Analysis Comprehensive Exam Questions

Spring 2008

1. Consider a sequence of functions $f_{n} \in L^{1}\left(\mathbb{R}^{d}\right)$ for $n=0,1, \ldots$, with

$$
C:=\sup _{n \geqslant 0} \int_{\mathbb{R}^{d}}\left|f_{n}\right| d x<\infty .
$$

Suppose that the following assumptions are satisfied:
(i) $f_{n} \rightarrow f_{0}$ in measure as $n \rightarrow \infty$;
(ii) for all $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\begin{equation*}
|A| \leqslant \delta \quad \Longrightarrow \quad \sup _{n \geqslant 0} \int_{A}\left|f_{n}\right| d x \leqslant \varepsilon ; \tag{1}
\end{equation*}
$$

(iii) for all $\varepsilon>0$ there exists a set $K \subseteq \mathbb{R}^{d}$ with $|K|<\infty$ such that

$$
\begin{equation*}
\sup _{n \geqslant 0} \int_{\mathbb{R}^{d} \backslash K}\left|f_{n}\right| d x \leqslant \varepsilon . \tag{2}
\end{equation*}
$$

Prove that $f_{n} \rightarrow f_{0}$ strongly (i.e., in norm) in $L^{1}\left(\mathbb{R}^{d}\right)$. Also show that all three conditions are necessary, by constructing three counterexamples, each of which satisfies two of the hypotheses (i), (ii), (iii) but not the third, and for which f_{n} does not converge strongly to f_{0}.
Solution
Let $\varepsilon>0$ be given. By assumption, we can find $\delta>0$ and $K \subseteq \mathbb{R}^{d}$ such that (1) and (2) are satisfied. Choose $\alpha>0$ large enough such that $C / \alpha \leqslant \delta$ and define

$$
A_{n}:=\left\{x \in \mathbb{R}^{d}:\left|f_{n}(x)\right|>\alpha\right\} \quad \text { for all } n \geqslant 0
$$

By Chebyshev's inequality, we obtain

$$
\left|A_{n}\right| \leqslant \frac{1}{\alpha} \int_{\mathbb{R}^{d}}\left|f_{n}\right| d x \leqslant \delta \quad \text { for all } n \geqslant 0
$$

which implies by hypothesis (ii) that

$$
\begin{equation*}
\int_{A_{m}}\left|f_{n}\right| d x \leqslant \varepsilon \quad \text { for all } m, n \geqslant 0 \tag{3}
\end{equation*}
$$

We can now decompose

$$
\begin{align*}
& \int_{\mathbb{R}^{d}}\left|f_{n}-f_{0}\right| d x \\
& =\int_{\mathbb{R}^{d} \backslash K}\left|f_{n}-f_{0}\right| d x+\int_{A_{n} \cup A_{0}}\left|f_{n}-f_{0}\right| d x+\int_{K \backslash\left(A_{n} \cup A_{0}\right)}\left|f_{n}-f_{0}\right| d x . \tag{4}
\end{align*}
$$

The first term in (4) can be estimated as

$$
\int_{\mathbb{R}^{d} \backslash K}\left|f_{n}-f_{0}\right| d x \leqslant \int_{\mathbb{R}^{d} \backslash K}\left\{\left|f_{n}\right|+\left|f_{0}\right|\right\} d x \leqslant 2 \varepsilon
$$

by choice of K. For the second term we use (3) and obtain

$$
\int_{A_{n} \cup A_{0}}\left|f_{n}-f_{0}\right| d x \leqslant \int_{A_{n} \cup A_{0}}\left\{\left|f_{n}\right|+\left|f_{0}\right|\right\} d x \leqslant 4 \varepsilon .
$$

Now notice that on $\mathbb{R}^{d} \backslash\left(A_{n} \cup A_{0}\right)$ we have $\left|f_{n}\right| \leqslant \alpha$ and $\left|f_{0}\right| \leqslant \alpha$. Remember the definition of convergence in measure: for every $\gamma>0$ we have

$$
\lim _{n \rightarrow \infty}\left|\left\{x \in \mathbb{R}^{d}:\left|f_{n}(x)-f_{0}(x)\right| \geqslant \gamma\right\}\right|=0
$$

Let $\gamma:=\varepsilon /|K|$, which is positive because $|K|$ is finite. Then there exists an index $N \in \mathbb{N}$ such that for all $n \geqslant N$ we have the estimate

$$
\left|\left\{x \in \mathbb{R}^{d}:\left|f_{n}(x)-f_{0}(x)\right| \geqslant \varepsilon /|K|\right\}\right| \leqslant \frac{\varepsilon}{\alpha}
$$

To simplify notation, let $K^{\prime}:=K \backslash\left(A_{n} \cup A_{0}\right)$. Then

$$
\begin{aligned}
& \int_{K^{\prime}}\left|f_{n}-f_{0}\right| d x \\
& \quad=\int_{K^{\prime} \cap\left\{x:\left|f_{n}-f_{0}\right| \geqslant \varepsilon /|K|\right\}}\left|f_{n}-f_{0}\right| d x+\int_{K^{\prime} \backslash\left\{x:\left|f_{n}-f_{0}\right|<\varepsilon /|K|\right\}}\left|f_{n}-f_{0}\right| d x \\
& \quad \leqslant 2 \alpha \frac{\varepsilon}{\alpha}+\frac{\varepsilon}{|K|}|K|=3 \varepsilon .
\end{aligned}
$$

Combining all estimates, we obtain

$$
\int_{\mathbb{R}^{d}}\left|f_{n}-f_{0}\right| d x \leqslant 9 \varepsilon \quad \text { for all } n \geqslant N
$$

Since $\varepsilon>0$ was arbitrary, we have proved that $f_{n} \rightarrow f_{0}$ in $L^{1}\left(\mathbb{R}^{d}\right)$.
The necessity of condition (i) follows from

$$
f_{n}(x):= \begin{cases}\sin (n x), & \text { if } x \in[0,1] \\ 0, & \text { otherwise }\end{cases}
$$

which is compactly supported and bounded, hence satisfies (ii) and (iii), but does not converge strongly in $L^{1}(\mathbb{R})$.

The necessity of condition (ii) follows from

$$
f_{n}(x):= \begin{cases}n, & \text { if } x \in[0,1 / n] \\ 0, & \text { otherwise }\end{cases}
$$

which is compactly supported and converges in measure to the zero function, hence satisfies (i) and (iii), but does not converge strongly in $L^{1}(\mathbb{R})$.

The necessity of condition (iii) follows from

$$
f_{n}(x):= \begin{cases}1 / n, & \text { if } x \in[0, n] \\ 0, & \text { otherwise }\end{cases}
$$

which is bounded and converges in measure to the zero function, hence satisfies (i) and (ii), but does not converge strongly in $L^{1}(\mathbb{R})$.
2. Let $|\cdot|_{e}$ denote exterior Lebesgue measure on \mathbb{R}. Suppose that E is a subset of \mathbb{R} with $|E|_{e}<\infty$. Show that E is Lebesgue measurable if and only if for every $\varepsilon>0$ we can write $E=\left(S \cup N_{1}\right) \backslash N_{2}$, where S is a finite union of nonoverlapping intervals and $\left|N_{1}\right|_{e},\left|N_{2}\right|_{e}<\varepsilon$.
Solution
\Rightarrow. Suppose that E is Lebesgue measurable, and fix $\varepsilon>0$. Then there exists an open $G \supseteq E$ such that $|G \backslash E|_{e}<\varepsilon$. Since G is open, there exist nonoverlapping open intervals I_{k} such that $G=\cup_{k=1}^{\infty} I_{k}$. Since $\sum_{k=1}^{\infty}\left|I_{k}\right|=|G|<\infty$, we can choose M large enough that $\sum_{k=M+1}^{\infty}\left|I_{k}\right|<\varepsilon$. Let

$$
S=\bigcup_{k=1}^{M} I_{k}, \quad N_{1}=E \backslash S, \quad N_{2}=S \backslash E
$$

Note that S is a finite union of nonoverlapping intervals. Since $N_{1}=E \backslash S \subseteq G \backslash S$, we have

$$
\left|N_{1}\right|_{e} \leq|G \backslash S| \leq\left|\bigcup_{k=M+1}^{\infty} I_{k}\right| \leq \sum_{k=M+1}^{\infty}\left|I_{k}\right|<\varepsilon
$$

Finally, $N_{2}=S \backslash E \subseteq G \backslash E$, so

$$
\left|N_{2}\right|_{e} \leq|G \backslash E|_{e}<\varepsilon
$$

\Leftarrow. Assume that for any $\varepsilon>0$ we can write $E=\left(S \cup N_{1}\right) \backslash N_{2}$, where S is a finite union of nonoverlapping intervals and $\left|N_{1}\right|_{e},\left|N_{2}\right|_{e}<\varepsilon$. Since S is measurable, there exists an open set $U \supseteq S$ such that $|U \backslash S|<\varepsilon$. Although we don't know that N_{1} is measurable, we can find an open set $V \supseteq N_{1}$ such that $|V| \leq\left|N_{1}\right|_{e}+\varepsilon$. Consequently,

$$
|V| \leq\left|N_{1}\right|_{e}+\varepsilon<2 \varepsilon
$$

Let $G=U \cup V$. Then G is open, and since $U \supseteq S$ and $V \supseteq N_{1}$, we have that $G \supseteq S \cup N_{1} \supseteq E$. After some tedious set-theoretic calculations, we see that

$$
G \backslash E \subseteq(U \backslash S) \cup V \cup N_{2}
$$

Therefore

$$
|G \backslash E|_{e} \leq|U \backslash S|+|V|+\left|N_{2}\right|_{e} \leq \varepsilon+2 \varepsilon+\varepsilon=4 \varepsilon
$$

Therefore E is measurable.
3. Prove directly the following special case of the Banach-Alaoglu theorem: if \mathcal{X} is a separable, normed space and \mathcal{X}^{*} is its dual space, then the set

$$
B^{*}:=\left\{f \in \mathcal{X}^{*}:\|f\|_{*} \leqslant 1\right\}
$$

(with $\|\cdot\|_{*}$ the induced norm on \mathcal{X}^{*}) is sequentially weak*-compact.
Hint. Let $\left\{x_{i}\right\}$ be a countable dense subset of \mathcal{X}. Consider any sequence of functionals $\left\{f_{n}\right\} \subseteq B^{*}$. Find a subsequence $n_{k} \rightarrow \infty$ and a linear functional f defined on the linear span of the x_{i} such that $\lim _{k \rightarrow \infty} f_{n_{k}}\left(x_{i}\right)=f\left(x_{i}\right)$ for all i.

Solution

The sequence $\left\{f_{n}\left(x_{1}\right)\right\}$ is bounded in \mathbb{R} since $\left\|f_{n}\right\|_{*} \leqslant 1$ and

$$
\left|f_{n}\left(x_{1}\right)\right| \leqslant\left\|x_{1}\right\|\left\|f_{n}\right\|_{*} \quad \text { for all } n \in \mathbb{N} .
$$

Therefore there exists a subsequence $n_{k} \rightarrow \infty$ and a number c_{1} with $\left|c_{1}\right| \leqslant\left\|x_{1}\right\|$ such that

$$
\lim _{k \rightarrow \infty} f_{n_{k}}\left(x_{1}\right)=c_{1} .
$$

We apply the same argument to the sequence $\left\{f_{n_{k}}\right\}$ and x_{2} and find a subsequence of $\left\{n_{k}\right\}$ (still labeled $\left\{n_{k}\right\}$ for simplicity) and a number c_{2} with $\left|c_{2}\right| \leqslant\left\|x_{2}\right\|$ such that

$$
\lim _{k \rightarrow \infty} f_{n_{k}}\left(x_{2}\right)=c_{2} .
$$

Repeating the same argument for all $n \in \mathbb{N}$ we obtain a subsequence of $\{n\}$ (still labeled $\left\{n_{k}\right\}$ for simplicity) and a sequence $\left\{c_{i}\right\}$ of numbers with $\left|c_{i}\right| \leqslant\left\|x_{i}\right\|$ such that

$$
\lim _{k \rightarrow \infty} f_{n_{k}}\left(x_{i}\right)=c_{i} \quad \text { for all } i .
$$

We can now define a linear functional on the span $M:=\operatorname{span}\left(x_{1}, x_{2}, \ldots\right)$ by putting

$$
f\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots\right):=\alpha_{1} c_{1}+\alpha_{2} c_{2}+\ldots
$$

for all numbers $\alpha_{1}, \alpha_{2}, \ldots$. This implies that

$$
\begin{equation*}
f(m)=\lim _{k \rightarrow \infty} f_{n_{k}}(m) \quad \text { for all } m \in M . \tag{5}
\end{equation*}
$$

Since $\left\|f_{n_{k}}\right\|_{*} \leqslant 1$ we can estimate

$$
|f(m)|=\lim _{k \rightarrow \infty}\left|f_{n_{k}}(m)\right| \leqslant\|m\| \quad \text { for all } m \in M
$$

so f can be extended from M to all of X by continuity. That is, for any given point $x \in X$, let $i_{j} \rightarrow \infty$ be a subsequence such that $x_{i_{j}} \rightarrow x$ and define

$$
f(x):=\lim _{j \rightarrow \infty} f\left(x_{i_{j}}\right) .
$$

The existence of such a subsequence follows from the denseness of $\left\{x_{i}\right\}$ in X. Then

$$
|f(x)|=\lim _{j \rightarrow \infty}\left|f\left(x_{i_{j}}\right)\right| \leqslant \lim _{j \rightarrow \infty}\left\|x_{i_{j}}\right\|=\|x\|
$$

which implies that $\|f\|_{*} \leqslant 1$. For given $\varepsilon>0$ choose x_{i} with $\left\|x-x_{i}\right\| \leqslant \varepsilon$. Then

$$
\begin{aligned}
\left|f(x)-f_{n_{k}}(x)\right| & \leqslant\left|f\left(x_{i}\right)-f_{n_{k}}\left(x_{i}\right)\right|+\left|f\left(x-x_{i}\right)-f_{n_{k}}\left(x-x_{i}\right)\right| \\
& \leqslant\left|f\left(x_{i}\right)-f_{n_{k}}\left(x_{i}\right)\right|+2\left\|x-x_{i}\right\|,
\end{aligned}
$$

by linearity. As $k \rightarrow \infty$, the first term on the right-hand side converges to zero because of (5). Since $\varepsilon>0$ was arbitrary, we therefore obtain that

$$
f(x)=\lim _{k \rightarrow \infty} f_{n_{k}}(x) \quad \text { for all } x \in X
$$

4. Suppose that $f_{n} \in C^{1}[0,1]$ for $n \in \mathbb{N}$, and we have:
(a) $f_{n}(0)=0$,
(b) $\left|f_{n}^{\prime}(x)\right| \leq \frac{1}{\sqrt{x}}$ a.e., and
(c) There exists a measurable function h such that $f_{n}^{\prime}(x) \rightarrow h(x)$ for every $x \in[0,1]$.

Prove there exists an absolutely continuous function f such that f_{n} converges to f uniformly as $n \rightarrow \infty$.
Solution
Each function f_{n} is absolutely continuous, so we have

$$
\int_{0}^{x} f_{n}^{\prime}=f_{n}(x)-f_{n}(0)=f_{n}(x), \quad x \in[0,1] .
$$

Since the function $x^{-1 / 2}$ is integrable on $[0,1]$, we have that $h \in L^{1}[0,1]$. Therefore, the function

$$
f(x)=\int_{0}^{x} h, \quad x \in[0,1]
$$

is well-defined and is absolutely continuous on $[0,1]$. Further, $h-f_{n}^{\prime} \rightarrow 0$ and $\left|h-f_{n}^{\prime}\right| \leq$ $2 x^{-1 / 2} \in L^{1}[0,1]$, so by the Dominated Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|h-f_{n}^{\prime}\right|=0
$$

Hence,

$$
\begin{aligned}
\sup _{x}\left|f(x)-f_{n}(x)\right| & =\sup _{x}\left|\int_{0}^{x}\left(h-f_{n}^{\prime}\right)\right| \\
& \leq \sup _{x} \int_{0}^{x}\left|h-f_{n}^{\prime}\right| \\
& \leq \int_{0}^{1}\left|h-f_{n}^{\prime}\right| \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

so $f_{n} \rightarrow f$ uniformly.
5. Let \mathcal{X} be a reflexive normed space and let \mathcal{X}^{*} be its dual.
(a) Prove that for any sequence $x_{n} \longrightarrow x$ weakly, we have

$$
\|x\| \leqslant \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|
$$

(b) Let $K \subseteq \mathcal{X}$ be a closed, nonempty, and convex set. Prove that for all $x_{0} \in \mathcal{X}$ there exists $x \in K$ such that

$$
\begin{equation*}
\left\|x-x_{0}\right\|=\inf \left\{\left\|y-x_{0}\right\|: y \in K\right\} \tag{6}
\end{equation*}
$$

Solution
(a) Weakly convergent sequences are strongly bounded (uniform boundedness principle), therefore $\left\{\left\|x_{n}\right\|\right\}$ is bounded. Let $f \in \mathcal{X}^{*}$ with $\|f\|_{*}=1$ (dual norm). Then

$$
\left|f\left(x_{n}\right)\right| \leqslant\|f\|_{*}\left\|x_{n}\right\| \leqslant\left\|x_{n}\right\| \quad \text { for all } n \in \mathbb{N} .
$$

This implies that

$$
\begin{equation*}
|f(x)|=\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)\right| \leqslant \liminf _{n \rightarrow \infty}\left\|x_{n}\right\| \tag{7}
\end{equation*}
$$

As a consequence of the Hahn-Banach theorem, we have the following characterization

$$
\|x\|=\sup \left\{|f(x)|: f \in \mathcal{X}^{*},\|f\|_{*}=1\right\} .
$$

Since the right-hand side of (7) does not depend on f, we can take the supremum on both sides of (7) over all $f \in \mathcal{X}^{*}$ with $\|f\|_{*}=1$. This proves the claim.
(b) Note first that the right-hand side of (6) is finite for all $x_{0} \in \mathcal{X}$ since the norm $\|\cdot\|$ is nonnegative (thus bounded below) and the set K is nonempty. If $x_{0} \in K$, then we can choose $x:=x_{0}$ and obtain identity (6) with both sides equal to zero. If $x_{0} \notin K$, let L denote the right-hand side of (6). Then we consider a sequence $y_{n} \in K$ with

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{0}\right\|=L \tag{8}
\end{equation*}
$$

There exists an index $N \in \mathbb{N}$ such that $\left\|y_{n}-x_{0}\right\| \leqslant L+1$ for all $n \geqslant N$, so that

$$
\left\|y_{n}\right\| \leqslant\left\|x_{0}\right\|+\left\|y_{n}-x_{0}\right\| \leqslant C \quad \text { for all } n \in \mathbb{N}
$$

with C some constant. Since \mathcal{X} is reflexive, the weak and the weak* topologies coincide, so we can apply the Banach-Alaoglu theorem: there exists a subsequence $n_{k} \rightarrow \infty$ and an element $x \in \mathcal{X}$ such that $y_{n} \longrightarrow x$ weakly in \mathcal{X}. Since K is convex, closedness and weakly-closedness are equivalent, so $x \in K$. Moreover, because of part (a) we obtain

$$
\left\|x-x_{0}\right\| \leqslant \liminf _{k \rightarrow \infty}\left\|y_{n_{k}}-x_{0}\right\| \stackrel{(8)}{=} L
$$

Since $x \in K$, we also have the reverse inequality $\left\|x-x_{0}\right\| \geqslant L$.
6. Let ν be a signed Borel measure on $I=[0,1]$ such that $|\nu|(I)=1$ and $\nu(I)=0$. Suppose there exists a continuous function $f: I \rightarrow \mathbb{R}$ such that $\|f\|_{\infty} \leq 1$ and

$$
\int_{0}^{1} f d \nu=1
$$

Show that Lebesgue measure on I is not absolutely continuous with respect to $|\nu|$.

Solution

Let $\nu=\nu^{+}-\nu^{-}$be the Jordan decomposition of ν, and let $I=P \cup N$ be a corresponding Hahn decomposition of I. Then we have

$$
\nu^{+}(P)+\nu^{-}(N)=|\nu|(I)=1 \quad \text { and } \quad \nu^{+}(P)-\nu^{-}(N)=\nu(I)=0
$$

so

$$
\nu^{+}(P)=\nu^{-}(N)=\frac{1}{2}
$$

Also,

$$
1=\int_{0}^{1} f d \nu=\int_{P} f d \nu^{+}-\int_{N} f d \nu^{-}
$$

Since $-1 \leq f \leq 1$ everywhere,

$$
\int_{P} f d \nu^{+} \leq \int_{P} d \nu^{+}=\nu^{+}(P)=\frac{1}{2}
$$

and similarly

$$
-\int_{N} f d \nu^{-} \leq \int_{N} d \nu^{-}=\nu^{-}(N)=\frac{1}{2} .
$$

In other for the sum of these two integrals to be 1 , we must therefore have

$$
\int_{P} f d \nu^{+}=-\int_{N} f d \nu^{-}=\frac{1}{2}
$$

Hence

$$
\int_{P}(1-f) d \nu^{+}=0
$$

so since $1-f \geq 0$ and $\nu^{+} \geq 0$, we must have $f=1 \nu$-a.e. on P. Similarly, $f=-1 \nu$-a.e. on N, and in particular we have $|f|=1 \nu$-a.e.

Thus f takes both the values 1 and -1 . But f is continuous, so there is an open interval $U \subseteq I$ with $-1<f(x)<1$ for $x \in U$. However, we must have $|\nu|(U)=0$, so since U has positive Lebesgue measure we conclude that Lebesgue measure is not absolutely continuous with respect to ν.
7. Let (X, \mathcal{M}, μ) be a measure space (not necessarily σ-finite).
(a) Suppose that f_{n}, f are measurable functions from X to $[0, \infty]$. Prove that if

$$
f(x)=\sum_{n=1}^{\infty} f_{n}(x) \quad \text { for all } x \in X
$$

then

$$
\int_{X} f d \mu=\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu
$$

(b) Suppose $\left\{f_{n}\right\}$ is a sequence of measurable functions from X to \mathbb{R} (not necessarily nonnegative), defined a.e., such that

$$
\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu<\infty
$$

Prove that the series

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} f_{n}(x) \tag{9}
\end{equation*}
$$

converges for almost all $x \in X$, that $f \in L^{1}(\mu)$, and that

$$
\begin{equation*}
\int_{X} f d \mu=\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu \tag{10}
\end{equation*}
$$

Solution
(a) Consider first the case of two functions f_{1} and f_{2}. By measurability, there exist sequences $\left\{s_{1, k}\right\}$ and $\left\{s_{2, k}\right\}$ of nonnegative simple functions such that

$$
s_{1, k}(x) \rightarrow f_{1}(x) \quad \text { and } \quad s_{2, k}(x) \rightarrow f_{2}(x) \quad \text { for all } x \in X
$$

monotonically from below. Defining $t_{k}:=s_{1, k}+s_{2, k}$ for all k, we have that

$$
t_{k}(x) \rightarrow f_{1}(x)+f_{2}(x) \quad \text { for all } x \in X
$$

monotonically from below. The Monotone Convergence Theorem then shows that

$$
\begin{align*}
\int_{X}\left(f_{1}+f_{2}\right) d \mu & =\lim _{k \rightarrow \infty} \int_{X} t_{k} d \mu \\
& =\lim _{k \rightarrow \infty}\left\{\int_{X} s_{1, k} d \mu+\int_{X} s_{2, k} d \mu\right\} \\
& =\left\{\lim _{k \rightarrow \infty} \int_{X} s_{1, k} d \mu\right\}+\left\{\lim _{k \rightarrow \infty} \int_{X} s_{2, k} d \mu\right\} \\
& =\int_{X} f_{1} d \mu+\int_{X} f_{2} d \mu \tag{11}
\end{align*}
$$

Next, put $g_{N}:=f_{1}+\ldots+f_{N}$ for all $N \in \mathbb{N}$. The sequence $\left\{g_{N}\right\}$ converges monotonically from below to f, because the f_{n} are nonnegative. Applying induction to (11), we get

$$
\begin{equation*}
\int_{X} g_{N} d \mu=\sum_{n=1}^{N} \int_{X} f_{n} d \mu \tag{12}
\end{equation*}
$$

Applying the monotone convergence theorem once again, we obtain from (12)

$$
\int_{X} f d \mu=\lim _{N \rightarrow \infty} \int_{X} g_{N} d \mu=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{X} f_{n} d \mu=\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu
$$

(b) Let S_{n} be the set on which f_{n} is defined. Then $\mu\left(X \backslash S_{n}\right)=0$ for all n. Let

$$
\varphi(x):=\sum_{n=1}^{\infty}\left|f_{n}(x)\right| \quad \text { for all } x \in S
$$

where $S:=\bigcap_{n=1}^{\infty} S_{n}$ with $\mu(X \backslash S)=0$. Applying part (a), we obtain

$$
\int_{X} \varphi d \mu=\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu
$$

which is finite by assumption. Therefore the set

$$
E:=\{x \in S: \varphi(x)<\infty\}
$$

satisfies $\mu(X \backslash E)=0$, and the series (9) converges absolutely for all $x \in E$. If we define $f(x)$ by (9) for all $x \in E$, then $|f(x)| \leqslant \varphi(x)$ on E, which implies $f \in L^{1}(\mu)$. Moreover, letting $g_{N}:=f_{1}+\ldots+f_{N}$ for all $N \in \mathbb{N}$, then $\left|g_{N}\right| \leqslant \varphi$ and $g_{N}(x) \rightarrow f(x)$ for all $x \in E$. By the Dominated Convergence Theorem, we obtain

$$
\int_{E} f d \mu=\lim _{N \rightarrow \infty} \int_{E} g_{N} d \mu=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{E} f_{n} d \mu=\sum_{n=1}^{\infty} \int_{E} f_{n} d \mu
$$

Since $\mu(X \backslash E)=0$, this is equivalent to (10).
8. Fix $1<p<\infty$, and let p^{\prime} satisfy $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Let $f \in L^{p}(\mathbb{R})$ and $g \in L^{p^{\prime}}(\mathbb{R})$ be given. Show that the function

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(t) g(x-t) d t
$$

exists and belongs to $C_{0}(\mathbb{R})$, i.e., $f * g$ is continuous, and satisfies

$$
\lim _{x \rightarrow \pm \infty}(f * g)(x)=0
$$

Solution

Given any fixed x, we have by Hölder's inequality that the function $f(\cdot) g(x-\cdot)$ is integrable. Hence $f * g$ is well-defined at every point, and is bounded since

$$
|(f * g)(x)| \leq \int|f(t) g(x-t)| d t \leq\left(\int|f(t)|^{p} d t\right)^{1 / p}\left(\int|g(x-t)|^{p^{\prime}} d t\right)^{1 / p^{\prime}}=\|f\|_{p}\|g\|_{p^{\prime}}
$$

Thus, we actually have

$$
\|f * g\|_{\infty} \leq\|f\|_{p}\|g\|_{p^{\prime}} .
$$

Again fix $x \in \mathbb{R}$. Then given any $h \in \mathbb{R}$, if we set $T_{h} g(x)=g(x-h)$ then we can write

$$
\begin{aligned}
|(f * g)(x+h)-(f * g)(x)| & \leq \int|f(t)||g(x+h-t)-g(x-t)| d t \\
& \leq\left(\int|f(t)|^{p} d t\right)^{1 / p}\left(\int|g(x+h-t)-g(x-t)|^{p^{\prime}} d t\right)^{1 / p^{\prime}} \\
& =\|f\|_{p}\left(\int|g(t-h)-g(t)|^{p^{\prime}} d t\right)^{1 / p^{\prime}} \\
& =\|f\|_{p}\left\|T_{h} g-g\right\|_{p^{\prime}} \\
& \rightarrow 0 \quad \text { as } h \rightarrow 0
\end{aligned}
$$

the convergence following from the fact that translation is a strongly continuous family of operators on $L^{p^{\prime}}(\mathbb{R})$ (this statement can be proved by using an approximation argument similar to the one we use next).

Finally, since $C_{c}(\mathbb{R})$ is dense in $L^{p}(\mathbb{R})$ and in $L^{p^{\prime}}(\mathbb{R})$, we can find continuous, compactly supported functions f_{n}, g_{n} such that $\left\|f-f_{n}\right\|_{p} \rightarrow 0$ and $\left\|g-g_{n}\right\|_{p} \rightarrow 0$. As above, $f_{n} * g_{n}$ is continuous, and furthermore it is compactly supported, since

$$
\operatorname{supp}\left(f_{n} * g_{n}\right) \subseteq \operatorname{supp}\left(f_{n}\right)+\operatorname{supp}\left(g_{n}\right)
$$

Thus $f_{n} * g_{n} \in C_{c}(\mathbb{R}) \subseteq C_{0}(\mathbb{R})$ for each n. Further, sup $\left\|f_{n}\right\|_{p}<\infty$, so

$$
\begin{aligned}
\left\|f * g-f_{n} * g_{n}\right\|_{\infty} & \leq\left\|f * g-f_{n} * g\right\|_{\infty}+\left\|f_{n} * g-f_{n} * g_{n}\right\|_{\infty} \\
& \leq\left\|f-f_{n}\right\|_{p}\|g\|_{p^{\prime}}+\left\|f_{n}\right\|_{p}\left\|g-g_{n}\right\|_{p^{\prime}} \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Thus $f_{n} * g_{n} \rightarrow f * g$ uniformly. But $C_{0}(\mathbb{R})$ is a Banach space with respect to the uniform norm, so this implies that $f * g \in C_{0}(\mathbb{R})$.

