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Problem 1. Let X := (0,∞) and 1 < p <∞. For any f ∈ L p(X,m), where m is the Lebesgue
measure, define the function

F (x) :=
1
x

∫ x

0

f(t) dt for all x ∈ X.

Then prove Hardy’s inequality
‖F‖ 6

p

p− 1
‖f‖.

Hint: Assume first that f ∈ Cc(X) and f > 0, i.e. f is a continuous and positive function with
compact support in X. Integration by parts gives∫ ∞

0

F p(x) dx = −p
∫ ∞

0

F p−1(x)xF ′(x) dx.

Note that xF ′(x) = f(x)− F (x).

Solution. Observe first that, since f ∈ L p(X,m), f ∈ L 1((0, x],m) for every x ∈ X. Thus F (x)
is well defined.
Let f ∈ Cc(X) and f > 0. Then there exists a number δ > 0 such that spt f ⊂ [δ, δ−1]. This
implies that F (x) = 0 if x 6 δ and F (x) = C/x for x > δ−1, with C > 0 some constant. Hence
F (x) ∈ L p(X,m).
Since f is continuous, the function F is continuously differentiable, by the fundamental theorem
of calculus. Integration by parts then gives∫ ∞

0

F p(x) dx = −p
∫ ∞

0

F p−1(x)xF ′(x) dx = −p
∫ ∞

0

F p−1(x)f(x) dx+ p

∫ ∞
0

F p(x) dx,

since xF ′(x) = f(x)− F (x). We used that F vanishes at the boundary. Then∫ ∞
0

F p(x) dx 6
p

p− 1

∫ ∞
0

F p−1(x)f(x) dx.

Applying Hölder inequality to the right hand side, we obtain∫ ∞
0

F p(x) dx 6
p

p− 1

(∫ ∞
0

F p(x) dx

)(p−1)/p(∫ ∞
0

fp(x) dx

)1/p

.

Then Hardy’s inequality follows because p and p/(p− 1) are conjugate exponents.
For general nonnegative f ∈ L p(X,m) consider a sequence of nonnegative functions fn ∈ Cc(X)
with fn −→ f a.e. monotonically.
By the monotone convergence theorem, we then have

Fn(x) :=
1
x

∫ x

0

fn(t) dt −→ 1
x

∫ x

0

f(t) dt = F (x)

for all x ∈ X monotonically.
Hence F pn(x) −→ F p(x) and fpn(x) −→ fp(x) monotonically.
Applying the monotone convergence theorem again, we conclude that

‖F‖ = lim
n→∞

‖Fn‖ 6
p

p− 1
lim
n→∞

‖fn‖ =
p

p− 1
‖f‖.

If f is real- or complex-valued, then we use that

|F (x)| =
∣∣∣∣ 1x
∫ x

0

f(t) dt
∣∣∣∣ 6 1

x

∫ x

0

|f(t)| dt for all x ∈ X.

Applying Hardy’s inequality to |f | instead of f we obtain

‖F‖ 6

∥∥∥∥ 1
x

∫ x

0

|f(t)| dt
∥∥∥∥ 6

p

p− 1
‖ |f | ‖ =

p

p− 1
‖f‖.



Problem 2. Let X := [0, 1].
(1) For any n > 2 let An denote the set of all functions f ∈ C(X) for which there exists a

point x ∈ [0, 1− 1
n ] such that |f(x+ h)− f(x)| 6 nh for all 0 < h < 1

n . Show that An is
nowhere dense in C(X) with the uniform topology.

(2) Use the above result to show that the set of functions on X that do not admit left nor
right derivatives at any point of X is dense in C(X) in the uniform topology.

Solution. For any n > 2 let An be defined as above. We prove that An is closed. Let {fk} ⊂ An
such that limk→∞ ‖f −fk‖∞ = 0. For every k there exists xk such that |fk(xk+h)−fk(xk)| 6 nh
for all 0 < h < 1

n . Since [0, 1 − 1
n ] is compact there exists a subsequence xkj that converges to a

point x ∈ [0, 1− 1
n ]. We then have that limj→∞ fkj

(xkj
+ h) = f(x+ h) for every h, hence

|f(x+ h)− f(x)| 6 nh for all 0 < h <
1
n

,

and so f ∈ An.
We now prove that An is nowhere dense in C(X), by showing that in any ε-neighborhood around
any function f ∈ An, there exists f̃ ∈ C(X) \An. Hence the interior of An is empty.
To this end, let g ∈ C(X) be such that |g(x)| ≤ ε and for every x we have |g(x+ h)− g(x)| ≥ 3hn
for h > 0 small enough (depending on x). For example, let

g(x) :=

{
3nx 0 6 x 6 ε

3n ,

−3nx+ 2ε ε
3n 6 x 6 2ε

3n ,

and g(x) := g(x− 2ε
3n ) for x 6∈ [0, 2ε

3n ].
Given f ∈ An, we define f̃ := f + g, which implies that ‖f̃ − f‖∞ = ‖g‖∞ = ε.
But for every x ∈ [0, 1− 1

n ] and h small enough we have

|f̃(x+ h)− f̃(x)| > |g(x+ h)− g(x)| − |f(x+ h)− f(x)| > 3nh− nh > nh,

so that f̃ 6∈ An.

From the above result it follows that for every n the set Acn is open and dense in C(X). From
Baire’s category theorem we know that A =

⋂∞
n=2A

c
n is dense in C(X). Observe that if f ∈ A,

then for every x ∈ X and every n > 2 there exists a 0 < h < 1
n such that∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ > n,

so that the right derivative of f at x does not exists.
In a similar fashion, we let Bn denote the set of all functions f ∈ C(X) for which there exists a
point x ∈ [ 1

n , 1] such that |f(x− h)− f(x)| 6 nh for all 0 < h < 1
n . Then one can show that Bn

is closed and nowhere dense, for all n > 2. Defining B :=
⋂∞
n=2B

c
n, we use again Baire’s category

theorem to conclude that B is dense in C(X). If f ∈ B, then for every x ∈ X the left derivative
of f at x does not exists.
Finally the set C := A∪B is dense and if f ∈ C then for every x ∈ X the left and right derivatives
of f at x do not exist.



Problem 3. Let B be a Banach space.
(1) Prove that if T : X −→ X is a bounded linear operator with ‖id− T‖ < 1, where id is the

identity operator on X, then T is invertible.
(2) Let T be as before and consider another bounded linear operator S : X −→ X with
‖S − T‖ < ‖T−1‖−1. Prove that S is invertible. Show that the set of invertible bounded
linear operators from X to itself is an open set in the operator norm topology.

Solution. We write T = id− (id− T ) and claim that

(id− (id− T ))−1 =
∞∑
k=0

(id− T )k.

We note first that the series is absolutely convergent because
∞∑
k=0

‖(id− T )k‖ 6
∞∑
k=0

‖id− T‖k,

which is finite because ‖id− T‖ < 1 and so the series is a geometric series.
Absolute convergence implies convergence in norm.
For any N ∈ N we can now write

(id− (id− T )) ◦
N∑
k=0

(id− T )k = id− (id− T )N+1.

Sending N →∞ and using the fact that

‖(id− T )N+1‖ 6 ‖id− T‖N+1 −→ 0,

again because ‖id− T‖ < 1, we prove the claim.
Note now that

‖S ◦ T−1 − id‖ = ‖(S − T ) ◦ T−1‖ 6 ‖S − T‖‖T−1‖ < 1,
by assumption. Applying (1), we find that the operator S ◦ T−1 is invertible, so

(S ◦ T−1)−1 = T ◦ S−1

exists. Since T is invertible by assumption, we conclude that S is invertible as well and

S−1 = T−1 ◦ (S ◦ T−1)−1.

This shows that the set of invertible operators is open because for any invertible operator T ,
the open ball around T with radius less than ‖T−1‖−1 is also contained in the set of invertible
operators.



Problem 4. Let X be a compact metric space and A a closed algebra of continuous real-valued
functions separating points in X.

(1) Show that if f ∈ A then
√
|f | ∈ A.

(2) Show that A is either all of C(X) or there exists a point x ∈ X such that

A = {f ∈ C(X) | f(x) = 0}.
Hint: Prove first that there exists a sequence of polynomials {Pn}n∈N such that Pn(z) −→

√
z

uniformly on [ε, 1] for any ε > 0. To this end, consider the iteration

P1(z) := 0 and Pn+1(z) := Pn(z) +
1
2
(
z − Pn(z)2

)
for all z ∈ [0, 1], n ∈ N.

Solution. Let the polynomials Pn be defined as above and note that by induction we have that
Pn(0) = 0 for all n ∈ N. Observe now that for all z ∈ [0, 1] it holds

z − Pn+1(z)2 =
(
z − Pn(z)2

)(
1− Pn(z)− 1

4
(
z − Pn(z)2

))
and that if 0 ≤ Pn(z) ≤

√
z then

0 ≤ 1−
√
z ≤ 1− Pn(z)− 1

4
(
z − Pn(z)2

)
≤ 1− 1

4
z

This easily implyes that z − Pn+1(z)2 ≥ 0 (since it is the product of two positive quantities) and
thus Pn+1(z) ≥ Pn(z) ≥ 0. By induction again we have that Pn(z) is an increasing sequence with
0 ≤ Pn(z) ≤

√
z for every n and that Pn(z) converges uniformly to

√
z in C([ε, 1]) for every ε.

Since
√
z and Pn(z) are continuous functions the convergence is uniform in C([0, 1]).

Given f ∈ A set c = ‖f‖∞. We have that Pn(f2/c2) ∈ A for every n. Moreover, since 0 ≤ f2/c2 ≤
1, Pn(f2/c2) converges uniformly to |f |/c. Hence |f | ∈ A. By the same argument we get that
Pn(|f |/c) converges uniformly to

√
|f |/c and thus

√
|f | ∈ A.

(2) Suppose that there is no x ∈ X such that f(x) = 0 for all f ∈ A. Thus for every x ∈ X we
can find fx ∈ A such that fx(x) 6= 0. Since fx is continuous there exists an open neighborhood
Ux of x such that fx(y) 6= 0 for all y ∈ Ux.
Observe that {Ux}x∈X is an open covering of X. Since X is compact, there exists a finite sub-
covering Uxi

, i = 1, . . . , n. Consider now the function g =
∑n
i=1 f

2
xi

. Clearly g ∈ A and g(x) > 0
for all x ∈ X. Dividing g by its norm, we may assume that g(x) 6 1 for every x ∈ X. Moreover,
since X is compact there exists a constant ε > 0 with ε 6 g(x) for all x ∈ X.
We now define the functions hN (x) := 2N

√
g(x) for all x ∈ X and N ∈ N, which is in A by (1).

We have that limn→∞ hN (x) = 1 for every x ∈ X. In fact, the convergence is uniformly because
g(x) > ε > 0. Since A is closed, we conclude that the constant functions are in A.
Thus A is an algebra of continuous function that separates points and contains the constant
functions. Therefore, by the Stone-Weierstrass theorem, we have that A = C(X).
On the other hand, if there exists x ∈ X such that f(x) = 0 for all f ∈ A, then for every y 6= x
there exists fy ∈ A with fy(y) 6= 0 because A separates points. That is, there can at most exist
one point in X at which all functions in A vanish. The same argument as before then implies that
A contains all continuous functions f with f(x) = 0.



Problem 5. Let X be some set and P(X) its power set. Consider a map K : P(X) −→P(X)
with the following properties:

(1) K(∅) = ∅;
(2) A ⊂ K(A) for all A;
(3) K(K(A)) = K(A) for all A;
(4) K(A ∪B) = K(A) ∪K(B) for all A,B,

and let F := {A ⊂ X : K(A) = A}. Prove that ∅, X ∈ F , and that F is closed under arbitrary
intersections and finite unions. It follows that T := {U ⊂ X : U c ∈ F} is a topology. Prove that
for every A, the set K(A) is the closure of A with respect to the topology T .

Solution. Since A ⊂ B we have B = A ∪B. Then (4) implies

K(B) = K(A ∪B) = K(A) ∪K(B) ⊃ K(A).

By (1), we have K(∅) = ∅ and thus ∅ ∈ F .
By (2), we have X ⊂ K(X) and clearly K(X) ⊂ X. Hence X ∈ F .
Let Aλ ∈ F , λ ∈ Λ, be an arbitrary collection of sets. Then

⋂
λ∈ΛAλ ⊂ Aβ for all β. Therefore

K

( ⋂
λ∈Λ

Aλ

)
⊂ K(Aβ)

for all β, and so

K

( ⋂
λ∈Λ

Aλ

)
⊂
⋂
β∈Λ

K(Aβ) =
⋂
β∈Λ

Aβ ⊂ K
( ⋂
β∈Λ

Aβ

)
.

The equality follows from the assumption K(Aβ) = Aβ for all β, and the last inclusion from (2).
We conclude that all terms are in fact equal, hence F is closed under arbitrary intersections.
Let now A1, A2 ∈ F be given. From (4) we obtain

K(A1 ∪A2) = K(A1) ∪K(A2) = A1 ∪A2.

The last equality follows from the assumption that K(Ai) = Ai for i = 1, 2. By induction, we
have that F is closed under finite unions.
The collection F contains all closed sets of the topology T because B being closed is, by definition,
equivalent to Bc being open, that is Bc ∈ T . This in turn is equivalent to (Bc)c = B ∈ F .
Note that for any A, the set K(A) ∈ F because of (3).
Let now Ā :=

⋂
{B ∈ F : A ⊂ B} be the closure of A in the topology T .

Since A ⊂ K(A) by (2), and since K(A) ∈ F , we have Ā ⊂ K(A).
On the other hand, since F is closed under arbitrary intersections, we have Ā ∈ F . Then A ⊂ Ā
implies

K(A) ⊂ K(Ā) = Ā ⊂ K(A),
and so all sets are in fact equal.



Problem 6. Let (X,M , µ) be a measure space and consider functions f ∈ Lp(µ) and g ∈ Lq(µ)
with 1 < p < ∞ and 1

p + 1
q = 1. Show that

∫
X
|fg| dµ = ‖f‖p‖g‖q if and only if there exist

constants C1, C2 > 0, not both equal to zero, such that C1|f |p = C2|g|q.
Hint: Show first that for all a, b > 0 and t ∈ (0, 1) we have atb1−t 6 ta + (1 − t)b, with equality
holding if and only if b = a. To this end, consider h(x) := 1− t+ tx− xt for x ∈ [0, 1].

Solution. Let h be defined as above and note that h′(x) = t(1 − xt−1) < 0 for all x ∈ [0, 1] and
t ∈ (0, 1). Since h(1) = 0 we conclude that h(x) > 0 for all x ∈ [0, 1). With x := a/b we find

atb1−t 6 ta+ (1− t)b, (1)

and equality holds if and only if a = b. If b = 0, then there is nothing to prove.
Assume now that C1|f |p = C2|g|q with C1 > 0. We have∫

X

|fg| dµ =
(
C2

C1

) 1
p
∫
X

|g|q dµ =
[∫

X

(
C2

C1

)
|g|q dµ

] 1
p
[∫

X

|g|q dµ
] 1

q

=
[∫

X

|f |p dµ
] 1

p
[∫

X

|g|q dµ
] 1

q

= ‖f‖p‖g‖q.

If C1 = 0, then g = 0 and the identity follows trivially.
For the converse direction, assume that

∫
X
|fg| dµ = ‖f‖p‖g‖q. This identity is certainly satisfied

if f = 0, in which case we may take C1 = 1 and C2 = 0 (and thus g is arbitrary). In a similar
way, we may argue if g = 0.
Assume therefore that neither f or g are the zero function. Now fix x ∈ X and let

t :=
1
p
, a :=

(
|f(x)|
‖f‖p

)p
, b :=

(
|g(x)|
‖g‖q

)q
,

which are well-defined since ‖f‖p 6= 0 and ‖g‖q 6= 0. From inequality (1) we obtain

1
p

(
|f(x)|
‖f‖p

)p
+

1
q

(
|g(x)|
‖g‖q

)q
− |f(x)g(x)|
‖f‖p‖g‖q

6 0.

Integrating we get∫
X

[
1
p

(
|f(x)|
‖f‖p

)p
+

1
q

(
|g(x)|
‖g‖q

)q
− |f(x)g(x)|
‖f‖p‖g‖q

]
dµ =

1
p

+
1
q
−
∫
X
|f(x)g(x)| dµ
‖f‖p‖g‖q

= 0,

where the last equality follows from our hypothesis. This implies that

|f(x)g(x)|
‖f‖p‖g‖q

=
1
p

(
|f(x)|
‖f‖p

)p
+

1
q

(
|g(x)|
‖g‖q

)q
for µ-a.e. x ∈ X. Since equality holds in (1) if and only if a = b we get that(

|f(x)|
‖f‖p

)p
=
(
|g(x)|
‖g‖q

)q
for µ-a.e. x ∈ X. It is now enough to take C1 := ‖g‖qq and C2 := ‖f‖pp to obtain the thesis.



Problem 7. Let (X,M , µ) be a measure space. For any given set E ∈M we denote by L 2(E,µ)
the subspace of L 2(X,µ) of functions that vanish in X \ E. Let {En} be a sequence of pairwise
disjoint sets En ∈M with X =

⋃∞
n=1En.

Prove that {L 2(En, µ)} is a sequence of mutually orthogonal subspaces of L 2(X,µ), and that
every f ∈ L 2(X,µ) can be written uniquely as f =

∑∞
n=1 fn with fn ∈ L 2(En, µ) (prove that

the series converges in norm).

Solution. Let fm ∈ L 2(Em, µ) and fn ∈ L 2(En, µ) with m 6= n. Since Em ∩ En = ∅, we find
that fm vanishes on En ⊂ X \ Ecm and fn vanishes on Em ⊂ X \ Ecn. Therefore we have∫

X

fmfn dµ = 0,

so the two subspaces are mutually orthogonal with respect to the inner product.
Let now f ∈ L 2(X,µ) be given and define

fn := fχEn
∈ L 2(En, µ) for all n ∈ N.

Then the functions fn are mutually orthogonal as shown above.
Since f ∈ L 2(X,µ), we have |f |2 ∈ L 1(X,µ), and so |f |2µ is a finite measure.
Define FN :=

⋃N
n=1En for all N ∈ N. Then {FN} is a monotone increasing sequence of measurable

sets, with X =
⋃∞
N=1 FN .

For any N we now write
N∑
n=1

∫
X

|fn|2 dµ =
N∑
n=1

∫
En

|f |2 dµ =
∫
FN

|f |2 dµ.

Sending N →∞ and using continuity from below, we obtain
∞∑
n=1

∫
X

|fn|2 dµ = lim
N→∞

∫
FN

|f |2 dµ =
∫
X

|f |2 dµ,

which is finite.
Let now M,N ∈ N be given an assume without loss of generality that N 6 M . Then∥∥∥∥ M∑

n=1

fn −
N∑
n=1

fn

∥∥∥∥2

=
∥∥∥∥ M∑
n=N+1

fn

∥∥∥∥2

=
∫
X

∣∣∣∣ M∑
n=N+1

fn

∣∣∣∣2 dµ =
M∑

n=N+1

∫
X

|fn|2 dµ,

which converges to zero as M,N →∞. In the last equality we used the orthogonality of the fn.
Using the Cauchy criterion, we conclude that the series

∑∞
n=1 fn converges in norm.

Multiplying the identity f =
∑∞
n=1 fn by χEm

for some m ∈ N, we find

fχEm =
( ∞∑
n=1

fn

)
χEm = fmχEm = fm,

so that is the only way to define the functions fm.



Problem 8. Let (X,M , µ) be a measure space. Show that f : X −→ [0,∞) is measurable if and
only if there exist nonnegative constants {cn}∞n=0 and measurable sets {En}∞n=0 such that

f(x) =
∞∑
n=0

cnχEn
(x). (2)

Solution. If (2) holds, then f(x) = limN→∞ fN (x), with functions fN defined by

fN (x) :=
N∑
n=0

cnχEn
(x) for all x ∈ X.

The function f is therefore the pointwise limit of the sequence measurable functions fN , and so f
is measurable as well.
For the converse direction, we use that for any measurable function g : X −→ [0,∞) and any
N ∈ N, the simple function

φ(x) :=
22N−1∑
n=0

n

2N
χFn

, where Fn := g−1

([ n
2N

,
n+ 1
2N

))
satisfies 0 6 φ(x) 6 g(x) for all x ∈ X and g(x)− φ(x) 6 2−N for all x ∈ g−1([0, 2N )).
Starting from our function f we construct the simple function φ1 such that 0 6 f(x)−φ1(x) 6 2−1

for all x ∈ f−1([0, 21)).
Now observe that the function f1 := f − φ1 is again nonnegative and measurable, so we can find
a simple function φ2 with 0 6 f1(x)− φ2(x) 6 2−2 for all x ∈ f−1

1 ([0, 22)).
We define recursively a sequence of simple functions φn and measurable functions fn such that

(1) f0 := f ;
(2) φn is such that 0 6 fn−1(x)− φn(x) 6 2−n for every x ∈ f−1

n−1([0, 2n));
(3) fn := fn−1 − φn.

Since 0 6 fn(x) 6 f(x) we have that for every x ∈ f−1([0, 2n)) it holds

0 6 f(x)−
n∑
i=0

φi(x) 6 2−n.

Since the function f takes only finite values, this implies that for all x ∈ X we have

f(x) =
∞∑
n=0

φn(x).

If we now write

φn(x) =:
Nn∑
i=0

cn,iχEn,i

for suitable nonnegative constants cn,i and measurable sets En,i, then we obtain that

f(x) =
∞∑
n=0

Nn∑
i=0

cn,iχEn,i .

The thesis follows then by renaming the sets En,i and the numbers cn,i.


