Analysis Comprehensive Exam Spring 2010

- 1. Let (X, \mathcal{M}, μ) be a measure space and let $\{f_n\}$ be a sequence of nonnegative measurable functions on X, such that $f_n \to f$ pointwise.
 - (a) Show that if $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu < \infty$ then $\lim_{n\to\infty} \int_E f_n = \int_E f$ for all $E \in \mathcal{M}$.
 - (b) Find an example on \mathbb{R} (with Lebesgue measure) which shows that the statement above is not always true if $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu = \infty$.

Solution:

(a) By Fatou's lemma, for every $E \in \mathcal{M}$, we have

$$\int_E f d\mu \le \liminf_{n \to \infty} \int_E f_n d\mu.$$

Using this inequality for E and $X \setminus E$ we obtain:

$$\begin{split} \int_{E} f d\mu &\leq \liminf_{n \to \infty} \int_{E} f_{n} d\mu \leq \limsup_{n \to \infty} \int_{E} f_{n} d\mu \\ &= \limsup_{n \to \infty} \left[\int_{X} f_{n} d\mu - \int_{X \setminus E} f_{n} d\mu \right] \\ &= \lim_{n \to \infty} \int_{X} f_{n} d\mu - \liminf_{n \to \infty} \int_{X \setminus E} f_{n} d\mu \\ &\leq \int_{X} f d\mu - \int_{X \setminus E} f d\mu \\ &\leq \int_{E} f d\mu, \end{split}$$

which shows that we must have equalities everywhere, completing the proof of (a).

- (b) If we take $f_n(x) = \chi_{(-\infty,0)}(x) + \frac{\chi_{(0,n)}(x)}{n}$, then $f_n(x) \to f(x) = \chi_{(-\infty,0)}(x)$ pointwise (even uniformly) on \mathbb{R} and $\int_{-\infty}^{\infty} f_n(x) dx = \int_{-\infty}^{\infty} f(x) dx = \infty$. However, $\int_0^{\infty} f_n(x) dx = 1 \neq 0 = \int_0^{\infty} f(x) dx$.
- 2. Let (X, \mathcal{M}, μ) be a measure space, and let f_1, f_2, \ldots and f be measurable complexvalued functions on X such that $f_n \to f$ a.e. Suppose that there exists a nonnegative measurable function g such that $|f_n| \leq g$ and for all $\epsilon > 0$, we have $\mu(\{x \in X : g(x) > \epsilon\}) < \infty$. Prove that $f_n \to f$ almost uniformly, that is for all $\epsilon > 0$ there is a measurable set $E \subset X$ with $\mu(E) < \epsilon$ and f_n converges uniformly to f on $X \setminus E$.

Solution:

The proof is similar to the proof of Egoroff's theorem. For $k, n \in \mathbb{N}$ let

$$E_n(k) = \bigcup_{m=n}^{\infty} \left\{ x : |f_m(x) - f(x)| \ge \frac{1}{k} \right\}.$$

Note that $\mu(E_1(k)) < \infty$. Indeed, we have $|f_m(x) - f(x)| \leq 2g$ for all m and almost every x. Since $A = \{x : 2g(x) \geq \frac{1}{k}\}$ has finite measure and $E_1(k) \subset A$ we conclude that $\mu(E_1(k)) < \infty$.

Clearly, for fixed k, $E_n(k)$ decreases as n increases. Since $\mu(\bigcap_{n=1}^{\infty} E_n(k)) = 0$ and $\mu(E_1(k)) < \infty$ we conclude that $\mu(E_n(k)) \to 0$ as $n \to \infty$. Given $\epsilon > 0$ and $k \in \mathbb{N}$, choose n_k such that $\mu(E_{n_k}(k)) < \frac{\epsilon}{2^k}$ and let $E = \bigcup_{k=1}^{\infty} E_{n_k}(k)$. Then $\mu(E) < \epsilon$ and we have $|f_n(x) - f(x)| < \frac{1}{k}$ for $n > n_k$ and $x \notin E$. Thus $f_n \to f$ uniformly on $X \setminus E$.

- 3. Let ν be a σ -finite signed measure and μ a σ -finite positive measure on a measurable space (X, \mathcal{M}) . Show that the following statement are equivalent:
 - (a) $|\nu(E)| \leq \mu(E)$ for every $E \in \mathcal{M}$;
 - (b) $|\nu|(E) \leq \mu(E)$ for every $E \in \mathcal{M}$;
 - (c) $\nu \ll \mu$ and $\left|\frac{d\nu}{d\mu}(E)\right| \leq 1$ for μ -almost every $x \in X$.

Solution: We prove below that (a) implies (b), (b) implies (c), and (c) implies (a).

- (a) implies (b). Let $X = P \cup N$ be a Jordan decomposition of X. If $E \in \mathcal{M}$ then
- $|\nu|(E) = |\nu|(E \cap P) + |\nu|(E \cap N) = \nu^+(E \cap P) + \nu^-(E \cap N) = \nu(E \cap P) \nu(E \cap N)$ \$\le \mu(E \circ P) + \mu(E \circ N) = \mu(E).\$

(b) implies (c). If $\mu(E) = 0$ then $|\nu|(E) = 0$ hence $\nu(E) = 0$, which shows that $\nu \ll \mu$. Thus we have

$$d\nu = \frac{d\nu}{d\mu}d\mu$$
 and therefore $d|\nu| = \left|\frac{d\nu}{d\mu}\right|d\mu$.

Note that if $A \in \mathcal{M}$ is such that $\mu(A) < \infty$ then for every $\epsilon > 0$ the set $A_{\epsilon} = \left\{x \in A : \left|\frac{d\nu}{d\mu}\right| \ge 1 + \epsilon\right\}$ is a μ -null set. Indeed we have $|\nu|(A_{\epsilon}) \ge (1 + \epsilon)\mu(A_{\epsilon}) \ge (1 + \epsilon)|\nu|(A_{\epsilon})$, leading to $|\nu|(A_{\epsilon}) = \mu(A_{\epsilon}) = 0$.

Since μ is σ -finite we have $X = \bigcup_{k \in \mathbb{N}} A^k$, where $\mu(A^k) < \infty$ for every $k \in \mathbb{N}$. Thus for every $k, n \in \mathbb{N}$ the set $A_{1/n}^k = \left\{ x \in A^k : \left| \frac{d\nu}{d\mu} \right| \ge 1 + \frac{1}{n} \right\}$ is μ -null. Hence $\{x : \left| \frac{d\nu}{d\mu} \right| > 1\} = \bigcup_{k,n \in \mathbb{N}} A_{1/n}^k$ is a μ -null set. (c) implies (a). Since $d\nu = \frac{d\nu}{d\mu} d\mu$ for every $E \in \mathcal{M}$ we have $|\nu(E)| = \left| \int_E \frac{d\nu}{d\mu} d\mu \right| \le \int_E \left| \frac{d\nu}{d\mu} \right| d\mu \le \int_E d\mu = \mu(E).$

4. Let *H* be a separable infinite dimensional Hilbert space and let $\{u_n\}_{n\in\mathbb{N}}$ be an orthonormal basis for *H*. Show that if $\{v_n\}_{n\in\mathbb{N}}$ is an orthonormal set in *H* such that $\sum_n ||u_n - v_n||^2 < \infty$ then it is also an orthonormal basis for *H*. (Hint: Consider first the case when $\sum_n ||u_n - v_n||^2 < 1$)

Solution: Suppose first that $\sum_{n} ||u_n - v_n||^2 < 1$. We want to show that if $\langle x, v_n \rangle = 0$ for all n, then x = 0. Using the Parseval's identity and Schwarz inequality we find:

$$||x||^{2} = \sum_{n=1}^{\infty} |\langle x, u_{n} \rangle|^{2} = \sum_{n=1}^{\infty} |\langle x, u_{n} - v_{n} \rangle|^{2} \le ||x||^{2} \sum_{n=1}^{\infty} ||u_{n} - v_{n}||^{2},$$

proving that x = 0.

For the general case, we choose $N \in \mathbb{N}$ such that $\sum_{n=N+1}^{\infty} ||u_n - v_n||^2 < 1$. Let

$$u'_n = u_n - \sum_{k=N+1}^{\infty} \langle u_n, v_k \rangle v_k$$

and let us denote by S the linear span of $\{u'_1, u'_2, \ldots, u'_N\}$. Then $H = S \oplus S^{\perp}$. Note that $v_k \in S^{\perp}$ for every k > N, and using the same argument we can deduce that $\{v_k : k > N\}$ is a an orthonormal basis for S^{\perp} . Indeed, if $x \in S^{\perp}$ and $\langle x, v_k \rangle = 0$ for every k > N then $\langle x, u_k \rangle = 0$ for $k \leq N$. Thus we have

$$||x||^{2} = \sum_{n=N+1}^{\infty} |\langle x, u_{n} \rangle|^{2} = \sum_{n=N+1}^{\infty} |\langle x, u_{n} - v_{n} \rangle|^{2} \le ||x||^{2} \sum_{n=N+1}^{\infty} ||u_{n} - v_{n}||^{2},$$

showing that x = 0 and therefore $\{v_k : k > N\}$ is a an orthonormal basis for S^{\perp} . In particular it follows that $v_k \perp S^{\perp}$ for $k \leq N$, so $v_k \in S$ for $k \leq N$. Since S has dimension at most N, we conclude that v_1, \ldots, v_N form an orthonormal basis for S, completing the proof. 5. Let (X, \mathcal{M}, μ) be a measure space and let $f, f_n \in L^p$, where $1 \leq p < \infty$. Prove that if $f_n \to f$ a.e., then $||f_n - f||_p \to 0$ if and only if $||f_n||_p \to ||f||_p$.

Solution: The "only if" part follows immediately from Minkowski's inequality since

$$|||f_n||_p - ||f||_p| \le ||f - f_n||_p.$$

To prove the "if" part denote $F_n = |f_n - f|^p$ and $G_n = 2^p(|f_n|^p + |f|^p)$. Then $F_n \to 0$ a.e., $G_n \to G = 2^{p+1}|f|^p$ a.e.. Moreover we have $F_n, G_n, G \in L^1, F_n \leq G_n$ and $\int G_n d\mu \to \int G d\mu$.

Applying Fatou's lemma we find

$$\int Gd\mu = \int \lim_{n \to \infty} (G_n - F_n) d\mu \le \liminf_{n \to \infty} \int (G_n - F_n) d\mu = \int Gd\mu - \limsup_{n \to \infty} \int F_n d\mu.$$

Since $\int G d\mu < \infty$, we can subtract it from both sides to get

$$0 \le \limsup_{n \to \infty} \int F_n d\mu \le 0,$$

and hence $||f_n - f||_p = \left(\int F_n d\mu\right)^{\frac{1}{p}} \to 0.$

- 6. Let $E \subset [0,1]$ be a measurable subset with |E| > 0. Let χ denote its characteristic function.
 - (a) Show that the function below is continuous function of x.

$$F(x) = \int_{[0,1]} \chi(x-t)\chi(t) dt$$

(b) Show that the set $E + E = \{x + y : x, y \in E\}$ contains a non-empty interval.

Solution:

(a) Fix 0 < x < 1 and let x_n be a sequence in [0, 1] with $x_n \to x$. Then, we have

$$\chi(x_n - t)\chi(t) \to \chi(x - t)\chi(t)$$

for all choices of t for which x - t is a Lebesgue point of χ . Almost every x - t is a Lebesgue point, so we conclude that $\chi(x_n - t)\chi(t) \rightarrow \chi(x - t)\chi(t)$ almost every where on $t \in [0, 1]$. All functions are bounded by one, and we are on a finite measure space, so by the Bounded Convergence Theorem,

$$F(x_n) = \int_{[0,1]} \chi(x_n - t)\chi(t) \ dt \longrightarrow F(x)$$

(b) Since $\chi(x-t)\chi(t)$ is a nonnegative measurable function on \mathbb{R}^2 we can apply Tonelli's theorem to deduce

$$\int_{\mathbb{R}} F(x)dx = \int_{[0,1]} \left[\int_{\mathbb{R}} \chi(x-t)dx \right] \chi(t)dt = \mu(E)^2 > 0.$$

Hence F(x) is positive on some nonempty interval I. Note that $I \subset E + E$ completing the proof.

7. Let $I \subset [0,1]$ denote a closed interval of positive length. Say that $f : I \longrightarrow \mathbb{R}$ is Lipschitz on I if for some constant C and all $x, y \in I$ we have $|f(x) - f(y)| \leq C|x-y|$. Show that there is a continuous function $f : [0,1] \longrightarrow \mathbb{R}$ that is not Lipschitz on any closed interval $I \subset [0,1]$.

Solution: While it is possible to write down such a function in closed form, it is simpler to use the Baire Category Theorem. In so doing, a standard issue arises, that there are an uncountable number of closed intervals $I \subset [0, 1]$. But it suffices to demonstrate that there is a continuous function which is not Lipschitz on any closed interval I with *rational endpoints*. The latter intervals are countable, and we consider an enumeration of them $\{I_k : k \in \mathbb{N}\}$.

The space C[0, 1] is a complete metric space, due to the Arzela-Ascoli Theorem. For integers k, let B_k denote those functions $f \in C[0, 1]$ for which f is Lipschitz on I_k . If we show that each B_k has empty interior, with respect to the sup-norm topology, we conclude from the Baire Category Theorem that the set

$$C[0,1] \setminus \bigcup_{k \in \mathbb{N}} B_k$$

is non-empty, for otherwise the complete metric space C[0, 1] would be the countable union of nowhere dense sets.

Consider a function on [0, 1] given by

$$\phi(x) = \sqrt{\min(x, 1 - x)} \,.$$

We extend ϕ to all of \mathbb{R} by setting $\phi(x) = 0$ for $x \in \mathbb{R} \setminus [0, 1]$. The basic fact is that ϕ is not Lipschitz on [0, 1]. Indeed, it suffices to take $0 < \epsilon < \frac{1}{2}$, and note that $\phi(\epsilon^2) - \phi(0) = \epsilon$. This shows that the Lipschitz constant of ϕ would have to be at least ϵ^{-1} , proving the basic fact.

For an interval I, let us set $\phi_I(x) = \phi((x - c_I)/|I|)$ where c_I is the center of I. As the map $x \to (x - c_I)/|I|$ is itself Lipschitz, it follows from the basic fact that ϕ_I is not Lipschitz on I. Therefore, for $f \in B_k$, and arbitrary $\epsilon > 0$, we have $f + \epsilon \phi_{I_k} \notin B_k$, showing that B_k has empty interior.