Algebra Comprehensive Exam
— Spring 2008 —

Instructions: Complete five of the seven problems below. If you attempt more than five questions,
then clearly indicate which five should be graded.

(1)

(a) Prove that a finite abelian group is a direct product of its Sylow subgroups.
(b) How many finite abelian groups of order 135 are there, up to isomorphism?

Solution. (a) Let G be a finite abelian group. Since G is abelian, every Sylow subgroup
is normal. Moreover, every two Sylow subgroups commute. It follows that G is the direct
product of its Sylow subgroups.

(b) Since 135 = 27-5, and every finite abelian p-group is a direct sum of cyclic subgroups,
there are exactly 3 abelian groups of order 135: Z/135Z, Z/45Z x 7/37Z and Z/15Z X
7./97. O

Let k be a field and G = Gl,,(k) be the group of n X n invertible matrices with entries in k.
Let U C G be the set of upper triangular matrices with all diagonal entries equal to 1.
(a) Prove that U is a subgroup of G.
(b) Now let p be a prime, k = Z/pZ and G and U as above. Prove that U is a p-Sylow
subgroup of G.
(c) Describe a non-abelian group of order 27.

Solution. (a)Let X,Y € U. We prove that XY as well as X~ € U. This will show that U
is a subgroup of G, since clearly the identity matrix is in U.
We have that

k=1

Since X,Y € U, we have that X;; =Y;; = 0if j <4, and X;; =Y;; = 1. If j < then, for
all k > i, Y; = 0 and for all k¥ < ¢ X;; = 0, implying that (XY),; = 0. If i = j, then for
all k >4, Yy; = 0 and for all £ < ¢ X;; = 0, implying that (XY);; = X;;Y;; = 1. This shows
that XY e U.

Alternatively, we can write X and Y as

X=I+M
Y=1I+N,
where Ny, Ny are strictly upper-triangular matrices. Then,
XY = (I + Ny)({ + Ny) =1+ Ny+ Ny + N1 Ns.

Since the sum and the product of two strictly upper-triangular matrices is again upper
triangular we have that XY € U.

To show that X~ € U notice that X = I — N where N is a strictly upper triangular and
hence nilpotent matrix. Then,

X'1=I+N+N*+... 4+ N™
for some m > 0. Moreover, all positive powers of N are strictly upper triangular, and hence
X-teU.
(b) We first prove that the order of the group Gl,,(Z/pZ) is (p" —1)(p" —p) - - - (p" —p™~1).
To see this observe that the number of ways to choose the first row of a matrix in Gl,,(Z/pZ)
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is p" — 1 (only the all 0 row is disallowed). More generally, having chosen the first ¢ — 1
rows the number of ways to choose the i-th row is p"® — p*~! (one has to avoid picking a
linear combination of the first ¢ — 1 rows and there are p*~! such combinations which are all
distinct since the first ¢ — 1 rows are linearly independent). The highest power of p dividing
(" —=1)(p"—p)---(p" —p* ) is clearly p"~!.p"~2...1 which is also the order of U. Hence,
U is a p-Sylow subgroup of G.

(c) Let n = 3 and p = 3. The corresponding group U has order 27 and is non-abelian. [

Let Q = {&41, 44,47, £k} be the quaternion group, i.e., (—1)? = 1 is the identity element,
2 =j2=k2=—1, and

ij=k=—ji, jk=i=—kj, ki=j=—ik.

(a) Determine all subgroups of () and prove that they are normal.
(b) What is the order of Aut(Q)?

Solution. (a) Aside from e, the group @ consists of six elements of order 4 and one element
of order 2, namely —1. Consequently the only subgroups of ) are

Q, @), ) k), (=1), {e}
(b) Any two elements of order four, which are not powers of each other, constitute a
generating set for (). Any automorphism ¢ € Aut(Q) is determined by its behavior on a

generating set, and must take a generating set to a generating set. Consider the generating
set {i,7}. Then

(i) € {£i,+j, £k} and o(g) € {xi, 15, £k} \ {£p()}.
Consequently |[Aut(Q)| = 24. O

Let A be a commutative ring and M a finitely generated A module. For m € M let

Ann(m) ={a € A|am = 0}.

(a) Prove that for each m € M, Ann(m) is an ideal of A.

(b) Let P = {Ann(m) | m € M, m # 0}. Prove that a maximal element of P is a prime
ideal.

Solution. (a) Clearly, if a,b € Ann(m) then so is a + b and —a. Moreover, 0 € Ann(m).
Finally, if @ € Ann(m) and ¢ € A, ca € Ann(m) showing that Ann(m) is an ideal.

(b) Let m € M be an element such that Ann(m) is a maximal element of P. Let
zy € Ann(m), but x ¢ Ann(m). Then, zm # 0. But Ann(zm) contains Ann(m) and hence
must be equal to Ann(m) since Ann(m) is maximal in P. Since, y € Ann(zm) it follows
that y € Ann(m), proving that Ann(m) is prime. O

Recall that a commutative ring A is called Noetherian if every ideal of A is finitely generated.
(a) Prove that A is Noetherian if and only if every ascending sequence of ideals of A
eventually stabilize.
(b) Let k be a field. Show that the ring A = k[T?, T?] is Noetherian.
(c) Let C[—1,1] denote the ring of continuous functions on the interval [—1, 1]. Prove that
C[—1,1] is not Noetherian.

Solution. (a) Suppose every ascending sequence of ideals of A stabilize. Let I C A be an
ideal. Let ag € I and let Iy = (ag). If I = Iy then [ is finitely generated. Otherwise, choose
a; € I'\ Iy and let I; = (ap, a1) and so on. The sequence [y C I} C I5--- must terminate by
at some I, by hypothesis. Then I = I,, = (aq,...,a,) is finitely generated.
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Conversely, if every ideal of A is finitely generated and we have an ascending sequence,
Inc 1l C---C1, C--- of ideals, then consider the ideal I = Uy<;I;. Then I is finitely
generated. Let I = (ag,...,a,). There must exist some n such that a; € 1,,0 < i < m.
Then, I,, = 1,1 = --- = I, proving that the sequence I, C I C --- C I, C --- stabilizes.

(b) The ring k[T? T3] = k[X,Y]/(X? — Y?). By Hilbert’s theorem we know that k[X, Y]
is Noetherian, and quotients of Noetherian rings are again Noetherian.

(c) Let I, C C[—1,1] be the ideal of functions vanishing on the interval [—1/n,1/n].
Then the sequence I} C Iy C I3--- is a strictly ascending sequence of ideals that does not
stabilize. O

Let k be an infinite field, V' a k-vector space and A € End(V). For v € V, the minimal
polynomial of v (with respect to the the endomorphism A) is the monic polynomial p of
smallest possible degree such that p(A)v = 0. Prove that for any endomorphism A there

exists an element v € V' whose minimal polynomial (with respect to A) coincides with that
of A.

Solution. For any v € V', let I, C k[X] be the ideal defined by I, = {P € k[X] | P(A)-v =
0}. Let I, = (P,) for some monic polynomial P, since k[X] is a PID. Let P4 be the minimal
polynomial of A. Since P4 € I,, P,|Ps. Hence, as v runs over the whole of V| we have a

finite number of choices for P,. Let these be P;,..., P,. Then, V is contained in the union
of subspaces, V; ={v e V | P,(A) -v=0},1<1i <k, and hence V = V; for some ¢ (say o).
Then, P;(A) -V = 0. Hence, P4|P;, and hence Py = P;,. O

(a) Prove that the sum of two algebraic numbers is an algebraic number.
(b) Compute the degree of the extension Q(2/2,2/?) : Q.
(c) What is the degree of the minimal polynomial of 21/2 4 2/3 gver Q?

Solution. (a) « is an algebraic number iff the extension Q(«) : Q is finite. If o and [ are
algebraic numbers, then Q(a) : Q and Q(f3) : Q are finite. Therefore Q(a, 8) : Q is finite,
and since Q C Q(a + ) C Q(a, ), then Q(a + B) : Q is finite. The result follows.

(b) Q(2'/?) : Q and Q(2'/?) : Q are finite extensions of comprime degrees 3 and 2 respec-
tively. Thus, Q(2'/2,2/3) : Q is an extension of degree 2 -3 = 6.

(c) By (a) and (b) it follows that the degree Q(2'/2 4 2'/3) : Q divides 6. Since it is
strictly bigger than 1, it follows that it is 2,3 or 6. If the degree is 2, then look at the chain:
Q C Q(21/2 4 21/3) c Q(2Y/2 + 21/3,2Y/2) = Q(21/2,2/3) where the degree of the extension
Q(2/2 +21/3) € Q(21/%2 4-21/3,21/2) is 1 or 2. It follows that the degree of Q C Q(2'/2,2!/3)
is 2 or 4 absurd. Likewise, if the degree of Q(2%/2 4 2!/3) : Q is 3 we reach a contradiction
by looking at the chain Q C Q(2'/2 4 21/3) c Q(2'/2 + 2%/3,2/3) = Q(2"/2,2'/3). 1t follows
that the degree Q(2'/2 4 21/3) : Q is 6, thus the minimal polynomial of 2'/2 + 23 over Q
has degree 6. O



