Analysis Comprehensive Exam Questions Spring 2009

Problem 1. Let $X := (0, \infty)$ and $1 . For any <math>f \in \mathscr{L}^p(X, m)$, where m is the Lebesgue measure, define the function

$$F(x) := \frac{1}{x} \int_0^x f(t) dt \quad \text{for all } x \in X.$$

Then prove Hardy's inequality

$$\|F\| \leqslant \frac{p}{p-1} \|f\|.$$

Hint: Assume first that $f \in C_c(X)$ and $f \ge 0$, *i.e.* f is a continuous and positive function with compact support in X. Integration by parts gives

$$\int_{0}^{\infty} F^{p}(x) \, dx = -p \int_{0}^{\infty} F^{p-1}(x) x F'(x) \, dx.$$

Note that xF'(x) = f(x) - F(x).

Solution. Observe first that, since $f \in \mathscr{L}^p(X, m)$, $f \in \mathscr{L}^1((0, x], m)$ for every $x \in X$. Thus F(x) is well defined.

Let $f \in C_c(X)$ and $f \ge 0$. Then there exists a number $\delta > 0$ such that $\operatorname{spt} f \subset [\delta, \delta^{-1}]$. This implies that F(x) = 0 if $x \le \delta$ and F(x) = C/x for $x \ge \delta^{-1}$, with C > 0 some constant. Hence $F(x) \in \mathscr{L}^p(X, m)$.

Since f is continuous, the function F is continuously differentiable, by the fundamental theorem of calculus. Integration by parts then gives

$$\int_0^\infty F^p(x) \, dx = -p \int_0^\infty F^{p-1}(x) x F'(x) \, dx = -p \int_0^\infty F^{p-1}(x) f(x) \, dx + p \int_0^\infty F^p(x) \, dx,$$

since xF'(x) = f(x) - F(x). We used that F vanishes at the boundary. Then

$$\int_0^\infty F^p(x) \, dx \leqslant \frac{p}{p-1} \int_0^\infty F^{p-1}(x) f(x) \, dx.$$

Applying Hölder inequality to the right hand side, we obtain

$$\int_0^\infty F^p(x)\,dx \leqslant \frac{p}{p-1} \left(\int_0^\infty F^p(x)\,dx\right)^{(p-1)/p} \left(\int_0^\infty f^p(x)\,dx\right)^{1/p}$$

Then Hardy's inequality follows because p and p/(p-1) are conjugate exponents. For general nonnegative $f \in \mathscr{L}^p(X, m)$ consider a sequence of nonnegative functions $f_n \in C_c(X)$ with $f_n \longrightarrow f$ a.e. monotonically.

By the monotone convergence theorem, we then have

$$F_n(x) := \frac{1}{x} \int_0^x f_n(t) dt \longrightarrow \frac{1}{x} \int_0^x f(t) dt = F(x)$$

for all $x \in X$ monotonically.

Hence $F_n^p(x) \longrightarrow F^p(x)$ and $f_n^p(x) \longrightarrow f^p(x)$ monotonically. Applying the monotone convergence theorem again, we conclude that

$$||F|| = \lim_{n \to \infty} ||F_n|| \le \frac{p}{p-1} \lim_{n \to \infty} ||f_n|| = \frac{p}{p-1} ||f||.$$

If f is real- or complex-valued, then we use that

$$|F(x)| = \left|\frac{1}{x}\int_0^x f(t)\,dt\right| \leqslant \frac{1}{x}\int_0^x |f(t)|\,dt \quad \text{for all } x \in X.$$

Applying Hardy's inequality to |f| instead of f we obtain

$$\|F\| \le \left\|\frac{1}{x} \int_0^x |f(t)| \, dt\right\| \le \frac{p}{p-1} \||f|\| = \frac{p}{p-1} \|f\|.$$

Problem 2. Let X := [0, 1].

- (1) For any $n \ge 2$ let A_n denote the set of all functions $f \in C(X)$ for which there exists a point $x \in [0, 1 \frac{1}{n}]$ such that $|f(x+h) f(x)| \le nh$ for all $0 < h < \frac{1}{n}$. Show that A_n is nowhere dense in C(X) with the uniform topology.
- (2) Use the above result to show that the set of functions on X that do not admit left nor right derivatives at any point of X is dense in C(X) in the uniform topology.

Solution. For any $n \ge 2$ let A_n be defined as above. We prove that A_n is closed. Let $\{f_k\} \subset A_n$ such that $\lim_{k\to\infty} ||f - f_k||_{\infty} = 0$. For every k there exists x_k such that $|f_k(x_k + h) - f_k(x_k)| \le nh$ for all $0 < h < \frac{1}{n}$. Since $[0, 1 - \frac{1}{n}]$ is compact there exists a subsequence x_{k_j} that converges to a point $x \in [0, 1 - \frac{1}{n}]$. We then have that $\lim_{j\to\infty} f_{k_j}(x_{k_j} + h) = f(x + h)$ for every h, hence

$$|f(x+h) - f(x)| \le nh$$
 for all $0 < h < \frac{1}{n}$,

and so $f \in A_n$.

We now prove that A_n is nowhere dense in C(X), by showing that in any ε -neighborhood around any function $f \in A_n$, there exists $\tilde{f} \in C(X) \setminus A_n$. Hence the interior of A_n is empty.

To this end, let $g \in C(X)$ be such that $|g(x)| \leq \varepsilon$ and for every x we have $|g(x+h) - g(x)| \geq 3hn$ for h > 0 small enough (depending on x). For example, let

$$g(x) := \begin{cases} 3nx & 0 \leqslant x \leqslant \frac{\varepsilon}{3n}, \\ -3nx + 2\varepsilon & \frac{\varepsilon}{3n} \leqslant x \leqslant \frac{2\varepsilon}{3n}, \end{cases}$$

and $g(x) := g(x - \frac{2\varepsilon}{3n})$ for $x \notin [0, \frac{2\varepsilon}{3n}]$.

Given $f \in A_n$, we define $\tilde{f} := f + g$, which implies that $\|\tilde{f} - f\|_{\infty} = \|g\|_{\infty} = \varepsilon$. But for every $x \in [0, 1 - \frac{1}{n}]$ and h small enough we have

$$\tilde{f}(x+h) - \tilde{f}(x)| \ge |g(x+h) - g(x)| - |f(x+h) - f(x)| \ge 3nh - nh > nh,$$

so that $\tilde{f} \notin A_n$.

From the above result it follows that for every n the set A_n^c is open and dense in C(X). From Baire's category theorem we know that $A = \bigcap_{n=2}^{\infty} A_n^c$ is dense in C(X). Observe that if $f \in A$, then for every $x \in X$ and every $n \ge 2$ there exists a $0 < h < \frac{1}{n}$ such that

$$\left|\frac{f(x+h) - f(x)}{h}\right| > n,$$

so that the right derivative of f at x does not exists.

In a similar fashion, we let B_n denote the set of all functions $f \in C(X)$ for which there exists a point $x \in [\frac{1}{n}, 1]$ such that $|f(x - h) - f(x)| \leq nh$ for all $0 < h < \frac{1}{n}$. Then one can show that B_n is closed and nowhere dense, for all $n \geq 2$. Defining $B := \bigcap_{n=2}^{\infty} B_n^c$, we use again Baire's category theorem to conclude that B is dense in C(X). If $f \in B$, then for every $x \in X$ the left derivative of f at x does not exists.

Finally the set $C := A \cup B$ is dense and if $f \in C$ then for every $x \in X$ the left and right derivatives of f at x do not exist.

Problem 3. Let B be a Banach space.

- (1) Prove that if $T: X \longrightarrow X$ is a bounded linear operator with $\|\operatorname{id} T\| < 1$, where id is the identity operator on X, then T is invertible.
- (2) Let T be as before and consider another bounded linear operator $S: X \longrightarrow X$ with $||S T|| < ||T^{-1}||^{-1}$. Prove that S is invertible. Show that the set of invertible bounded linear operators from X to itself is an open set in the operator norm topology.

Solution. We write T = id - (id - T) and claim that

$$(id - (id - T))^{-1} = \sum_{k=0}^{\infty} (id - T)^k.$$

We note first that the series is absolutely convergent because

$$\sum_{k=0}^{\infty} \|(\mathrm{id} - T)^k\| \leqslant \sum_{k=0}^{\infty} \|\mathrm{id} - T\|^k,$$

which is finite because $\|id - T\| < 1$ and so the series is a geometric series.

Absolute convergence implies convergence in norm.

For any $N \in \mathbb{N}$ we can now write

$$(id - (id - T)) \circ \sum_{k=0}^{N} (id - T)^{k} = id - (id - T)^{N+1}.$$

Sending $N \to \infty$ and using the fact that

$$\|(\mathrm{id} - T)^{N+1}\| \leqslant \|\mathrm{id} - T\|^{N+1} \longrightarrow 0,$$

again because $\|\operatorname{id} - T\| < 1$, we prove the claim. Note now that

$$||S \circ T^{-1} - \mathrm{id}|| = ||(S - T) \circ T^{-1}|| \le ||S - T|| ||T^{-1}|| < 1,$$

by assumption. Applying (1), we find that the operator $S \circ T^{-1}$ is invertible, so

$$(S \circ T^{-1})^{-1} = T \circ S^{-1}$$

exists. Since T is invertible by assumption, we conclude that S is invertible as well and

$$S^{-1} = T^{-1} \circ (S \circ T^{-1})^{-1}.$$

This shows that the set of invertible operators is open because for any invertible operator T, the open ball around T with radius less than $||T^{-1}||^{-1}$ is also contained in the set of invertible operators.

Problem 4. Let X be a compact metric space and \mathcal{A} a closed algebra of continuous real-valued functions separating points in X.

- (1) Show that if $f \in \mathcal{A}$ then $\sqrt{|f|} \in \mathcal{A}$.
- (2) Show that \mathcal{A} is either all of C(X) or there exists a point $x \in X$ such that

$$A = \{ f \in C(X) \, | \, f(x) = 0 \}.$$

Hint: Prove first that there exists a sequence of polynomials $\{P_n\}_{n \in \mathbb{N}}$ such that $P_n(z) \longrightarrow \sqrt{z}$ uniformly on $[\varepsilon, 1]$ for any $\varepsilon > 0$. To this end, consider the iteration

$$P_1(z) := 0$$
 and $P_{n+1}(z) := P_n(z) + \frac{1}{2}(z - P_n(z)^2)$ for all $z \in [0, 1], n \in \mathbb{N}$.

Solution. Let the polynomials P_n be defined as above and note that by induction we have that $P_n(0) = 0$ for all $n \in \mathbb{N}$. Observe now that for all $z \in [0, 1]$ it holds

$$z - P_{n+1}(z)^2 = \left(z - P_n(z)^2\right) \left(1 - P_n(z) - \frac{1}{4}\left(z - P_n(z)^2\right)\right)$$

and that if $0 \leq P_n(z) \leq \sqrt{z}$ then

$$0 \le 1 - \sqrt{z} \le 1 - P_n(z) - \frac{1}{4} \left(z - P_n(z)^2 \right) \le 1 - \frac{1}{4} z$$

This easily implyes that $z - P_{n+1}(z)^2 \ge 0$ (since it is the product of two positive quantities) and thus $P_{n+1}(z) \ge P_n(z) \ge 0$. By induction again we have that $P_n(z)$ is an increasing sequence with $0 \le P_n(z) \le \sqrt{z}$ for every n and that $P_n(z)$ converges uniformly to \sqrt{z} in $C([\epsilon, 1])$ for every ϵ . Since \sqrt{z} and $P_n(z)$ are continuous functions the convergence is uniform in C([0, 1]).

Given $f \in \mathcal{A}$ set $c = ||f||_{\infty}$. We have that $P_n(f^2/c^2) \in \mathcal{A}$ for every n. Moreover, since $0 \leq f^2/c^2 \leq 1$, $P_n(f^2/c^2)$ converges uniformly to |f|/c. Hence $|f| \in \mathcal{A}$. By the same argument we get that $P_n(|f|/c)$ converges uniformly to $\sqrt{|f|/c}$ and thus $\sqrt{|f|} \in \mathcal{A}$.

(2) Suppose that there is no $x \in X$ such that f(x) = 0 for all $f \in A$. Thus for every $x \in X$ we can find $f_x \in A$ such that $f_x(x) \neq 0$. Since f_x is continuous there exists an open neighborhood U_x of x such that $f_x(y) \neq 0$ for all $y \in U_x$.

Observe that $\{U_x\}_{x\in X}$ is an open covering of X. Since X is compact, there exists a finite subcovering U_{x_i} , i = 1, ..., n. Consider now the function $g = \sum_{i=1}^n f_{x_i}^2$. Clearly $g \in \mathcal{A}$ and g(x) > 0for all $x \in X$. Dividing g by its norm, we may assume that $g(x) \leq 1$ for every $x \in X$. Moreover, since X is compact there exists a constant $\varepsilon > 0$ with $\varepsilon \leq g(x)$ for all $x \in X$.

We now define the functions $h_N(x) := \sqrt[2^N]{g(x)}$ for all $x \in X$ and $N \in \mathbb{N}$, which is in \mathcal{A} by (1). We have that $\lim_{n\to\infty} h_N(x) = 1$ for every $x \in X$. In fact, the convergence is uniformly because $g(x) \ge \varepsilon > 0$. Since \mathcal{A} is closed, we conclude that the constant functions are in \mathcal{A} .

Thus \mathcal{A} is an algebra of continuous function that separates points and contains the constant functions. Therefore, by the Stone-Weierstrass theorem, we have that $\mathcal{A} = C(X)$.

On the other hand, if there exists $x \in X$ such that f(x) = 0 for all $f \in A$, then for every $y \neq x$ there exists $f_y \in A$ with $f_y(y) \neq 0$ because A separates points. That is, there can at most exist one point in X at which all functions in A vanish. The same argument as before then implies that A contains all continuous functions f with f(x) = 0. **Problem 5.** Let X be some set and $\mathscr{P}(X)$ its power set. Consider a map $K \colon \mathscr{P}(X) \longrightarrow \mathscr{P}(X)$ with the following properties:

- (1) $K(\emptyset) = \emptyset;$
- (2) $A \subset K(A)$ for all A;
- (3) K(K(A)) = K(A) for all A;
- (4) $K(A \cup B) = K(A) \cup K(B)$ for all A, B,

and let $\mathscr{F} := \{A \subset X : K(A) = A\}$. Prove that $\mathscr{O}, X \in \mathscr{F}$, and that \mathscr{F} is closed under arbitrary intersections and finite unions. It follows that $\mathscr{T} := \{U \subset X : U^c \in \mathscr{F}\}$ is a topology. Prove that for every A, the set K(A) is the closure of A with respect to the topology \mathscr{T} .

Solution. Since $A \subset B$ we have $B = A \cup B$. Then (4) implies

$$K(B) = K(A \cup B) = K(A) \cup K(B) \supset K(A).$$

By (1), we have $K(\emptyset) = \emptyset$ and thus $\emptyset \in \mathscr{F}$.

By (2), we have $X \subset K(X)$ and clearly $K(X) \subset X$. Hence $X \in \mathscr{F}$.

Let $A_{\lambda} \in \mathscr{F}$, $\lambda \in \Lambda$, be an arbitrary collection of sets. Then $\bigcap_{\lambda \in \Lambda} A_{\lambda} \subset A_{\beta}$ for all β . Therefore

$$K\left(\bigcap_{\lambda\in\Lambda}A_{\lambda}\right)\subset K(A_{\beta})$$

for all β , and so

$$K\bigg(\bigcap_{\lambda\in\Lambda}A_{\lambda}\bigg)\subset\bigcap_{\beta\in\Lambda}K(A_{\beta})=\bigcap_{\beta\in\Lambda}A_{\beta}\subset K\bigg(\bigcap_{\beta\in\Lambda}A_{\beta}\bigg).$$

The equality follows from the assumption $K(A_{\beta}) = A_{\beta}$ for all β , and the last inclusion from (2). We conclude that all terms are in fact equal, hence \mathscr{F} is closed under arbitrary intersections. Let now $A_1, A_2 \in \mathscr{F}$ be given. From (4) we obtain

$$K(A_1 \cup A_2) = K(A_1) \cup K(A_2) = A_1 \cup A_2.$$

The last equality follows from the assumption that $K(A_i) = A_i$ for i = 1, 2. By induction, we have that \mathscr{F} is closed under finite unions.

The collection \mathscr{F} contains all closed sets of the topology \mathscr{T} because B being closed is, by definition, equivalent to B^c being open, that is $B^c \in \mathscr{T}$. This in turn is equivalent to $(B^c)^c = B \in \mathscr{F}$. Note that for any A, the set $K(A) \in \mathscr{F}$ because of (3).

Let now $\overline{A} := \bigcap \{ B \in \mathscr{F} : A \subset B \}$ be the closure of A in the topology \mathscr{T} .

Since $A \subset K(A)$ by (2), and since $K(A) \in \mathscr{F}$, we have $\overline{A} \subset K(A)$.

On the other hand, since \mathscr{F} is closed under arbitrary intersections, we have $\overline{A} \in \mathscr{F}$. Then $A \subset \overline{A}$ implies

$$K(A) \subset K(\bar{A}) = \bar{A} \subset K(A),$$

and so all sets are in fact equal.

Problem 6. Let (X, \mathcal{M}, μ) be a measure space and consider functions $f \in L^p(\mu)$ and $g \in L^q(\mu)$ with $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. Show that $\int_X |fg| d\mu = ||f||_p ||g||_q$ if and only if there exist constants $C_1, C_2 \ge 0$, not both equal to zero, such that $C_1 |f|^p = C_2 |g|^q$.

Hint: Show first that for all $a, b \ge 0$ and $t \in (0, 1)$ we have $a^t b^{1-t} \le ta + (1-t)b$, with equality holding if and only if b = a. To this end, consider $h(x) := 1 - t + tx - x^t$ for $x \in [0, 1]$.

Solution. Let h be defined as above and note that $h'(x) = t(1 - x^{t-1}) < 0$ for all $x \in [0, 1]$ and $t \in (0, 1)$. Since h(1) = 0 we conclude that h(x) > 0 for all $x \in [0, 1)$. With x := a/b we find

$$a^t b^{1-t} \leqslant ta + (1-t)b, \tag{1}$$

and equality holds if and only if a = b. If b = 0, then there is nothing to prove. Assume now that $C_1|f|^p = C_2|g|^q$ with $C_1 > 0$. We have

$$\int_{X} |fg| \, d\mu = \left(\frac{C_2}{C_1}\right)^{\frac{1}{p}} \int_{X} |g|^q \, d\mu = \left[\int_{X} \left(\frac{C_2}{C_1}\right) |g|^q \, d\mu\right]^{\frac{1}{p}} \left[\int_{X} |g|^q \, d\mu\right]^{\frac{1}{q}} \\ = \left[\int_{X} |f|^p \, d\mu\right]^{\frac{1}{p}} \left[\int_{X} |g|^q \, d\mu\right]^{\frac{1}{q}} = \|f\|_p \|g\|_q$$

If $C_1 = 0$, then g = 0 and the identity follows trivially.

For the converse direction, assume that $\int_X |fg| d\mu = ||f||_p ||g||_q$. This identity is certainly satisfied if f = 0, in which case we may take $C_1 = 1$ and $C_2 = 0$ (and thus g is arbitrary). In a similar way, we may argue if g = 0.

Assume therefore that neither f or g are the zero function. Now fix $x \in X$ and let

$$t := \frac{1}{p}, \quad a := \left(\frac{|f(x)|}{\|f\|_p}\right)^p, \quad b := \left(\frac{|g(x)|}{\|g\|_q}\right)^q,$$

which are well-defined since $||f||_p \neq 0$ and $||g||_q \neq 0$. From inequality (1) we obtain

$$\frac{1}{p} \left(\frac{|f(x)|}{\|f\|_p} \right)^p + \frac{1}{q} \left(\frac{|g(x)|}{\|g\|_q} \right)^q - \frac{|f(x)g(x)|}{\|f\|_p \|g\|_q} \le 0.$$

Integrating we get

$$\int_X \left[\frac{1}{p} \left(\frac{|f(x)|}{\|f\|_p} \right)^p + \frac{1}{q} \left(\frac{|g(x)|}{\|g\|_q} \right)^q - \frac{|f(x)g(x)|}{\|f\|_p \|g\|_q} \right] d\mu = \frac{1}{p} + \frac{1}{q} - \frac{\int_X |f(x)g(x)| \, d\mu}{\|f\|_p \|g\|_q} = 0,$$

where the last equality follows from our hypothesis. This implies that

$$\frac{|f(x)g(x)|}{\|f\|_p\|g\|_q} = \frac{1}{p} \left(\frac{|f(x)|}{\|f\|_p}\right)^p + \frac{1}{q} \left(\frac{|g(x)|}{\|g\|_q}\right)^q$$

for μ -a.e. $x \in X$. Since equality holds in (1) if and only if a = b we get that

$$\left(\frac{|f(x)|}{\|f\|_p}\right)^p = \left(\frac{|g(x)|}{\|g\|_q}\right)^q$$

for μ -a.e. $x \in X$. It is now enough to take $C_1 := \|g\|_q^q$ and $C_2 := \|f\|_p^p$ to obtain the thesis.

Problem 7. Let (X, \mathcal{M}, μ) be a measure space. For any given set $E \in \mathcal{M}$ we denote by $\mathscr{L}^2(E, \mu)$ the subspace of $\mathscr{L}^2(X, \mu)$ of functions that vanish in $X \setminus E$. Let $\{E_n\}$ be a sequence of pairwise disjoint sets $E_n \in \mathcal{M}$ with $X = \bigcup_{n=1}^{\infty} E_n$.

Prove that $\{\mathscr{L}^2(E_n,\mu)\}$ is a sequence of mutually orthogonal subspaces of $\mathscr{L}^2(X,\mu)$, and that every $f \in \mathscr{L}^2(X,\mu)$ can be written uniquely as $f = \sum_{n=1}^{\infty} f_n$ with $f_n \in \mathscr{L}^2(E_n,\mu)$ (prove that the series converges in norm).

Solution. Let $f_m \in \mathscr{L}^2(E_m, \mu)$ and $f_n \in \mathscr{L}^2(E_n, \mu)$ with $m \neq n$. Since $E_m \cap E_n = \emptyset$, we find that f_m vanishes on $E_n \subset X \setminus E_m^c$ and f_n vanishes on $E_m \subset X \setminus E_n^c$. Therefore we have

$$\int_X f_m f_n \, d\mu = 0,$$

so the two subspaces are mutually orthogonal with respect to the inner product. Let now $f \in \mathscr{L}^2(X, \mu)$ be given and define

$$f_n := f\chi_{E_n} \in \mathscr{L}^2(E_n, \mu) \quad \text{for all } n \in \mathbb{N}.$$

Then the functions f_n are mutually orthogonal as shown above. Since $f \in \mathscr{L}^2(X, \mu)$, we have $|f|^2 \in \mathscr{L}^1(X, \mu)$, and so $|f|^2 \mu$ is a finite measure. Define $F_N := \bigcup_{n=1}^N E_n$ for all $N \in \mathbb{N}$. Then $\{F_N\}$ is a monotone increasing sequence of measurable sets, with $X = \bigcup_{N=1}^{\infty} F_N$.

For any N we now write

$$\sum_{n=1}^{N} \int_{X} |f_{n}|^{2} d\mu = \sum_{n=1}^{N} \int_{E_{n}} |f|^{2} d\mu = \int_{F_{N}} |f|^{2} d\mu.$$

Sending $N \to \infty$ and using continuity from below, we obtain

$$\sum_{n=1}^{\infty} \int_{X} |f_{n}|^{2} d\mu = \lim_{N \to \infty} \int_{F_{N}} |f|^{2} d\mu = \int_{X} |f|^{2} d\mu,$$

which is finite.

Let now $M, N \in \mathbb{N}$ be given an assume without loss of generality that $N \leq M$. Then

$$\left\|\sum_{n=1}^{M} f_n - \sum_{n=1}^{N} f_n\right\|^2 = \left\|\sum_{n=N+1}^{M} f_n\right\|^2 = \int_X \left|\sum_{n=N+1}^{M} f_n\right|^2 d\mu = \sum_{n=N+1}^{M} \int_X |f_n|^2 d\mu,$$

which converges to zero as $M, N \to \infty$. In the last equality we used the orthogonality of the f_n . Using the Cauchy criterion, we conclude that the series $\sum_{n=1}^{\infty} f_n$ converges in norm. Multiplying the identity $f = \sum_{n=1}^{\infty} f_n$ by χ_{E_m} for some $m \in \mathbb{N}$, we find

$$f\chi_{E_m} = \left(\sum_{n=1}^{\infty} f_n\right)\chi_{E_m} = f_m\chi_{E_m} = f_m,$$

so that is the only way to define the functions f_m .

Problem 8. Let (X, \mathcal{M}, μ) be a measure space. Show that $f : X \longrightarrow [0, \infty)$ is measurable if and only if there exist nonnegative constants $\{c_n\}_{n=0}^{\infty}$ and measurable sets $\{E_n\}_{n=0}^{\infty}$ such that

$$f(x) = \sum_{n=0}^{\infty} c_n \chi_{E_n}(x).$$
 (2)

Solution. If (2) holds, then $f(x) = \lim_{N \to \infty} f_N(x)$, with functions f_N defined by

$$f_N(x) := \sum_{n=0}^N c_n \chi_{E_n}(x) \quad \text{for all } x \in X.$$

The function f is therefore the pointwise limit of the sequence measurable functions f_N , and so f is measurable as well.

For the converse direction, we use that for any measurable function $g: X \longrightarrow [0, \infty)$ and any $N \in \mathbb{N}$, the simple function

$$\phi(x) := \sum_{n=0}^{2^{2N}-1} \frac{n}{2^N} \chi_{F_n}, \quad \text{where} \quad F_n := g^{-1} \left(\left[\frac{n}{2^N}, \frac{n+1}{2^N} \right] \right)$$

satisfies $0 \leq \phi(x) \leq g(x)$ for all $x \in X$ and $g(x) - \phi(x) \leq 2^{-N}$ for all $x \in g^{-1}([0, 2^N))$. Starting from our function f we construct the simple function ϕ_1 such that $0 \leq f(x) - \phi_1(x) \leq 2^{-1}$ for all $x \in f^{-1}([0, 2^1))$.

Now observe that the function $f_1 := f - \phi_1$ is again nonnegative and measurable, so we can find a simple function ϕ_2 with $0 \leq f_1(x) - \phi_2(x) \leq 2^{-2}$ for all $x \in f_1^{-1}([0, 2^2))$.

We define recursively a sequence of simple functions ϕ_n and measurable functions f_n such that (1) $f_0 := f$;

- (2) ϕ_n is such that $0 \leq f_{n-1}(x) \phi_n(x) \leq 2^{-n}$ for every $x \in f_{n-1}^{-1}([0, 2^n));$
- (3) $f_n := f_{n-1} \phi_n$.

Since $0 \leq f_n(x) \leq f(x)$ we have that for every $x \in f^{-1}([0, 2^n))$ it holds

$$0 \le f(x) - \sum_{i=0}^{n} \phi_i(x) \le 2^{-n}.$$

Since the function f takes only finite values, this implies that for all $x \in X$ we have

$$f(x) = \sum_{n=0}^{\infty} \phi_n(x).$$

If we now write

$$\phi_n(x) =: \sum_{i=0}^{N_n} c_{n,i} \chi_{E_{n,i}}$$

for suitable nonnegative constants $c_{n,i}$ and measurable sets $E_{n,i}$, then we obtain that

$$f(x) = \sum_{n=0}^{\infty} \sum_{i=0}^{N_n} c_{n,i} \chi_{E_{n,i}}.$$

The thesis follows then by renaming the sets $E_{n,i}$ and the numbers $c_{n,i}$.