Spring 2009

Problem 1. Let $X:=(0, \infty)$ and $1<p<\infty$. For any $f \in \mathscr{L}^{p}(X, m)$, where $m$ is the Lebesgue measure, define the function

$$
F(x):=\frac{1}{x} \int_{0}^{x} f(t) d t \quad \text { for all } x \in X
$$

Then prove Hardy's inequality

$$
\|F\| \leqslant \frac{p}{p-1}\|f\|
$$

Hint: Assume first that $f \in C_{c}(X)$ and $f \geqslant 0$, i.e. $f$ is a continuous and positive function with compact support in $X$. Integration by parts gives

$$
\int_{0}^{\infty} F^{p}(x) d x=-p \int_{0}^{\infty} F^{p-1}(x) x F^{\prime}(x) d x
$$

Note that $x F^{\prime}(x)=f(x)-F(x)$.
Solution. Observe first that, since $f \in \mathscr{L}^{p}(X, m), f \in \mathscr{L}^{1}((0, x], m)$ for every $x \in X$. Thus $F(x)$ is well defined.
Let $f \in C_{c}(X)$ and $f \geqslant 0$. Then there exists a number $\delta>0$ such that spt $f \subset\left[\delta, \delta^{-1}\right]$. This implies that $F(x)=0$ if $x \leqslant \delta$ and $F(x)=C / x$ for $x \geqslant \delta^{-1}$, with $C>0$ some constant. Hence $F(x) \in \mathscr{L}^{p}(X, m)$.
Since $f$ is continuous, the function $F$ is continuously differentiable, by the fundamental theorem of calculus. Integration by parts then gives

$$
\int_{0}^{\infty} F^{p}(x) d x=-p \int_{0}^{\infty} F^{p-1}(x) x F^{\prime}(x) d x=-p \int_{0}^{\infty} F^{p-1}(x) f(x) d x+p \int_{0}^{\infty} F^{p}(x) d x
$$

since $x F^{\prime}(x)=f(x)-F(x)$. We used that $F$ vanishes at the boundary. Then

$$
\int_{0}^{\infty} F^{p}(x) d x \leqslant \frac{p}{p-1} \int_{0}^{\infty} F^{p-1}(x) f(x) d x
$$

Applying Hölder inequality to the right hand side, we obtain

$$
\int_{0}^{\infty} F^{p}(x) d x \leqslant \frac{p}{p-1}\left(\int_{0}^{\infty} F^{p}(x) d x\right)^{(p-1) / p}\left(\int_{0}^{\infty} f^{p}(x) d x\right)^{1 / p}
$$

Then Hardy's inequality follows because $p$ and $p /(p-1)$ are conjugate exponents.
For general nonnegative $f \in \mathscr{L}^{p}(X, m)$ consider a sequence of nonnegative functions $f_{n} \in C_{c}(X)$ with $f_{n} \longrightarrow f$ a.e. monotonically.
By the monotone convergence theorem, we then have

$$
F_{n}(x):=\frac{1}{x} \int_{0}^{x} f_{n}(t) d t \longrightarrow \frac{1}{x} \int_{0}^{x} f(t) d t=F(x)
$$

for all $x \in X$ monotonically.
Hence $F_{n}^{p}(x) \longrightarrow F^{p}(x)$ and $f_{n}^{p}(x) \longrightarrow f^{p}(x)$ monotonically.
Applying the monotone convergence theorem again, we conclude that

$$
\|F\|=\lim _{n \rightarrow \infty}\left\|F_{n}\right\| \leqslant \frac{p}{p-1} \lim _{n \rightarrow \infty}\left\|f_{n}\right\|=\frac{p}{p-1}\|f\|
$$

If $f$ is real- or complex-valued, then we use that

$$
|F(x)|=\left|\frac{1}{x} \int_{0}^{x} f(t) d t\right| \leqslant \frac{1}{x} \int_{0}^{x}|f(t)| d t \quad \text { for all } x \in X
$$

Applying Hardy's inequality to $|f|$ instead of $f$ we obtain

$$
\|F\| \leqslant\left\|\frac{1}{x} \int_{0}^{x}|f(t)| d t\right\| \leqslant \frac{p}{p-1}\||f|\|=\frac{p}{p-1}\|f\|
$$

Problem 2. Let $X:=[0,1]$.
(1) For any $n \geqslant 2$ let $A_{n}$ denote the set of all functions $f \in C(X)$ for which there exists a point $x \in\left[0,1-\frac{1}{n}\right]$ such that $|f(x+h)-f(x)| \leqslant n h$ for all $0<h<\frac{1}{n}$. Show that $A_{n}$ is nowhere dense in $C(X)$ with the uniform topology.
(2) Use the above result to show that the set of functions on $X$ that do not admit left nor right derivatives at any point of $X$ is dense in $C(X)$ in the uniform topology.

Solution. For any $n \geqslant 2$ let $A_{n}$ be defined as above. We prove that $A_{n}$ is closed. Let $\left\{f_{k}\right\} \subset A_{n}$ such that $\lim _{k \rightarrow \infty}\left\|f-f_{k}\right\|_{\infty}=0$. For every $k$ there exists $x_{k}$ such that $\left|f_{k}\left(x_{k}+h\right)-f_{k}\left(x_{k}\right)\right| \leqslant n h$ for all $0<h<\frac{1}{n}$. Since $\left[0,1-\frac{1}{n}\right]$ is compact there exists a subsequence $x_{k_{j}}$ that converges to a point $x \in\left[0,1-\frac{1}{n}\right]$. We then have that $\lim _{j \rightarrow \infty} f_{k_{j}}\left(x_{k_{j}}+h\right)=f(x+h)$ for every $h$, hence

$$
|f(x+h)-f(x)| \leqslant n h \quad \text { for all } 0<h<\frac{1}{n}
$$

and so $f \in A_{n}$.
We now prove that $A_{n}$ is nowhere dense in $C(X)$, by showing that in any $\varepsilon$-neighborhood around any function $f \in A_{n}$, there exists $\tilde{f} \in C(X) \backslash A_{n}$. Hence the interior of $A_{n}$ is empty.
To this end, let $g \in C(X)$ be such that $|g(x)| \leq \varepsilon$ and for every $x$ we have $|g(x+h)-g(x)| \geq 3 h n$ for $h>0$ small enough (depending on $x$ ). For example, let

$$
g(x):= \begin{cases}3 n x & 0 \leqslant x \leqslant \frac{\varepsilon}{3 n} \\ -3 n x+2 \varepsilon & \frac{\varepsilon}{3 n} \leqslant x \leqslant \frac{2 \varepsilon}{3 n}\end{cases}
$$

and $g(x):=g\left(x-\frac{2 \varepsilon}{3 n}\right)$ for $x \notin\left[0, \frac{2 \varepsilon}{3 n}\right]$.
Given $f \in A_{n}$, we define $\tilde{f}:=f+g$, which implies that $\|\tilde{f}-f\|_{\infty}=\|g\|_{\infty}=\varepsilon$.
But for every $x \in\left[0,1-\frac{1}{n}\right]$ and $h$ small enough we have

$$
|\tilde{f}(x+h)-\tilde{f}(x)| \geqslant|g(x+h)-g(x)|-|f(x+h)-f(x)| \geqslant 3 n h-n h>n h
$$

so that $\tilde{f} \notin A_{n}$.
From the above result it follows that for every $n$ the set $A_{n}^{c}$ is open and dense in $C(X)$. From Baire's category theorem we know that $A=\bigcap_{n=2}^{\infty} A_{n}^{c}$ is dense in $C(X)$. Observe that if $f \in A$, then for every $x \in X$ and every $n \geqslant 2$ there exists a $0<h<\frac{1}{n}$ such that

$$
\left|\frac{f(x+h)-f(x)}{h}\right|>n
$$

so that the right derivative of $f$ at $x$ does not exists.
In a similar fashion, we let $B_{n}$ denote the set of all functions $f \in C(X)$ for which there exists a point $x \in\left[\frac{1}{n}, 1\right]$ such that $|f(x-h)-f(x)| \leqslant n h$ for all $0<h<\frac{1}{n}$. Then one can show that $B_{n}$ is closed and nowhere dense, for all $n \geqslant 2$. Defining $B:=\bigcap_{n=2}^{\infty} B_{n}^{c}$, we use again Baire's category theorem to conclude that $B$ is dense in $C(X)$. If $f \in B$, then for every $x \in X$ the left derivative of $f$ at $x$ does not exists.
Finally the set $C:=A \cup B$ is dense and if $f \in C$ then for every $x \in X$ the left and right derivatives of $f$ at $x$ do not exist.

Problem 3. Let $B$ be a Banach space.
(1) Prove that if $T: X \longrightarrow X$ is a bounded linear operator with $\|$ id $-T \|<1$, where id is the identity operator on $X$, then $T$ is invertible.
(2) Let $T$ be as before and consider another bounded linear operator $S: X \longrightarrow X$ with $\|S-T\|<\left\|T^{-1}\right\|^{-1}$. Prove that $S$ is invertible. Show that the set of invertible bounded linear operators from $X$ to itself is an open set in the operator norm topology.

Solution. We write $T=\mathrm{id}-(\mathrm{id}-T)$ and claim that

$$
(\mathrm{id}-(\mathrm{id}-T))^{-1}=\sum_{k=0}^{\infty}(\mathrm{id}-T)^{k}
$$

We note first that the series is absolutely convergent because

$$
\sum_{k=0}^{\infty}\left\|(\mathrm{id}-T)^{k}\right\| \leqslant \sum_{k=0}^{\infty}\|\mathrm{id}-T\|^{k}
$$

which is finite because $\|\mathrm{id}-T\|<1$ and so the series is a geometric series.
Absolute convergence implies convergence in norm.
For any $N \in \mathbb{N}$ we can now write

$$
(\mathrm{id}-(\mathrm{id}-T)) \circ \sum_{k=0}^{N}(\mathrm{id}-T)^{k}=\mathrm{id}-(\mathrm{id}-T)^{N+1}
$$

Sending $N \rightarrow \infty$ and using the fact that

$$
\left\|(\operatorname{id}-T)^{N+1}\right\| \leqslant\|\operatorname{id}-T\|^{N+1} \longrightarrow 0
$$

again because $\|\mathrm{id}-T\|<1$, we prove the claim.
Note now that

$$
\left\|S \circ T^{-1}-\mathrm{id}\right\|=\left\|(S-T) \circ T^{-1}\right\| \leqslant\|S-T\|\left\|T^{-1}\right\|<1
$$

by assumption. Applying (1), we find that the operator $S \circ T^{-1}$ is invertible, so

$$
\left(S \circ T^{-1}\right)^{-1}=T \circ S^{-1}
$$

exists. Since $T$ is invertible by assumption, we conclude that $S$ is invertible as well and

$$
S^{-1}=T^{-1} \circ\left(S \circ T^{-1}\right)^{-1}
$$

This shows that the set of invertible operators is open because for any invertible operator $T$, the open ball around $T$ with radius less than $\left\|T^{-1}\right\|^{-1}$ is also contained in the set of invertible operators.

Problem 4. Let $X$ be a compact metric space and $\mathcal{A}$ a closed algebra of continuous real-valued functions separating points in $X$.
(1) Show that if $f \in \mathcal{A}$ then $\sqrt{|f|} \in \mathcal{A}$.
(2) Show that $\mathcal{A}$ is either all of $C(X)$ or there exists a point $x \in X$ such that

$$
\mathcal{A}=\{f \in C(X) \mid f(x)=0\} .
$$

Hint: Prove first that there exists a sequence of polynomials $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ such that $P_{n}(z) \longrightarrow \sqrt{z}$ uniformly on $[\varepsilon, 1]$ for any $\varepsilon>0$. To this end, consider the iteration

$$
P_{1}(z):=0 \quad \text { and } \quad P_{n+1}(z):=P_{n}(z)+\frac{1}{2}\left(z-P_{n}(z)^{2}\right) \quad \text { for all } z \in[0,1], n \in \mathbb{N}
$$

Solution. Let the polynomials $P_{n}$ be defined as above and note that by induction we have that $P_{n}(0)=0$ for all $n \in \mathbb{N}$. Observe now that for all $z \in[0,1]$ it holds

$$
z-P_{n+1}(z)^{2}=\left(z-P_{n}(z)^{2}\right)\left(1-P_{n}(z)-\frac{1}{4}\left(z-P_{n}(z)^{2}\right)\right)
$$

and that if $0 \leq P_{n}(z) \leq \sqrt{z}$ then

$$
0 \leq 1-\sqrt{z} \leq 1-P_{n}(z)-\frac{1}{4}\left(z-P_{n}(z)^{2}\right) \leq 1-\frac{1}{4} z
$$

This easily implyes that $z-P_{n+1}(z)^{2} \geq 0$ (since it is the product of two positive quantities) and thus $P_{n+1}(z) \geq P_{n}(z) \geq 0$. By induction again we have that $P_{n}(z)$ is an increasing sequence with $0 \leq P_{n}(z) \leq \sqrt{z}$ for every $n$ and that $P_{n}(z)$ converges uniformly to $\sqrt{z}$ in $C([\epsilon, 1])$ for every $\epsilon$. Since $\sqrt{z}$ and $P_{n}(z)$ are continuous functions the convergence is uniform in $C([0,1])$.
Given $f \in \mathcal{A}$ set $c=\|f\|_{\infty}$. We have that $P_{n}\left(f^{2} / c^{2}\right) \in \mathcal{A}$ for every $n$. Moreover, since $0 \leq f^{2} / c^{2} \leq$ $1, P_{n}\left(f^{2} / c^{2}\right)$ converges uniformly to $|f| / c$. Hence $|f| \in \mathcal{A}$. By the same argument we get that $P_{n}(|f| / c)$ converges uniformly to $\sqrt{|f| / c}$ and thus $\sqrt{|f|} \in \mathcal{A}$.
(2) Suppose that there is no $x \in X$ such that $f(x)=0$ for all $f \in \mathcal{A}$. Thus for every $x \in X$ we can find $f_{x} \in \mathcal{A}$ such that $f_{x}(x) \neq 0$. Since $f_{x}$ is continuous there exists an open neighborhood $U_{x}$ of $x$ such that $f_{x}(y) \neq 0$ for all $y \in U_{x}$.
Observe that $\left\{U_{x}\right\}_{x \in X}$ is an open covering of $X$. Since $X$ is compact, there exists a finite subcovering $U_{x_{i}}, i=1, \ldots, n$. Consider now the function $g=\sum_{i=1}^{n} f_{x_{i}}^{2}$. Clearly $g \in \mathcal{A}$ and $g(x)>0$ for all $x \in X$. Dividing $g$ by its norm, we may assume that $g(x) \leqslant 1$ for every $x \in X$. Moreover, since $X$ is compact there exists a constant $\varepsilon>0$ with $\varepsilon \leqslant g(x)$ for all $x \in X$.
We now define the functions $h_{N}(x):=\sqrt[2 N]{g(x)}$ for all $x \in X$ and $N \in \mathbb{N}$, which is in $\mathcal{A}$ by (1). We have that $\lim _{n \rightarrow \infty} h_{N}(x)=1$ for every $x \in X$. In fact, the convergence is uniformly because $g(x) \geqslant \varepsilon>0$. Since $\mathcal{A}$ is closed, we conclude that the constant functions are in $\mathcal{A}$.
Thus $\mathcal{A}$ is an algebra of continuous function that separates points and contains the constant functions. Therefore, by the Stone-Weierstrass theorem, we have that $\mathcal{A}=C(X)$.
On the other hand, if there exists $x \in X$ such that $f(x)=0$ for all $f \in \mathcal{A}$, then for every $y \neq x$ there exists $f_{y} \in \mathcal{A}$ with $f_{y}(y) \neq 0$ because $\mathcal{A}$ separates points. That is, there can at most exist one point in $X$ at which all functions in $\mathcal{A}$ vanish. The same argument as before then implies that $\mathcal{A}$ contains all continuous functions $f$ with $f(x)=0$.

Problem 5. Let $X$ be some set and $\mathscr{P}(X)$ its power set. Consider a map $K: \mathscr{P}(X) \longrightarrow \mathscr{P}(X)$ with the following properties:
(1) $K(\varnothing)=\varnothing$;
(2) $A \subset K(A)$ for all $A$;
(3) $K(K(A))=K(A)$ for all $A$;
(4) $K(A \cup B)=K(A) \cup K(B)$ for all $A, B$,
and let $\mathscr{F}:=\{A \subset X: K(A)=A\}$. Prove that $\varnothing, X \in \mathscr{F}$, and that $\mathscr{F}$ is closed under arbitrary intersections and finite unions. It follows that $\mathscr{T}:=\left\{U \subset X: U^{c} \in \mathscr{F}\right\}$ is a topology. Prove that for every $A$, the set $K(A)$ is the closure of $A$ with respect to the topology $\mathscr{T}$.

Solution. Since $A \subset B$ we have $B=A \cup B$. Then (4) implies

$$
K(B)=K(A \cup B)=K(A) \cup K(B) \supset K(A)
$$

By (1), we have $K(\varnothing)=\varnothing$ and thus $\varnothing \in \mathscr{F}$.
By (2), we have $X \subset K(X)$ and clearly $K(X) \subset X$. Hence $X \in \mathscr{F}$.
Let $A_{\lambda} \in \mathscr{F}, \lambda \in \Lambda$, be an arbitrary collection of sets. Then $\bigcap_{\lambda \in \Lambda} A_{\lambda} \subset A_{\beta}$ for all $\beta$. Therefore

$$
K\left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right) \subset K\left(A_{\beta}\right)
$$

for all $\beta$, and so

$$
K\left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right) \subset \bigcap_{\beta \in \Lambda} K\left(A_{\beta}\right)=\bigcap_{\beta \in \Lambda} A_{\beta} \subset K\left(\bigcap_{\beta \in \Lambda} A_{\beta}\right)
$$

The equality follows from the assumption $K\left(A_{\beta}\right)=A_{\beta}$ for all $\beta$, and the last inclusion from (2). We conclude that all terms are in fact equal, hence $\mathscr{F}$ is closed under arbitrary intersections. Let now $A_{1}, A_{2} \in \mathscr{F}$ be given. From (4) we obtain

$$
K\left(A_{1} \cup A_{2}\right)=K\left(A_{1}\right) \cup K\left(A_{2}\right)=A_{1} \cup A_{2}
$$

The last equality follows from the assumption that $K\left(A_{i}\right)=A_{i}$ for $i=1,2$. By induction, we have that $\mathscr{F}$ is closed under finite unions.
The collection $\mathscr{F}$ contains all closed sets of the topology $\mathscr{T}$ because $B$ being closed is, by definition, equivalent to $B^{c}$ being open, that is $B^{c} \in \mathscr{T}$. This in turn is equivalent to $\left(B^{c}\right)^{c}=B \in \mathscr{F}$. Note that for any $A$, the set $K(A) \in \mathscr{F}$ because of (3).
Let now $\bar{A}:=\bigcap\{B \in \mathscr{F}: A \subset B\}$ be the closure of $A$ in the topology $\mathscr{T}$.
Since $A \subset K(A)$ by $(2)$, and since $K(A) \in \mathscr{F}$, we have $\bar{A} \subset K(A)$.
On the other hand, since $\mathscr{F}$ is closed under arbitrary intersections, we have $\bar{A} \in \mathscr{F}$. Then $A \subset \bar{A}$ implies

$$
K(A) \subset K(\bar{A})=\bar{A} \subset K(A)
$$

and so all sets are in fact equal.

Problem 6. Let $(X, \mathscr{M}, \mu)$ be a measure space and consider functions $f \in L^{p}(\mu)$ and $g \in L^{q}(\mu)$ with $1<p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. Show that $\int_{X}|f g| d \mu=\|f\|_{p}\|g\|_{q}$ if and only if there exist constants $C_{1}, C_{2} \geqslant 0$, not both equal to zero, such that $C_{1}|f|^{p}=C_{2}|g|^{q}$.
Hint: Show first that for all $a, b \geqslant 0$ and $t \in(0,1)$ we have $a^{t} b^{1-t} \leqslant t a+(1-t) b$, with equality holding if and only if $b=a$. To this end, consider $h(x):=1-t+t x-x^{t}$ for $x \in[0,1]$.

Solution. Let $h$ be defined as above and note that $h^{\prime}(x)=t\left(1-x^{t-1}\right)<0$ for all $x \in[0,1]$ and $t \in(0,1)$. Since $h(1)=0$ we conclude that $h(x)>0$ for all $x \in[0,1)$. With $x:=a / b$ we find

$$
\begin{equation*}
a^{t} b^{1-t} \leqslant t a+(1-t) b \tag{1}
\end{equation*}
$$

and equality holds if and only if $a=b$. If $b=0$, then there is nothing to prove.
Assume now that $C_{1}|f|^{p}=C_{2}|g|^{q}$ with $C_{1}>0$. We have

$$
\begin{aligned}
\int_{X}|f g| d \mu=\left(\frac{C_{2}}{C_{1}}\right)^{\frac{1}{p}} \int_{X}|g|^{q} d \mu & =\left[\int_{X}\left(\frac{C_{2}}{C_{1}}\right)|g|^{q} d \mu\right]^{\frac{1}{p}}\left[\int_{X}|g|^{q} d \mu\right]^{\frac{1}{q}} \\
& =\left[\int_{X}|f|^{p} d \mu\right]^{\frac{1}{p}}\left[\int_{X}|g|^{q} d \mu\right]^{\frac{1}{q}}=\|f\|_{p}\|g\|_{q}
\end{aligned}
$$

If $C_{1}=0$, then $g=0$ and the identity follows trivially.
For the converse direction, assume that $\int_{X}|f g| d \mu=\|f\|_{p}\|g\|_{q}$. This identity is certainly satisfied if $f=0$, in which case we may take $C_{1}=1$ and $C_{2}=0$ (and thus $g$ is arbitrary). In a similar way, we may argue if $g=0$.
Assume therefore that neither $f$ or $g$ are the zero function. Now fix $x \in X$ and let

$$
t:=\frac{1}{p}, \quad a:=\left(\frac{|f(x)|}{\|f\|_{p}}\right)^{p}, \quad b:=\left(\frac{|g(x)|}{\|g\|_{q}}\right)^{q}
$$

which are well-defined since $\|f\|_{p} \neq 0$ and $\|g\|_{q} \neq 0$. From inequality (1) we obtain

$$
\frac{1}{p}\left(\frac{|f(x)|}{\|f\|_{p}}\right)^{p}+\frac{1}{q}\left(\frac{|g(x)|}{\|g\|_{q}}\right)^{q}-\frac{|f(x) g(x)|}{\|f\|_{p}\|g\|_{q}} \leqslant 0
$$

Integrating we get

$$
\int_{X}\left[\frac{1}{p}\left(\frac{|f(x)|}{\|f\|_{p}}\right)^{p}+\frac{1}{q}\left(\frac{|g(x)|}{\|g\|_{q}}\right)^{q}-\frac{|f(x) g(x)|}{\|f\|_{p}\|g\|_{q}}\right] d \mu=\frac{1}{p}+\frac{1}{q}-\frac{\int_{X}|f(x) g(x)| d \mu}{\|f\|_{p}\|g\|_{q}}=0
$$

where the last equality follows from our hypothesis. This implies that

$$
\frac{|f(x) g(x)|}{\|f\|_{p}\|g\|_{q}}=\frac{1}{p}\left(\frac{|f(x)|}{\|f\|_{p}}\right)^{p}+\frac{1}{q}\left(\frac{|g(x)|}{\|g\|_{q}}\right)^{q}
$$

for $\mu$-a.e. $x \in X$. Since equality holds in (1) if and only if $a=b$ we get that

$$
\left(\frac{|f(x)|}{\|f\|_{p}}\right)^{p}=\left(\frac{|g(x)|}{\|g\|_{q}}\right)^{q}
$$

for $\mu$-a.e. $x \in X$. It is now enough to take $C_{1}:=\|g\|_{q}^{q}$ and $C_{2}:=\|f\|_{p}^{p}$ to obtain the thesis.

Problem 7. Let $(X, \mathscr{M}, \mu)$ be a measure space. For any given set $E \in \mathscr{M}$ we denote by $\mathscr{L}^{2}(E, \mu)$ the subspace of $\mathscr{L}^{2}(X, \mu)$ of functions that vanish in $X \backslash E$. Let $\left\{E_{n}\right\}$ be a sequence of pairwise disjoint sets $E_{n} \in \mathscr{M}$ with $X=\bigcup_{n=1}^{\infty} E_{n}$.
Prove that $\left\{\mathscr{L}^{2}\left(E_{n}, \mu\right)\right\}$ is a sequence of mutually orthogonal subspaces of $\mathscr{L}^{2}(X, \mu)$, and that every $f \in \mathscr{L}^{2}(X, \mu)$ can be written uniquely as $f=\sum_{n=1}^{\infty} f_{n}$ with $f_{n} \in \mathscr{L}^{2}\left(E_{n}, \mu\right)$ (prove that the series converges in norm).

Solution. Let $f_{m} \in \mathscr{L}^{2}\left(E_{m}, \mu\right)$ and $f_{n} \in \mathscr{L}^{2}\left(E_{n}, \mu\right)$ with $m \neq n$. Since $E_{m} \cap E_{n}=\varnothing$, we find that $f_{m}$ vanishes on $E_{n} \subset X \backslash E_{m}^{c}$ and $f_{n}$ vanishes on $E_{m} \subset X \backslash E_{n}^{c}$. Therefore we have

$$
\int_{X} f_{m} f_{n} d \mu=0
$$

so the two subspaces are mutually orthogonal with respect to the inner product.
Let now $f \in \mathscr{L}^{2}(X, \mu)$ be given and define

$$
f_{n}:=f \chi_{E_{n}} \in \mathscr{L}^{2}\left(E_{n}, \mu\right) \quad \text { for all } n \in \mathbb{N} .
$$

Then the functions $f_{n}$ are mutually orthogonal as shown above.
Since $f \in \mathscr{L}^{2}(X, \mu)$, we have $|f|^{2} \in \mathscr{L}^{1}(X, \mu)$, and so $|f|^{2} \mu$ is a finite measure.
Define $F_{N}:=\bigcup_{n=1}^{N} E_{n}$ for all $N \in \mathbb{N}$. Then $\left\{F_{N}\right\}$ is a monotone increasing sequence of measurable sets, with $X=\bigcup_{N=1}^{\infty} F_{N}$.
For any $N$ we now write

$$
\sum_{n=1}^{N} \int_{X}\left|f_{n}\right|^{2} d \mu=\sum_{n=1}^{N} \int_{E_{n}}|f|^{2} d \mu=\int_{F_{N}}|f|^{2} d \mu
$$

Sending $N \rightarrow \infty$ and using continuity from below, we obtain

$$
\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right|^{2} d \mu=\lim _{N \rightarrow \infty} \int_{F_{N}}|f|^{2} d \mu=\int_{X}|f|^{2} d \mu
$$

which is finite.
Let now $M, N \in \mathbb{N}$ be given an assume without loss of generality that $N \leqslant M$. Then

$$
\left\|\sum_{n=1}^{M} f_{n}-\sum_{n=1}^{N} f_{n}\right\|^{2}=\left\|\sum_{n=N+1}^{M} f_{n}\right\|^{2}=\int_{X}\left|\sum_{n=N+1}^{M} f_{n}\right|^{2} d \mu=\sum_{n=N+1}^{M} \int_{X}\left|f_{n}\right|^{2} d \mu
$$

which converges to zero as $M, N \rightarrow \infty$. In the last equality we used the orthogonality of the $f_{n}$. Using the Cauchy criterion, we conclude that the series $\sum_{n=1}^{\infty} f_{n}$ converges in norm. Multiplying the identity $f=\sum_{n=1}^{\infty} f_{n}$ by $\chi_{E_{m}}$ for some $m \in \mathbb{N}$, we find

$$
f \chi_{E_{m}}=\left(\sum_{n=1}^{\infty} f_{n}\right) \chi_{E_{m}}=f_{m} \chi_{E_{m}}=f_{m}
$$

so that is the only way to define the functions $f_{m}$.

Problem 8. Let $(X, \mathscr{M}, \mu)$ be a measure space. Show that $f: X \longrightarrow[0, \infty)$ is measurable if and only if there exist nonnegative constants $\left\{c_{n}\right\}_{n=0}^{\infty}$ and measurable sets $\left\{E_{n}\right\}_{n=0}^{\infty}$ such that

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c_{n} \chi_{E_{n}}(x) \tag{2}
\end{equation*}
$$

Solution. If (2) holds, then $f(x)=\lim _{N \rightarrow \infty} f_{N}(x)$, with functions $f_{N}$ defined by

$$
f_{N}(x):=\sum_{n=0}^{N} c_{n} \chi_{E_{n}}(x) \quad \text { for all } x \in X
$$

The function $f$ is therefore the pointwise limit of the sequence measurable functions $f_{N}$, and so $f$ is measurable as well.
For the converse direction, we use that for any measurable function $g: X \longrightarrow[0, \infty)$ and any $N \in \mathbb{N}$, the simple function

$$
\phi(x):=\sum_{n=0}^{2^{2 N}-1} \frac{n}{2^{N}} \chi_{F_{n}}, \quad \text { where } \quad F_{n}:=g^{-1}\left(\left[\frac{n}{2^{N}}, \frac{n+1}{2^{N}}\right)\right)
$$

satisfies $0 \leqslant \phi(x) \leqslant g(x)$ for all $x \in X$ and $g(x)-\phi(x) \leqslant 2^{-N}$ for all $x \in g^{-1}\left(\left[0,2^{N}\right)\right)$.
Starting from our function $f$ we construct the simple function $\phi_{1}$ such that $0 \leqslant f(x)-\phi_{1}(x) \leqslant 2^{-1}$ for all $x \in f^{-1}\left(\left[0,2^{1}\right)\right)$.
Now observe that the function $f_{1}:=f-\phi_{1}$ is again nonnegative and measurable, so we can find a simple function $\phi_{2}$ with $0 \leqslant f_{1}(x)-\phi_{2}(x) \leqslant 2^{-2}$ for all $x \in f_{1}^{-1}\left(\left[0,2^{2}\right)\right)$.
We define recursively a sequence of simple functions $\phi_{n}$ and measurable functions $f_{n}$ such that
(1) $f_{0}:=f$;
(2) $\phi_{n}$ is such that $0 \leqslant f_{n-1}(x)-\phi_{n}(x) \leqslant 2^{-n}$ for every $x \in f_{n-1}^{-1}\left(\left[0,2^{n}\right)\right)$;
(3) $f_{n}:=f_{n-1}-\phi_{n}$.

Since $0 \leqslant f_{n}(x) \leqslant f(x)$ we have that for every $x \in f^{-1}\left(\left[0,2^{n}\right)\right)$ it holds

$$
0 \leqslant f(x)-\sum_{i=0}^{n} \phi_{i}(x) \leqslant 2^{-n}
$$

Since the function $f$ takes only finite values, this implies that for all $x \in X$ we have

$$
f(x)=\sum_{n=0}^{\infty} \phi_{n}(x)
$$

If we now write

$$
\phi_{n}(x)=: \sum_{i=0}^{N_{n}} c_{n, i} \chi_{E_{n, i}}
$$

for suitable nonnegative constants $c_{n, i}$ and measurable sets $E_{n, i}$, then we obtain that

$$
f(x)=\sum_{n=0}^{\infty} \sum_{i=0}^{N_{n}} c_{n, i} \chi_{E_{n, i}} .
$$

The thesis follows then by renaming the sets $E_{n, i}$ and the numbers $c_{n, i}$.

