
Algebra Comprehensive Exam

— Spring 2010 —

Instructions: Complete five of the eight problems below. If you attempt more than five questions,
then clearly indicate which five should be graded.

(1) If a group G contains a subgroup H of finite index and H 6= G then it contains a normal
subgroup of finite index (that is not equal to all of G). Hint: consider actions of G.

Solution: Let C be the set of cosets of H in G. The group G acts on C, that is given g ∈ G
there is a bijection σg : C → C which sends a coset g′H to (gg′)H. If SC denotes the group
of permutations of C then we have a homomorphism r : G → SC . We know SC is finite
since C is, thus G/ ker r, being isomorphic to a subgroup of SC , is finite. Since [G : ker r]
equals the order of G/ ker r we know that ker r is a finite index subgroup of G and kernels
are always normal so it is also normal. Since H 6= G, we have ker r 6= G.

(2) If G is a non-abelian group of order p3 for p a prime, then the center of G is the subgroup
generated by all elements of the from aba−1b−1 for a, b ∈ G.

Solution: The center Z(G) of G is a normal subgroup of G and has index either 1, p, p2 or
p3. If the index is not 1 since that would imply G is abelian. If the index is p then G/Z(G)
would be a group of order p and hence a cyclic group. This implies that G is abelian (see
* below), thus the index cannot be p. From the class equation we know the center of a
group whose order is a prime power cannot be trivial. Thus the index is not p3. Thus the
index of Z(G) in G is p2 and Z(G) has order p. So G/Z(G) is a group of order p2. This
implies G/Z(G) is abelian (if H is a group of order p2 then suppose Z(H) 6= H, from above
we know Z(H) 6= 0 so H/Z(H) is a cyclic group and hence H is abelian). So if a, b are
any elements in G we have abZ(G) = (aZ(G))(bZ(G)) = (bZ(G))(aZ(G)) = baZ(G) and
hence aba−1b−1 ∈ Z(G). Thus the commutator subgroup [G, G] is a subgroup of Z(G). The
subgroup [G, G] must thus have order 0 or p. If its oder was 0 then G would be abelian so
we know Z(G) = [G, G].

Proof of *: Since G/Z(G) is cyclic there is some g ∈ G such that any element in G is of
the from gnh for some n and h ∈ Z(G). Given two elements a and b in G write them as
a = gnz and b = gmz′, with z, z′ ∈ Z(G). We now see ab = gnzgmz′ = gngmzz′ = gmgnz′z =
gmz′gnz = ab.

(3) Prove that two n×n complex matrices A, B have the same characteristic polynomial if and
only if tr(Ak) = tr(Bk) for all integers k ≥ 1.

Solution:

(⇒) Suppose A and B have the same characteristic polynomial. Then A and B have the
same eigenvalues, say λ1, . . . , λn. So λk

1
, . . . , λk

n are the eigenvalues of Ak and Bk. Hence
tr(Ak) = tr(Bk), for all k ≥ 1.

(⇐) Let ek be the kth elementary symmetric polynomial in n variables x1, . . . xn, That is

ek(x1, . . . , xn) =
∑

1≤j1<···<jk≤n

xj1 · · ·xjn
.
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We know that any symmetric polynomial in x1, . . . , xn can be written as some polynomial
combination of e1, . . . , en. Let

pk(x1, . . . , xn) =

n∑

i=1

xk
i .

From the above fact we know that each pk is some polynomial combination of the ei. Notice
that e1 = p1. One can also easily see that 2e2 = p2

1
−p2 = p1e1−p2. In general from Newton’s

identity we know that pk can be written as a combination of the ej , j < k and pi, i ≤ k.
Since tr(A) = tr(B) we know the contact term of their characteristic polynomials is the

same since the contact term for, say A, is e1(λ1, . . . , λn) = p1(λ1, . . . , λn) = tr(A) and
similarly for B. Since the linear term in the characteristic polynomial is e2 evaluated on
the eigenvalues and this can be written in terms of e1 and the traces of the powers of the
matrices, we see that the linear term is the same as well. We can inductively see that each
successive term in the characteristic polynomials of A and B are the same.

(4) Let K be field extension of the field F and α ∈ K. Show that the degree of F (α) over F is
finite if and only if α is algebraic over F. When proving finite dimensionality of F (α) over
F construct a basis for F (α).

Solution: (⇒) Since F (α) is finite dimensional over F the infinite the sequence 1, α, α2, . . . , αn, . . .
is linearly dependent. Let n be the smallest positive integer such that 1, α, . . . , αn is depen-
dent over F. There exists c0, . . . , cn such that c0 + c1α + · · · + cnα

n = 0; so α satisfies the
polynomial c0 + c1x + · · · + cnx

n ∈ F [x].
(⇐) Since α is algebraic over F it is a root of some polynomial in F [x]. Let p(x) =

xn+cn−1x
n−1+· · ·+c1x+c0 ∈ F [x] be a polynomial of minimal degree with α as a root. Any

element in F (α) is some linear combination of powers of α so it is of the form f(α) for some
element f(x) ∈ F [x]. By the Euclidean Algorithm in F [x] we know there are polynomials
q(x) and r(x) with the degree of r(x) less than n such that f(x) = p(x)q(x) + r(x). Thus
our given element is of the form

f(α) = p(α)q(α) + r(α) = r(α).

Since the degree of r is less than n that means there are constants d0, . . . , dn−1 such that
f(α) = d0+d1α+· · ·+dn−1α

n−1. So clearly 1, α, . . . , αn−1 spans F (α). This set is also linearly
independent since if not then there would be some degree n−1 polynomial f(x) ∈ F [x] such
that f(α) = 0 contradicting the minimality of p(x).

(5) Let A be a commutative ring with identity and let N be the ideal of nilpotent elements. It
is known, and you may use without proof, that N is the intersection of all prime ideals in
A. Show the following are equivalent:
(a) A has one prime ideal,
(b) every element of A is either a unit or nilpotent,
(c) A/N is a field.

Solution: ((a) ⇒ (b)): If a ∈ A then consider the ideal (a) generated by a. If (a) = A
then a is a unit as 1 ∈ (a). If (a) 6= A then (a) is contained in a proper maximal ideal M.
Since maximal ideals in a commutative ring with identity are prime, M must be the unique
maximal ideal. Thus from the fact stated in the problem N = M so a ∈ N showing that it
is nilpotent.

((b) ⇒ (c)): Let a + N be an element of A/N. If a + N 6= N then a 6∈ N so a is a unit in
A. Thus there is an element b such that ab = 1 and so (a + N)(b + N) = 1 + N. So a + N
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has a multiplicative inverse unless it is the zero element in A/N. In other words A/N is a
field.

((c) ⇒ (a)): Since A is commutative we know that A/N is a field if and only if N is a
maximal ideal. Thus N is a maximal ideal. Since N is the intersection of prime ideals in A
we see that for any prime ideal P we have N ⊂ P. Since N is maximal N = P. Hence there
is only one prime ideal.

(6) If S and T are finite dimensional vector spaces of some field and V = S ⊕ T then the linear
map p : V → V defined by p(s + t) = s where s ∈ S and t ∈ T is called a projection along
T .
(a) Show that a linear map ρ : V → V is a projection if and only if ρ2 = ρ.
(b) Show that if ρ is a projection then there is another projection ρ′ such that v = ρ(v)+ρ′(v)

for all v ∈ V.
(c) If ρ and ρ′ are two projections and ρρ′ = ρ′ρ then show that ρρ′ is a projection. Show

that ρρ′ does not have to be a projection if ρ and ρ′ do not commute.
(d) What are the eigenvalues of a projection?

Solution: Part (a): If ρ is a projection then V = S⊕T and ρ(s+t) = s, so ρ2(s+t) = ρ(s) =
s = ρ(s+t). That is ρ2 = ρ. Conversely, if ρ2 = ρ then set S = Imρ and T = ker ρ. Notice that
if v ∈ S∩T then there is some w ∈ V such that ρ(w) = v; so 0 = ρ(v) = ρ(ρ(w)) = ρ(w) = v.
Thus T ∩ S = 0. Since the rank nullity theorem says dim(T ) + dim(S) = dim(V ) we know
that V = S ⊕ T and ρ(s + t) = ρ(ρ(s′)) + ρ(t) = ρ(s′) = s where s′ ∈ V such that ρ(s′) = s.

Part (b): Given a projection ρ : V → V let ρ′ = idV −ρ. Notice that (ρ′)2 = 1−2ρ+ρ2 =
1 − 2ρ + ρ = 1 − ρ = ρ′, so ρ′ is a projection by part (a). Clearly v = ρ(v) + ρ′(v).

Part (c): Clearly (ρρ′)2 = ρρ′ρρ′ = ρρρ′ρ′ = ρρ′; so ρρ′ is a projection. Now let v1

and v2 be the two standard basis vectors for R
2 and set V1 = span v1, V2 = span v2, V3 =

span v1 + v2. Let ρ be the projection to V1 along V2 and ρ′ the projection to V2 along V3.
then ρ′ρ(v1) = ρ′(v1) = ρ′((v1 + v2) − v2) = −v2, but ρ′ρρ′ρ(v1) = ρ′ρ(−v2) = ρ′(0) = 0. So
ρ′ρ is not a projection.

Part (d): One can easily see that if ρ is a projection to S along T then any vector s ∈ S
is an eigenvector with eigenvalue 1 and any vector t ∈ T is an eigenvector with eigenvalue
0. As V = S ⊕ T we clearly have that 0 and 1 are the only possible eigenvalues (and they
both occur except in the trivial cases).

(7) Let G be a group of order 5075 (= 52 · 7 · 29). Let P be a Sylow 5-subgroup of G, let Q be
a Sylow 29-subgroup of G.
(a) Show P is a normal subgroup of G.
(b) Show that G has a normal subgroup H of oder 52 · 29. [Hint: Look at G/P.]
(c) Show that Q is a normal subgroup of G. [Hint: Relate Q to H .]

Solution: (a) n5 = 1( mod 5), and n5|7 · 29 so n5 = 1, 7, 29, or 203. Hence n5 = 1, and a
Sylow theorem says P is normal.

(b) Consider the group G/P. This is a group since P is normal and the group has order
7 · 29. In this group consider the Sylow 29 subgroup H. We know there are 1, 30, . . . Sylow
29 subgroups but the number of them must divide 7 so there is just one and again it
must be normal by a Sylow theorem. Now we know the subgroups of G/P are in one to
one correspondence with subgroups of G containing P and this correspondence respects
normality. So let H be the subgroup of G containing P such that H/P ∼= H. |H| = |P |[H :
P ] = 52 · 29 and H is normal in G.
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(c) Note that H has an element of order 29 by Cauchy’s theorem. So H has a subgroup
Q′ of order 29. Since this is a Sylow 29 subgroup of G we know that Q′ is conjugate to Q.
Thus there is some g such that Q = gQ′g−1 ≤ gHg−1 = H. So Q ≤ H. Since the number of
Sylow 29 subgroups of H is a divisor of 25 and equal to 1, 30, . . . we know there is just one.
Thus Q is a normal and characteristic subgroup of H. But since H is normal in G we know
Q is normal in G.

(8) Let R be a ring (not-necessarily commutative). We say an ideal P of R is prime if P 6= R
and whenever there are two ideals I andJ such that IJ ⊂ P then either I ⊂ P or J ⊂ P.
(When R is commutative this is equivalent to the definition of prime in terms of elements
of R.) Show the following are equivalent:
(a) All ideals not equal to R are prime.
(b) The ideals of R are linearly ordered (under set containment) and all ideals I satisfy

I2 = I.
If either of these conditions holds and R is a commutative ring with identity show that R is
either the trivial ring or a field.

Solution: ((a) ⇒ (b)) Given two ideals I and J of R we have that I ∩ J is a prime ideal
and hence IJ ⊂ I ∩ J implies I ⊂ I ∩ J or J ⊂ I ∩ J. Thus I ⊂ J or J ⊂ I. Now for I a
proper ideal in R notice that II ⊂ I2 so the primeness of I2 implies I ⊂ I2. Thus I = I2.

((b) ⇒ (a)) Let P be any ideal of R. Suppose that IJ ⊂ P for I, J ideals of R. We know
that I ⊂ J or J ⊂ I, without loss of generality we assume I ⊂ J. Thus II ⊂ IJ ⊂ P. But
since I = I2 we see that I ⊂ P. So P is prime.

Now assume R is commutative and all ideals are prime. Then the zero ideal (0) is prime
so R contains no zero divisors and 1 6= 0. If a is a non-zero element then consider the ideal
(a2). Since aa ∈ (a2) and (a2) is prime we have a ∈ (a2). Thus there is some b ∈ R such that
a = a2b. thus 1 = ab. That is a is a unit with inverse b.


