Algebra questions

1. Let n be a positive integer. If $\operatorname{gcd}(n, \phi(n))>1$, prove that there exists a non-cyclic group of order n. (Here $\phi(n)$ denotes Euler's ϕ-function.)
Solution: By the formula for Euler's ϕ-function, either $p^{2} \mid n$ for some prime p, or $p q \mid n$ with p, q primes for which $p \mid q-1$. In the first case, take the direct product of $\mathbf{Z} / p \mathbf{Z} \times \mathbf{Z} / p \mathbf{Z}$ with any group of order n / p^{2}; this contains a non-cyclic subgroup so is non-cyclic. In the second case, by taking direct products as before, it suffices to prove that there is a non-abelian (and hence non-cyclic) group G of order $p q$. One can take for G the semidirect product of $\mathbf{Z} / p \mathbf{Z}$ and $\mathbf{Z} / q \mathbf{Z}$ with respect to any homomorphism $\mathbf{Z} / p \mathbf{Z} \rightarrow \operatorname{Aut}(\mathbf{Z} / q \mathbf{Z})^{*}$ which takes a generator of $\mathbf{Z} / p \mathbf{Z}$ to any element of order p in $\operatorname{Aut}(\mathbf{Z} / q \mathbf{Z})^{*} \cong \mathbf{Z} /(q-1) \mathbf{Z}$.
2. If $p<q$ are primes and $q \not \equiv \pm 1(\bmod p)$, prove that there are exactly two groups of order $p q^{2}$, up to isomorphism. (You may assume as known the fact that every group of order q^{2} is abelian.)

Solution: Let P be a Sylow p-subgroup and Q a Sylow q-subgroup of G. Since p is the smallest prime dividing $|G|$ and Q has index p, Q is normal in G. Let n_{p} be the number of p-Sylow subgroups of G. Then $n_{p} \equiv 1(\bmod p)$ and $n_{p}| | G \mid$. Since $q^{2} \equiv 1(\bmod p)$ iff $q \equiv \pm 1(\bmod p)$, it follows that $n_{p}=1$. Thus P is normal in G. By the recognition theorem for direct products, G is isomorphic to $P \times Q$, and therefore G is abelian. By the structure theorem for finite abelian groups, it follows that $G \cong \mathbf{Z} / p \mathbf{Z} \times \mathbf{Z} / q^{2} \mathbf{Z}$ or $G \cong \mathbf{Z} / p \mathbf{Z} \times \mathbf{Z} / q \mathbf{Z} \times \mathbf{Z} / q \mathbf{Z}$.
3. Let n be a positive integer, and let A be an $n \times n$ integer matrix. Define an equivalence relation on \mathbf{Z}^{n} by setting $x \sim y$ if and only if $x-y=A z$ for some $z \in \mathbf{Z}^{n}$. Find an explicit formula for the number of equivalence classes.

Solution: The answer is $|\operatorname{det}(A)|$ if $\operatorname{det}(A) \neq 0$, and ∞ if $\operatorname{det}(A)=$ 0 . To see this, note that the problem is just asking for the size of the quotient group $G=\mathbf{Z}^{n} / H$, where H is the subgroup of \mathbf{Z}^{n} spanned by the
columns of A. The group G is isomorphic to $\prod \mathbf{Z} / m_{i} \mathbf{Z}$, where m_{1}, \ldots, m_{n} are the diagonal entries in the Smith Normal Form of the matrix A. If some $m_{i}=0$ then G is infinite. Otherwise $|G|=\left|\prod m_{i}\right|$. The result now follows from the fact that the Smith Normal Form is obtained by elementary row and column operations which do not change $|\operatorname{det}(A)|$, and thus $|\operatorname{det}(A)|=\left|\prod m_{i}\right|$.
4. Prove that the ring $\mathbf{Z}[i]$ of Gaussian integers (where $i=\sqrt{-1}$) is a Euclidean domain.
Solution: This is a standard result which can be found in most textbooks.
5. Find a splitting field for $x^{15}+2$ over \mathbf{Q}, and determine its degree.

Proof: A splitting field is obtained by adjoining one complex root α of $x^{15}+2$ (which is irreducible since it's Eisenstein at 2) to \mathbf{Q}, and then adjoining a 15 th root of unity ζ. As $[\mathbf{Q}(\alpha): \mathbf{Q}]=15$ and $[\mathbf{Q}(\zeta): \mathbf{Q}]=$ $\phi(15)=8$ are relatively prime, it follows from the multiplicativity of the degree of field extensions in towers that $[\mathbf{Q}(\alpha, \zeta): \mathbf{Q}]=120$.
6. Let n be a positive integer, and let $G=\mathrm{GL}(n, \mathbf{C})$ be the group of invertible $n \times n$ matrices with complex coefficients. Prove that there is a proper subgroup H of G such that

$$
\bigcup_{g \in G} g^{-1} H g=G
$$

Proof: [We tacitly assumed $n \geq 2$.] Let H be the subgroup of upper triangular matrices. By a well-known result in linear algebra, every $n \times n$ matrix A is similar to an upper triangular matrix, i.e., there exists $C \in G$ such that $C A C^{-1} \in H$. But then $A \in C^{-1} H C$, and we're done.
7. Let n be a positive integer, and let v_{1}, \ldots, v_{n+2} be any $n+2$ vectors in \mathbf{R}^{n}. Prove that $v_{i} \cdot v_{j} \geq 0$ for some $i \neq j$. [Hint: Use orthogonal projection to induct on n.]
Solution: The case $n=1$ is obvious. Assume the result is true for $n-1$. Let w_{i} for $i=2, \ldots, n+2$ be the orthogonal projection of v_{i} onto the $(n-1)$-dimensional subspace $W=v_{1}^{\perp}$ of \mathbf{R}^{n} orthogonal to v_{1}. Thus $w_{i}=v_{i}-\frac{v_{i} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$. Assume for the sake of contradiction that $v_{i} \cdot v_{j}<0$ for
all $1 \leq i<j \leq n+2$. By induction, there exist indices $2 \leq i \neq j \leq n+2$ such that $w_{i} \cdot w_{j} \geq 0$. But by direct calculation,

$$
w_{i} \cdot w_{j}=v_{i} \cdot v_{j}-\frac{\left(v_{i} \cdot v_{1}\right)\left(v_{j} \cdot v_{1}\right)}{v_{1} \cdot v_{1}}<0,
$$

a contradiction.

