Analysis Comprehensive Exam Questions
Spring 2009

Problem 1. Let X := (0,00) and 1 < p < co. For any f € ZP(X, m), where m is the Lebesgue
measure, define the function

1 xr
F(z):= ;/ f(®)dt forall z € X.
0
Then prove Hardy’s inequality
p
Fll < —|f]
171 < L1

Hint: Assume first that f € C.(X) and f > 0, i.e. f is a continuous and positive function with
compact support in X. Integration by parts gives

/0 FP(x)de = —p/o FP~ (z)aF'(z) dx.
Note that zF'(z) = f(x) —

Solution. Observe first that, since f € £P(X,m), f € £1((0,z],m) for every x € X. Thus F(x)
is well defined.

Let f € C.(X) and f > 0. Then there exists a number § > 0 such that spt f C [§,7]. This
implies that F(x) = 0 if z < § and F(x) = C/x for x > 6!, with C > 0 some constant. Hence
F(z) € ZP(X,m).

Since f is continuous, the function F' is continuously differentiable, by the fundamental theorem
of calculus. Integration by parts then gives

/000 FP(z)dr = _p/oo FPY(2)zF' (z) do = —p/oC><> FP= ) f(2) dx +p/000 FP(z)dz,

0
since xF'(x) = f(z) — . We used that F vanishes at the boundary. Then

/ FP(x dgc<71 Fp ) f(x) de.

Applying Holder inequality to the right hand side, we obtain

/Ooon@)dwgl)]Dl(/oooFP() >(p 1)/1’</ o ) p.

Then Hardy’s inequality follows because p and p/(p — 1) are conjugate exponents.

For general nonnegative f € £P(X, m) consider a sequence of nonnegative functions f, € C.(X)
with f, — f a.e. monotonically.

By the monotone convergence theorem, we then have

1 T 1 xT
= —/ fu(t)dt — —/ f(t)dt = F(x)
T Jo T Jo
for all x € X monotonically.

Hence FP(x) — FP(z) and fP(x) — fP(z) monotonically.
Applying the monotone convergence theorem again we conclude that

[l = Tim [[Fof] < —— lim ||fa] = il|f||
If f is real- or complex-valued, then we use that
7/ (1) dt for all x € X.
T Jo
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Applying Hardy’s inequality to |f| instead of f we obtain

1 [* p __pr
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ILE1l




Problem 2. Let X := [0, 1].

(1) For any n > 2 let A, denote the set of all functions f € C(X) for which there exists a
point z € [0,1 — 2] such that |f(z + k) — f(z)| < nh for all 0 < h < 2. Show that A, is
nowhere dense in C(X) with the uniform topology.

(2) Use the above result to show that the set of functions on X that do not admit left nor

right derivatives at any point of X is dense in C(X) in the uniform topology.

Solution. For any n > 2 let A,, be defined as above. We prove that A, is closed. Let {fi} C A,
such that limg o || f — fxllco = 0. For every k there exists xy, such that | fi(xr +h) — fr(zr)| < nh
forall 0 < h < % Since [0,1 — %] is compact there exists a subsequence xy; that converges to a
point z € [0,1 — 1]. We then have that lim; .o fx, (zx, + h) = f(x + h) for every h, hence

n

|f(x+h) = f(z)] < nh forallO<h<l,
n

and so f € A,.

We now prove that A,, is nowhere dense in C'(X), by showing that in any e-neighborhood around
any function f € A, there exists f € C (X)\ A,. Hence the interior of A,, is empty.

To this end, let g € C(X) be such that |g(z)| < ¢ and for every x we have |g(z 4+ h) — g(z)| > 3hn
for h > 0 small enough (depending on x). For example, let

13
g(@) = 3nz 0<x < et
—3nzx + 2¢ %ng%,

and g(z) := g(x — 37) for x & [0, 37].
Given f € A,, we define f := f + g, which implies that ||f — f|leo = |lg]lec = €.

But for every z € [0,1 — %] and h small enough we have
F@+h) = f@)] > lg(a+h) — g(a)] — | f(@+h) — f(x)| > 3nh — nh > nh,
so that f & A,,.

From the above result it follows that for every n the set AS is open and dense in C(X). From
oo

Baire’s category theorem we know that A = (,~, AS is dense in C'(X). Observe that if f € A,
then for every z € X and every n > 2 there exists a 0 < h < % such that

fa+h) =~ f@)|

h
so that the right derivative of f at x does not exists.
In a similar fashion, we let B,, denote the set of all functions f € C'(X) for which there exists a
point € [, 1] such that |f(z — h) — f(z)| < nh for all 0 < h < L. Then one can show that B,
is closed and nowhere dense, for all n > 2. Defining B := (2, B¢, we use again Baire’s category
theorem to conclude that B is dense in C'(X). If f € B, then for every x € X the left derivative
of f at x does not exists.
Finally the set C := AUB is dense and if f € C then for every x € X the left and right derivatives
of f at x do not exist.



Problem 3. Let B be a Banach space.

(1) Prove that if T: X — X is a bounded linear operator with ||id — T'|| < 1, where id is the
identity operator on X, then T is invertible.

(2) Let T be as before and consider another bounded linear operator S: X — X with
|S —T| < ||T~|~!. Prove that S is invertible. Show that the set of invertible bounded
linear operators from X to itself is an open set in the operator norm topology.

Solution. We write T'=id — (id — T") and claim that

oo
(id— (id = T))~" = > (id = T)*,
k=0
We note first that the series is absolutely convergent because

Z” (id — T)* Z||1d T||*,

which is finite because |id — T'|| < 1 and so the series is a geometric series.
Absolute convergence implies convergence in norm.
For any N € N we can now write

N

(id - (id = 7)) o > _(id — T)* — (id — T)N*1,

k=0

Sending N — oo and using the fact that
6 = 7Y < fid — TN,

again because ||id — T'|| < 1, we prove the claim.
Note now that
ISoT™! —id|| = [[(S=T) o T < S = TINT~] <1,

by assumption. Applying (1), we find that the operator S o T~ is invertible, so
(SoT™H™ ' =Tos™!
exists. Since T is invertible by assumption, we conclude that S is invertible as well and
St =T"1o(SoT 1)

This shows that the set of invertible operators is open because for any invertible operator T,
the open ball around T with radius less than ||T~!||~! is also contained in the set of invertible
operators.



Problem 4. Let X be a compact metric space and A a closed algebra of continuous real-valued
functions separating points in X.

(1) Show that if f € A then /|f] € A.
(2) Show that A is either all of C(X) or there exists a point € X such that

A={feCX)[f(z)=0}.

Hint: Prove first that there exists a sequence of polynomials {P,},en such that P,(z) — /z
uniformly on [, 1] for any ¢ > 0. To this end, consider the iteration

Pi(z):=0 and P,11(z):= P.(z)+ %(z — P,(2)%) forall z€[0,1],n€N.

Solution. Let the polynomials P,, be defined as above and note that by induction we have that
P,(0) =0 for all n € N. Observe now that for all z € [0, 1] it holds

z— Pri1(2)? = (2 — Po(2)?) (1 —P,(2) — Z(Z — Pn(z)2))
and that if 0 < P,(z) < 1/z then

Oglfﬁglan(z)fi(szn(z)Q)§1fiz

This easily implyes that z — P,11(2)? > 0 (since it is the product of two positive quantities) and
thus P,4+1(2) > P,(z) > 0. By induction again we have that P,(z) is an increasing sequence with
0 < P,(2) < /z for every n and that P,(z) converges uniformly to v/z in C([e, 1]) for every e.
Since y/z and P,(z) are continuous functions the convergence is uniform in C(]0, 1]).

Given f € Aset ¢ = || f]|oo. We have that P, (f?/c*) € A for every n. Moreover, since 0 < f2/c? <
1, P,(f?/c?) converges uniformly to |f|/c. Hence |f| € A. By the same argument we get that

P,(|f|/c) converges uniformly to 1/|f|/c and thus /|f] € A.

(2) Suppose that there is no x € X such that f(x) = 0 for all f € A. Thus for every x € X we
can find f, € A such that f,(z) # 0. Since f, is continuous there exists an open neighborhood
U, of x such that f,(y) # 0 for all y € U,.

Observe that {U, }.ecx is an open covering of X. Since X is compact, there exists a finite sub-
covering Uy,, i = 1,...,n. Consider now the function g = 1" | f2. Clearly g € A and g(z) > 0
for all x € X. Dividing g by its norm, we may assume that g(xz) < 1 for every x € X. Moreover,
since X is compact there exists a constant € > 0 with ¢ < g(x) for all z € X.

We now define the functions hy(z) := *\/g(z) for all z € X and N € N, which is in A by (1).
We have that lim,, .o, hn(z) = 1 for every € X. In fact, the convergence is uniformly because
g(x) = e > 0. Since A is closed, we conclude that the constant functions are in A.

Thus A is an algebra of continuous function that separates points and contains the constant
functions. Therefore, by the Stone-Weierstrass theorem, we have that A = C(X).

On the other hand, if there exists € X such that f(x) = 0 for all f € A, then for every y #
there exists f, € A with f,(y) # 0 because A separates points. That is, there can at most exist
one point in X at which all functions in A vanish. The same argument as before then implies that
A contains all continuous functions f with f(z) = 0.



Problem 5. Let X be some set and Z(X) its power set. Consider a map K: Z(X) — Z(X)
with the following properties:

(1) K(9) = 2;

(2) AC K(A) for all A;

(3) K(K(A)) = K(A) for all A4;

(4) K(AUB)=K(A)UK(B) for all A, B,
and let # :={A C X: K(A) = A}. Prove that @, X € .%, and that .Z is closed under arbitrary
intersections and finite unions. It follows that 7 := {U C X: U® € #} is a topology. Prove that
for every A, the set K(A) is the closure of A with respect to the topology 7.

Solution. Since A C B we have B = AU B. Then (4) implies
K(B)=K(AUB)=K(A)UK(B) D> K(A).
By (1), we have K (@) = @ and thus @ € .Z.

By (2), we have X C K(X) and clearly K(X) C X. Hence X € %.
Let Ay € #, A € A, be an arbitrary collection of sets. Then (1., Ax C Ap for all . Therefore

K( N AA> c K(Ap)

A€EA

K( N AA> C [ K(4z) =) 45 CK( N Aﬁ).
A€A BEA BeEA BEA
The equality follows from the assumption K(Ag) = Ag for all 3, and the last inclusion from (2).
We conclude that all terms are in fact equal, hence .# is closed under arbitrary intersections.
Let now Ay, A € .Z be given. From (4) we obtain

K(A1UAs) =K(A) UK(Ag) = A U As.

The last equality follows from the assumption that K(4;) = A, for i = 1,2. By induction, we
have that .# is closed under finite unions.

The collection .% contains all closed sets of the topology .7 because B being closed is, by definition,
equivalent to B¢ being open, that is B¢ € 7. This in turn is equivalent to (B¢)¢ = B € Z#.

Note that for any A, the set K(A) € .# because of (3).

Let now A := ({B € Z: A C B} be the closure of A in the topology 7.

Since A C K(A) by (2), and since K(A) € .%, we have A C K(A).

On the other hand, since .Z is closed under arbitrary intersections, we have A € .%. Then A C A
implies

for all 8, and so

K(A) Cc K(A) =AcC K(A),
and so all sets are in fact equal.



Problem 6. Let (X, .#, 1) be a measure space and consider functions f € LP(u) and g € L%(u)
with 1 < p < oo and % + % = 1. Show that [ [fg|ldu = ||fllpllglly if and only if there exist
constants C1,Cy > 0, not both equal to zero, such that Cy|f|? = Cslg|?.

Hint: Show first that for all a,b > 0 and t € (0,1) we have a'b'~! < ta + (1 — t)b, with equality
holding if and only if b = a. To this end, consider h(z) :=1 —t + tx — z* for z € [0, 1].

Solution. Let h be defined as above and note that h'(x) = t(1 — z'~1) < 0 for all z € [0,1] and
t € (0,1). Since h(1) = 0 we conclude that h(xz) > 0 for all z € [0,1). With = := a/b we find

a'd' Tt < ta+ (1 —t)b, (1)

and equality holds if and only if a = b. If b = 0, then there is nothing to prove.
Assume now that Ci|f|P = Cs|g|? with C; > 0. We have

/x\fg|du: (gf);/qudu [/X (gf) |gl|qd4é UX |gl|qd4;
= firad | [ loaa]" = 1s1bdal

If C1 =0, then g = 0 and the identity follows trivially.

For the converse direction, assume that [, |fg|dp = || f|l,|lglly- This identity is certainly satisfied
if f =0, in which case we may take C; = 1 and Cy = 0 (and thus ¢ is arbitrary). In a similar
way, we may argue if g = 0.

Assume therefore that neither f or g are the zero function. Now fix z € X and let

b e () (52

which are well-defined since || f||, # 0 and ||g||q # 0. From inequality (1) we obtain

L@ 1 g@)\* _ |f(@)g()]
p ( IIfIIp) T4 ( 19114 ) folals <"

Integrating we get

L@ L (lg@)\  |f(@)g(@)| 11 [k lf@g(@)dp
— + - — dp =~ + - - =———r =0,
x e\ Sl q \ llglq 1£1l»llgllq poq 1£1l»llgllg
where the last equality follows from our hypothesis. This implies that
[f(x)g(x)| 1 <f(fv)|)p L1 (Ig(w)l)q
Ifllpllglle 2 \ Il q \ llgllq
for p-a.e. x € X. Since equality holds in (1) if and only if a = b we get that

() - ()

for p-a.e. ¥ € X. Tt is now enough to take Cy := g4 and Cs := || ||} to obtain the thesis.




Problem 7. Let (X,.#, ;1) be a measure space. For any given set E € .# we denote by £?(E, 1)
the subspace of .Z?(X, 1) of functions that vanish in X \ E. Let {E,} be a sequence of pairwise
disjoint sets E,, € .# with X =J,_, E,.

Prove that {£?(E,,u)} is a sequence of mutually orthogonal subspaces of .#?(X, i), and that
every f € Z*(X,u) can be written uniquely as f = Y7, f,, with f, € Z?(E,, ) (prove that
the series converges in norm).

Solution. Let f,, € £*(E,,,p) and f, € £?(E,, 1) with m # n. Since E,, N E,, = &, we find
that f,, vanishes on F,, C X \ ES, and f,, vanishes on E,, C X \ ES. Therefore we have

/X fonfon i = 0,

so the two subspaces are mutually orthogonal with respect to the inner product.
Let now f € £%(X, i) be given and define
fn = fxg, € L%(En,u) forallncN.

Then the functions f, are mutually orthogonal as shown above.
Since f € £?(X, n), we have |f|? € £LY(X, ), and so | f|?p is a finite measure.

Define Fy := Ufz[:l E, forall N € N. Then {Fy} is a monotone increasing sequence of measurable
sets, with X = (Jy_; Fn-
For any N we now write

N N
2 _ 2 _ 2
;/Xw du—g/Enlfl du—/Fle .

Sending N — oo and using continuity from below, we obtain

S [ APau= Jim [ 1= [ 112 d

ip'e = JFry b'e

which is finite.

Let now M, N € N be given an assume without loss of generality that N < M. Then

M N M M 2 M
an_z:fn Z fn :/X Z fn dM: Z |fn‘2d:uv
n=1 n=1

n=N+1 n=N+1 n=N+1 X
which converges to zero as M, N — oco. In the last equality we used the orthogonality of the fi,.
Using the Cauchy criterion, we conclude that the series Y~ | f,, converges in norm.
Multiplying the identity f = ", f, by xg,, for some m € N, we find

2 2

fXEm = (an)XEm = meEm = fma
n=1

so that is the only way to define the functions f,,.



Problem 8. Let (X, .#, 1) be a measure space. Show that f : X — [0, 00) is measurable if and
only if there exist nonnegative constants {c, }>2, and measurable sets {E,}52, such that

@) =Y enX, (2). (2)
n=0

Solution. If (2) holds, then f(z) = limy_ fn(x), with functions fxn defined by

N
In(z) = chXEn(x) for all x € X.
n=0

The function f is therefore the pointwise limit of the sequence measurable functions fy, and so f
is measurable as well.
For the converse direction, we use that for any measurable function g: X — [0,00) and any
N € N, the simple function
22N 1 1
o(z) == Z %XFM where F,, := g_l({;}v, n;,))
n=0

satisfies 0 < ¢(z) < g(z) for all z € X and g(z) — ¢(z) <27 for all x € g~1([0,27V)).
Starting from our function f we construct the simple function ¢; such that 0 < f(z)—¢1(z) <271
for all z € f=1(]0,2%)).
Now observe that the function f; := f — ¢ is again nonnegative and measurable, so we can find
a simple function ¢y with 0 < fi(z) — ¢2(z) < 272 for all z € f;1([0,22)).
We define recursively a sequence of simple functions ¢,, and measurable functions f,, such that

(1) for=f;

(2) ¢y, is such that 0 < f,_1(2) — ¢n(x) < 27" for every = € f,*,([0,2"));

(3) o= fac1 — én.
Since 0 < f(z) < f(x) we have that for every z € f71([0,2")) it holds

0< flw) =D ¢ilw) <27
i=0
Since the function f takes only finite values, this implies that for all x € X we have
fl@) = ¢nla).

n=0
If we now write

Ny,

bn() =Y niXa,
i=0

for suitable nonnegative constants ¢, ; and measurable sets F, ;, then we obtain that
oo N

f(z) = Z Z CniXE, -

n=0 =0
The thesis follows then by renaming the sets E,, ; and the numbers c,, ;.



