matrix is in U .

We have that

(XY )ij =

n∑

k=1

XikYkj.

Since X, Y ∈ U , we have that Xij = Yij = 0 if j < i, and Xii = Yii = 1. If j < i then, for
all k ≥ i, Ykj = 0 and for all k < i Xik = 0, implying that (XY )ij = 0. If i = j, then for
all k > i, Ykj = 0 and for all k < i Xik = 0, implying that (XY )ii = XiiYii = 1. This shows
that XY ∈ U .

Alternatively, we can write X and Y as

X = I + N1

Y = I + N2

where N1, N2 are strictly upper-triangular matrices. Then,

XY = (I + N1)(I + N2) = I + N2 + N1 + N1N2.

Since the sum and the product of two strictly upper-triangular matrices is again upper
triangular we have that XY ∈ U .

To show that X−1 ∈ U notice that X = I −N where N is a strictly upper triangular and
hence nilpotent matrix. Then,

X−1 = I + N + N 2 + · · ·+ Nm,

for some m ≥ 0. Moreover, all positive powers of N are strictly upper triangular, and hence
X−1 ∈ U .

(b) We first prove that the order of the group Gln(Z/pZ) is (pn−1)(pn−p) · · · (pn−pn−1).
To see this observe that the number of ways to choose the first row of a matrix in Gln(Z/pZ)
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is pn − 1 (only the all 0 row is disallowed). More generally, having chosen the first i − 1
rows the number of ways to choose the i-th row is pn − pi−1 (one has to avoid picking a
linear combination of the first i− 1 rows and there are pi−1 such combinations which are all
distinct since the first i− 1 rows are linearly independent). The highest power of p dividing
(pn − 1)(pn − p) · · · (pn − pn−1) is clearly pn−1 · pn−2 · · · 1 which is also the order of U . Hence,
U is a p-Sylow subgroup of G.

(c) Let n = 3 and p = 3. The corresponding group U has order 27 and is non-abelian. �

(3) Let Q = {±1,±i,±j,±k} be the quaternion group, i.e., (−1)2 = 1 is the identity element,
i2 = j2 = k2 = −1, and

ij = k = −ji, jk = i = −kj, ki = j = −ik.

(a) Determine all subgroups of Q and prove that they are normal.
(b) What is the order of Aut(Q)?

Solution. (a) Aside from e, the group Q consists of six elements of order 4 and one element
of order 2, namely −1. Consequently the only subgroups of Q are

Q, 〈i〉, 〈j〉, 〈k〉, 〈−1〉, {e}.

(b) Any two elements of order four, which are not powers of each other, constitute a
generating set for Q. Any automorphism ϕ ∈ Aut(Q) is determined by its behavior on a
generating set, and must take a generating set to a generating set. Consider the generating
set {i, j}. Then

ϕ(i) ∈ {±i,±j,±k} and ϕ(j) ∈ {±i,±j,±k} \ {±ϕ(i)}.

Consequently |Aut(Q)| = 24. �

(4) Let A be a commutative ring and M a finitely generated A module. For m ∈ M let
Ann(m) = {a ∈ A | am = 0}.
(a) Prove that for each m ∈ M , Ann(m) is an ideal of A.
(b) Let P = {Ann(m) | m ∈ M, m 6= 0}. Prove that a maximal element of P is a prime

ideal.

Solution. (a) Clearly, if a, b ∈ Ann(m) then so is a + b and −a. Moreover, 0 ∈ Ann(m).
Finally, if a ∈ Ann(m) and c ∈ A, ca ∈ Ann(m) showing that Ann(m) is an ideal.

(b) Let m ∈ M be an element such that Ann(m) is a maximal element of P . Let
xy ∈ Ann(m), but x 6∈ Ann(m). Then, xm 6= 0. But Ann(xm) contains Ann(m) and hence
must be equal to Ann(m) since Ann(m) is maximal in P . Since, y ∈ Ann(xm) it follows
that y ∈ Ann(m), proving that Ann(m) is prime. �

(5) Recall that a commutative ring A is called Noetherian if every ideal of A is finitely generated.
(a) Prove that A is Noetherian if and only if every ascending sequence of ideals of A

eventually stabilize.
(b) Let k be a field. Show that the ring A = k[T 2, T 3] is Noetherian.
(c) Let C[−1, 1] denote the ring of continuous functions on the interval [−1, 1]. Prove that

C[−1, 1] is not Noetherian.

Solution. (a) Suppose every ascending sequence of ideals of A stabilize. Let I ⊂ A be an
ideal. Let a0 ∈ I and let I0 = (a0). If I = I0 then I is finitely generated. Otherwise, choose
a1 ∈ I \ I0 and let I1 = (a0, a1) and so on. The sequence I0 ⊂ I1 ⊂ I2 · · · must terminate by
at some In by hypothesis. Then I = In = (a0, . . . , an) is finitely generated.
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Conversely, if every ideal of A is finitely generated and we have an ascending sequence,
I0 ⊂ I1 ⊂ · · · ⊂ In ⊂ · · · of ideals, then consider the ideal I = ∪0≤jIj. Then I is finitely
generated. Let I = (a0, . . . , am). There must exist some n such that ai ∈ In, 0 ≤ i ≤ m.
Then, In = In+1 = · · · = I, proving that the sequence I0 ⊂ I1 ⊂ · · · ⊂ In ⊂ · · · stabilizes.

(b) The ring k[T 2, T 3] ∼= k[X, Y ]/(X3 − Y 2). By Hilbert’s theorem we know that k[X, Y ]
is Noetherian, and quotients of Noetherian rings are again Noetherian.

(c) Let In ⊂ C[−1, 1] be the ideal of functions vanishing on the interval [−1/n, 1/n].
Then the sequence I1 ⊂ I2 ⊂ I3 · · · is a strictly ascending sequence of ideals that does not
stabilize. �

(6) Let k be an infinite field, V a k-vector space and A ∈ End(V ). For v ∈ V , the minimal
polynomial of v (with respect to the the endomorphism A) is the monic polynomial p of
smallest possible degree such that p(A)v = 0. Prove that for any endomorphism A there
exists an element v ∈ V whose minimal polynomial (with respect to A) coincides with that
of A.

Solution. For any v ∈ V , let Iv ⊂ k[X] be the ideal defined by Iv = {P ∈ k[X] | P (A) · v =
0}. Let Iv = (Pv) for some monic polynomial Pv since k[X] is a PID. Let PA be the minimal
polynomial of A. Since PA ∈ Iv, Pv|PA. Hence, as v runs over the whole of V , we have a
finite number of choices for Pv. Let these be P1, . . . , Pk. Then, V is contained in the union
of subspaces, Vi = {v ∈ V | Pi(A) · v = 0}, 1 ≤ i ≤ k, and hence V = Vi for some i (say i0).
Then, Pi0(A) · V = 0. Hence, PA|Pi0 and hence PA = Pi0 . �

(7) (a) Prove that the sum of two algebraic numbers is an algebraic number.
(b) Compute the degree of the extension Q(21/2, 21/3) : Q.
(c) What is the degree of the minimal polynomial of 21/2 + 21/3 over Q?

Solution. (a) α is an algebraic number iff the extension Q(α) : Q is finite. If α and β are
algebraic numbers, then Q(α) : Q and Q(β) : Q are finite. Therefore Q(α, β) : Q is finite,
and since Q ⊂ Q(α + β) ⊂ Q(α, β), then Q(α + β) : Q is finite. The result follows.

(b) Q(21/3) : Q and Q(21/2) : Q are finite extensions of comprime degrees 3 and 2 respec-
tively. Thus, Q(21/2, 21/3) : Q is an extension of degree 2 · 3 = 6.

(c) By (a) and (b) it follows that the degree Q(21/2 + 21/3) : Q divides 6. Since it is
strictly bigger than 1, it follows that it is 2,3 or 6. If the degree is 2, then look at the chain:
Q ⊂ Q(21/2 + 21/3) ⊂ Q(21/2 + 21/3, 21/2) = Q(21/2, 21/3) where the degree of the extension
Q(21/2 + 21/3) ⊂ Q(21/2 + 21/3, 21/2) is 1 or 2. It follows that the degree of Q ⊂ Q(21/2, 21/3)
is 2 or 4 absurd. Likewise, if the degree of Q(21/2 + 21/3) : Q is 3 we reach a contradiction
by looking at the chain Q ⊂ Q(21/2 + 21/3) ⊂ Q(21/2 + 21/3, 21/3) = Q(21/2, 21/3). It follows
that the degree Q(21/2 + 21/3) : Q is 6, thus the minimal polynomial of 21/2 + 21/3 over Q

has degree 6. �


