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1. Consider a sequence of functions fn ∈ L1(Rd) for n = 0, 1, . . ., with

C := sup
n>0

∫

Rd

|fn| dx < ∞.

Suppose that the following assumptions are satisfied:

(i) fn → f0 in measure as n → ∞;

(ii) for all ε > 0 there exists a δ > 0 such that

|A| 6 δ =⇒ sup
n>0

∫

A

|fn| dx 6 ε; (1)

(iii) for all ε > 0 there exists a set K ⊆ R
d with |K| < ∞ such that

sup
n>0

∫

Rd\K
|fn| dx 6 ε. (2)

Prove that fn → f0 strongly (i.e., in norm) in L1(Rd). Also show that all three conditions
are necessary, by constructing three counterexamples, each of which satisfies two of the
hypotheses (i), (ii), (iii) but not the third, and for which fn does not converge strongly to
f0.

Solution
Let ε > 0 be given. By assumption, we can find δ > 0 and K ⊆ R

d such that (1) and (2)
are satisfied. Choose α > 0 large enough such that C/α 6 δ and define

An :=
{

x ∈ R
d : |fn(x)| > α

}

for all n > 0.

By Chebyshev’s inequality, we obtain

|An| 6
1

α

∫

Rd

|fn| dx 6 δ for all n > 0,

which implies by hypothesis (ii) that
∫

Am

|fn| dx 6 ε for all m, n > 0. (3)

We can now decompose
∫

Rd

|fn − f0| dx

=

∫

Rd\K
|fn − f0| dx +

∫

An∪A0

|fn − f0| dx +

∫

K\(An∪A0)

|fn − f0| dx. (4)

The first term in (4) can be estimated as
∫

Rd\K
|fn − f0| dx 6

∫

Rd\K

{

|fn| + |f0|
}

dx 6 2ε,
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by choice of K. For the second term we use (3) and obtain
∫

An∪A0

|fn − f0| dx 6

∫

An∪A0

{

|fn| + |f0|
}

dx 6 4ε.

Now notice that on R
d \ (An ∪A0) we have |fn| 6 α and |f0| 6 α. Remember the definition

of convergence in measure: for every γ > 0 we have

lim
n→∞

∣

∣

∣

{

x ∈ R
d : |fn(x) − f0(x)| > γ

}
∣

∣

∣
= 0.

Let γ := ε/|K|, which is positive because |K| is finite. Then there exists an index N ∈ N

such that for all n > N we have the estimate
∣

∣

∣

{

x ∈ R
d : |fn(x) − f0(x)| > ε/|K|

}
∣

∣

∣
6

ε

α
.

To simplify notation, let K ′ := K \ (An ∪ A0). Then
∫

K′

|fn − f0| dx

=

∫

K′∩{x : |fn−f0|>ε/|K|}
|fn − f0| dx +

∫

K′\{x : |fn−f0|<ε/|K|}
|fn − f0| dx

6 2α
ε

α
+

ε

|K|
|K| = 3ε.

Combining all estimates, we obtain
∫

Rd

|fn − f0| dx 6 9ε for all n > N .

Since ε > 0 was arbitrary, we have proved that fn → f0 in L1(Rd).
The necessity of condition (i) follows from

fn(x) :=

{

sin(nx), if x ∈ [0, 1],

0, otherwise,

which is compactly supported and bounded, hence satisfies (ii) and (iii), but does not con-
verge strongly in L1(R).

The necessity of condition (ii) follows from

fn(x) :=

{

n, if x ∈ [0, 1/n],

0, otherwise,

which is compactly supported and converges in measure to the zero function, hence satisfies
(i) and (iii), but does not converge strongly in L1(R).

The necessity of condition (iii) follows from

fn(x) :=

{

1/n, if x ∈ [0, n],

0, otherwise,

which is bounded and converges in measure to the zero function, hence satisfies (i) and (ii),
but does not converge strongly in L1(R). �
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2. Let | · |e denote exterior Lebesgue measure on R. Suppose that E is a subset of R with
|E|e < ∞. Show that E is Lebesgue measurable if and only if for every ε > 0 we can write
E = (S∪N1)\N2, where S is a finite union of nonoverlapping intervals and |N1|e, |N2|e < ε.

Solution
⇒. Suppose that E is Lebesgue measurable, and fix ε > 0. Then there exists an open

G ⊇ E such that |G \ E|e < ε. Since G is open, there exist nonoverlapping open intervals
Ik such that G = ∪∞

k=1Ik. Since
∑∞

k=1 |Ik| = |G| < ∞, we can choose M large enough that
∑∞

k=M+1 |Ik| < ε. Let

S =
M
⋃

k=1

Ik, N1 = E \ S, N2 = S \ E.

Note that S is a finite union of nonoverlapping intervals. Since N1 = E \S ⊆ G \S, we have

|N1|e ≤ |G \ S| ≤
∣

∣

∣

∞
⋃

k=M+1

Ik

∣

∣

∣
≤

∞
∑

k=M+1

|Ik| < ε.

Finally, N2 = S \ E ⊆ G \ E, so

|N2|e ≤ |G \ E|e < ε.

⇐. Assume that for any ε > 0 we can write E = (S ∪ N1) \ N2, where S is a finite union
of nonoverlapping intervals and |N1|e, |N2|e < ε. Since S is measurable, there exists an open
set U ⊇ S such that |U \ S| < ε. Although we don’t know that N1 is measurable, we can
find an open set V ⊇ N1 such that |V | ≤ |N1|e + ε. Consequently,

|V | ≤ |N1|e + ε < 2ε.

Let G = U∪V . Then G is open, and since U ⊇ S and V ⊇ N1, we have that G ⊇ S∪N1 ⊇ E.
After some tedious set-theoretic calculations, we see that

G \ E ⊆ (U \ S) ∪ V ∪ N2.

Therefore
|G \ E|e ≤ |U \ S| + |V | + |N2|e ≤ ε + 2ε + ε = 4ε.

Therefore E is measurable. �
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3. Prove directly the following special case of the Banach–Alaoglu theorem: if X is a
separable, normed space and X ∗ is its dual space, then the set

B∗ :=
{

f ∈ X ∗ : ‖f‖∗ 6 1
}

(with ‖ · ‖∗ the induced norm on X ∗) is sequentially weak*-compact.

Hint. Let {xi} be a countable dense subset of X . Consider any sequence of functionals
{fn} ⊆ B∗. Find a subsequence nk → ∞ and a linear functional f defined on the linear span
of the xi such that limk→∞ fnk

(xi) = f(xi) for all i.

Solution
The sequence {fn(x1)} is bounded in R since ‖fn‖∗ 6 1 and

|fn(x1)| 6 ‖x1‖ ‖fn‖∗ for all n ∈ N.

Therefore there exists a subsequence nk → ∞ and a number c1 with |c1| 6 ‖x1‖ such that

lim
k→∞

fnk
(x1) = c1.

We apply the same argument to the sequence {fnk
} and x2 and find a subsequence of {nk}

(still labeled {nk} for simplicity) and a number c2 with |c2| 6 ‖x2‖ such that

lim
k→∞

fnk
(x2) = c2.

Repeating the same argument for all n ∈ N we obtain a subsequence of {n} (still labeled
{nk} for simplicity) and a sequence {ci} of numbers with |ci| 6 ‖xi‖ such that

lim
k→∞

fnk
(xi) = ci for all i.

We can now define a linear functional on the span M := span(x1, x2, . . .) by putting

f(α1x1 + α2x2 + . . .) := α1c1 + α2c2 + . . .

for all numbers α1, α2, . . .. This implies that

f(m) = lim
k→∞

fnk
(m) for all m ∈ M . (5)

Since ‖fnk
‖∗ 6 1 we can estimate

|f(m)| = lim
k→∞

|fnk
(m)| 6 ‖m‖ for all m ∈ M ,

so f can be extended from M to all of X by continuity. That is, for any given point x ∈ X,
let ij → ∞ be a subsequence such that xij → x and define

f(x) := lim
j→∞

f(xij ).

The existence of such a subsequence follows from the denseness of {xi} in X. Then

|f(x)| = lim
j→∞

|f(xij )| 6 lim
j→∞

‖xij‖ = ‖x‖,

which implies that ‖f‖∗ 6 1. For given ε > 0 choose xi with ‖x − xi‖ 6 ε. Then

|f(x) − fnk
(x)| 6 |f(xi) − fnk

(xi)| + |f(x − xi) − fnk
(x − xi)|

6 |f(xi) − fnk
(xi)| + 2‖x − xi‖,
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by linearity. As k → ∞, the first term on the right-hand side converges to zero because of
(5). Since ε > 0 was arbitrary, we therefore obtain that

f(x) = lim
k→∞

fnk
(x) for all x ∈ X. �
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4. Suppose that fn ∈ C1[0, 1] for n ∈ N, and we have:

(a) fn(0) = 0,

(b) |f ′
n(x)| ≤ 1√

x
a.e., and

(c) There exists a measurable function h such that f ′
n(x) → h(x) for every x ∈ [0, 1].

Prove there exists an absolutely continuous function f such that fn converges to f uni-
formly as n → ∞.

Solution
Each function fn is absolutely continuous, so we have

∫ x

0

f ′
n = fn(x) − fn(0) = fn(x), x ∈ [0, 1].

Since the function x−1/2 is integrable on [0, 1], we have that h ∈ L1[0, 1]. Therefore, the
function

f(x) =

∫ x

0

h, x ∈ [0, 1],

is well-defined and is absolutely continuous on [0, 1]. Further, h − f ′
n → 0 and |h − f ′

n| ≤
2x−1/2 ∈ L1[0, 1], so by the Dominated Convergence Theorem,

lim
n→∞

∫ 1

0

|h − f ′
n| = 0.

Hence,

sup
x

|f(x) − fn(x)| = sup
x

∣

∣

∣

∣

∫ x

0

(h − f ′
n)

∣

∣

∣

∣

≤ sup
x

∫ x

0

|h − f ′
n|

≤

∫ 1

0

|h − f ′
n|

→ 0 as n → ∞,

so fn → f uniformly. �
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5. Let X be a reflexive normed space and let X ∗ be its dual.

(a) Prove that for any sequence xn −⇀ x weakly, we have

‖x‖ 6 lim inf
n→∞

‖xn‖.

(b) Let K ⊆ X be a closed, nonempty, and convex set. Prove that for all x0 ∈ X there
exists x ∈ K such that

‖x − x0‖ = inf
{

‖y − x0‖ : y ∈ K
}

. (6)

Solution
(a) Weakly convergent sequences are strongly bounded (uniform boundedness principle),

therefore {‖xn‖} is bounded. Let f ∈ X ∗ with ‖f‖∗ = 1 (dual norm). Then

|f(xn)| 6 ‖f‖∗ ‖xn‖ 6 ‖xn‖ for all n ∈ N.

This implies that
|f(x)| = lim

n→∞
|f(xn)| 6 lim inf

n→∞
‖xn‖. (7)

As a consequence of the Hahn-Banach theorem, we have the following characterization

‖x‖ = sup
{

|f(x)| : f ∈ X ∗, ‖f‖∗ = 1
}

.

Since the right-hand side of (7) does not depend on f , we can take the supremum on both
sides of (7) over all f ∈ X ∗ with ‖f‖∗ = 1. This proves the claim.

(b) Note first that the right-hand side of (6) is finite for all x0 ∈ X since the norm ‖ · ‖
is nonnegative (thus bounded below) and the set K is nonempty. If x0 ∈ K, then we can
choose x := x0 and obtain identity (6) with both sides equal to zero. If x0 6∈ K, let L denote
the right-hand side of (6). Then we consider a sequence yn ∈ K with

lim
n→∞

‖yn − x0‖ = L. (8)

There exists an index N ∈ N such that ‖yn − x0‖ 6 L + 1 for all n > N , so that

‖yn‖ 6 ‖x0‖ + ‖yn − x0‖ 6 C for all n ∈ N,

with C some constant. Since X is reflexive, the weak and the weak* topologies coincide,
so we can apply the Banach-Alaoglu theorem: there exists a subsequence nk → ∞ and
an element x ∈ X such that yn −⇀ x weakly in X . Since K is convex, closedness and
weakly-closedness are equivalent, so x ∈ K. Moreover, because of part (a) we obtain

‖x − x0‖ 6 lim inf
k→∞

‖ynk
− x0‖

(8)
= L.

Since x ∈ K, we also have the reverse inequality ‖x − x0‖ > L. �
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6. Let ν be a signed Borel measure on I = [0, 1] such that |ν|(I) = 1 and ν(I) = 0.
Suppose there exists a continuous function f : I → R such that ‖f‖∞ ≤ 1 and

∫ 1

0

f dν = 1.

Show that Lebesgue measure on I is not absolutely continuous with respect to |ν|.

Solution
Let ν = ν+ − ν− be the Jordan decomposition of ν, and let I = P ∪N be a corresponding

Hahn decomposition of I. Then we have

ν+(P ) + ν−(N) = |ν|(I) = 1 and ν+(P ) − ν−(N) = ν(I) = 0,

so

ν+(P ) = ν−(N) =
1

2
.

Also,

1 =

∫ 1

0

f dν =

∫

P

f dν+ −

∫

N

f dν−.

Since −1 ≤ f ≤ 1 everywhere,
∫

P

f dν+ ≤

∫

P

dν+ = ν+(P ) =
1

2
,

and similarly

−

∫

N

f dν− ≤

∫

N

dν− = ν−(N) =
1

2
.

In other for the sum of these two integrals to be 1, we must therefore have
∫

P

f dν+ = −

∫

N

f dν− =
1

2
.

Hence
∫

P

(1 − f) dν+ = 0,

so since 1− f ≥ 0 and ν+ ≥ 0, we must have f = 1 ν-a.e. on P . Similarly, f = −1 ν-a.e. on
N , and in particular we have |f | = 1 ν-a.e.

Thus f takes both the values 1 and −1. But f is continuous, so there is an open interval
U ⊆ I with −1 < f(x) < 1 for x ∈ U . However, we must have |ν|(U) = 0, so since U has
positive Lebesgue measure we conclude that Lebesgue measure is not absolutely continuous
with respect to ν. �
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7. Let (X,M, µ) be a measure space (not necessarily σ-finite).

(a) Suppose that fn, f are measurable functions from X to [0,∞]. Prove that if

f(x) =
∞

∑

n=1

fn(x) for all x ∈ X,

then
∫

X

f dµ =

∞
∑

n=1

∫

X

fn dµ.

(b) Suppose {fn} is a sequence of measurable functions from X to R (not necessarily
nonnegative), defined a.e., such that

∞
∑

n=1

∫

X

|fn| dµ < ∞.

Prove that the series

f(x) =

∞
∑

n=1

fn(x) (9)

converges for almost all x ∈ X, that f ∈ L1(µ), and that
∫

X

f dµ =
∞

∑

n=1

∫

X

fn dµ. (10)

Solution
(a) Consider first the case of two functions f1 and f2. By measurability, there exist

sequences {s1,k} and {s2,k} of nonnegative simple functions such that

s1,k(x) → f1(x) and s2,k(x) → f2(x) for all x ∈ X

monotonically from below. Defining tk := s1,k + s2,k for all k, we have that

tk(x) → f1(x) + f2(x) for all x ∈ X

monotonically from below. The Monotone Convergence Theorem then shows that
∫

X

(f1 + f2) dµ = lim
k→∞

∫

X

tk dµ

= lim
k→∞

{
∫

X

s1,k dµ +

∫

X

s2,k dµ

}

=

{

lim
k→∞

∫

X

s1,k dµ

}

+

{

lim
k→∞

∫

X

s2,k dµ

}

=

∫

X

f1 dµ +

∫

X

f2 dµ. (11)
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Next, put gN := f1 + . . . + fN for all N ∈ N. The sequence {gN} converges monotonically
from below to f , because the fn are nonnegative. Applying induction to (11), we get

∫

X

gN dµ =

N
∑

n=1

∫

X

fn dµ. (12)

Applying the monotone convergence theorem once again, we obtain from (12)
∫

X

f dµ = lim
N→∞

∫

X

gN dµ = lim
N→∞

N
∑

n=1

∫

X

fn dµ =

∞
∑

n=1

∫

X

fn dµ.

(b) Let Sn be the set on which fn is defined. Then µ(X \ Sn) = 0 for all n. Let

ϕ(x) :=
∞

∑

n=1

|fn(x)| for all x ∈ S,

where S :=
⋂∞

n=1 Sn with µ(X \ S) = 0. Applying part (a), we obtain
∫

X

ϕ dµ =

∞
∑

n=1

∫

X

|fn| dµ,

which is finite by assumption. Therefore the set

E :=
{

x ∈ S : ϕ(x) < ∞
}

satisfies µ(X \ E) = 0, and the series (9) converges absolutely for all x ∈ E. If we define
f(x) by (9) for all x ∈ E, then |f(x)| 6 ϕ(x) on E, which implies f ∈ L1(µ). Moreover,
letting gN := f1 + . . . + fN for all N ∈ N, then |gN | 6 ϕ and gN(x) → f(x) for all x ∈ E.
By the Dominated Convergence Theorem, we obtain

∫

E

f dµ = lim
N→∞

∫

E

gN dµ = lim
N→∞

N
∑

n=1

∫

E

fn dµ =

∞
∑

n=1

∫

E

fn dµ.

Since µ(X \ E) = 0, this is equivalent to (10). �
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8. Fix 1 < p < ∞, and let p′ satisfy 1
p

+ 1
p′

= 1. Let f ∈ Lp(R) and g ∈ Lp′(R) be given.

Show that the function

(f ∗ g)(x) =

∫ ∞

−∞
f(t) g(x − t) dt

exists and belongs to C0(R), i.e., f ∗ g is continuous, and satisfies

lim
x→±∞

(f ∗ g)(x) = 0.

Solution
Given any fixed x, we have by Hölder’s inequality that the function f(·) g(x − ·) is inte-

grable. Hence f ∗ g is well-defined at every point, and is bounded since

|(f ∗ g)(x)| ≤

∫

|f(t) g(x − t)| dt ≤

(
∫

|f(t)|p dt

)1/p (
∫

|g(x − t)|p
′

dt

)1/p′

= ‖f‖p ‖g‖p′.

Thus, we actually have
‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖p′.

Again fix x ∈ R. Then given any h ∈ R, if we set Thg(x) = g(x − h) then we can write

|(f ∗ g)(x + h) − (f ∗ g)(x)| ≤

∫

|f(t)| |g(x + h − t) − g(x − t)| dt

≤

(
∫

|f(t)|p dt

)1/p (
∫

|g(x + h − t) − g(x − t)|p
′

dt

)1/p′

= ‖f‖p

(
∫

|g(t − h) − g(t)|p
′

dt

)1/p′

= ‖f‖p ‖Thg − g‖p′

→ 0 as h → 0,

the convergence following from the fact that translation is a strongly continuous family of
operators on Lp′(R) (this statement can be proved by using an approximation argument
similar to the one we use next).

Finally, since Cc(R) is dense in Lp(R) and in Lp′(R), we can find continuous, compactly
supported functions fn, gn such that ‖f − fn‖p → 0 and ‖g − gn‖p → 0. As above, fn ∗ gn is
continuous, and furthermore it is compactly supported, since

supp(fn ∗ gn) ⊆ supp(fn) + supp(gn).

Thus fn ∗ gn ∈ Cc(R) ⊆ C0(R) for each n. Further, sup ‖fn‖p < ∞, so

‖f ∗ g − fn ∗ gn‖∞ ≤ ‖f ∗ g − fn ∗ g‖∞ + ‖fn ∗ g − fn ∗ gn‖∞

≤ ‖f − fn‖p ‖g‖p′ + ‖fn‖p ‖g − gn‖p′

→ 0 as n → ∞.

Thus fn ∗ gn → f ∗ g uniformly. But C0(R) is a Banach space with respect to the uniform
norm, so this implies that f ∗ g ∈ C0(R). �


