Analysis Comprehensive Exam
Spring 2010

1. Let (X, M, u) be a measure space and let {f,} be a sequence of nonnegative measur-
able functions on X, such that f, — f pointwise.

(a) Show that if lim, .o [y fudp = [y fdp < oo then lim, .o [, fo = [, f for all
E e M.

(b) Find an example on R (with Lebesgue measure) which shows that the statement
above is not always true if lim, .o [ fudp = [, fdp = oo.

Solution:

(a) By Fatou’s lemma, for every E' € M, we have

/fd,ugliminf/fndp.
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Using this inequality for £ and X \ E we obtain:
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which shows that we must have equalities everywhere, completing the proof of
(a).

(b) If we take f,() = X(—o0,0)(z) + X(O‘+)(x), then f,(z) — f(z) = X(coo0) ()
pointwise (even uniformly) on R and [*_ f,(z)dz = [7 f(z)dz = oo.

However, [~ fu(z)de =1#0= [ f(z)dx.

2. Let (X, M, p) be a measure space, and let fi, f2,... and f be measurable complex-
valued functions on X such that f,, — f a.e. Suppose that there exists a nonnegative
measurable function g such that |f,| < ¢ and for all € > 0, we have pu({zx € X
g(x) > €}) < oo. Prove that f,, — f almost uniformly, that is for all € > 0 there is a
measurable set ' C X with u(FE) < € and f,, converges uniformly to f on X\E.



Solution:
The proof is similar to the proof of Egoroft’s theorem. For k,n € N let
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Note that pu(FE;(k)) < oco. Indeed, we have |f,,(z) — f(z)| < 2g for all m and
almost every z. Since A = {z : 2g(x) > 1} has finite measure and Ey(k) C A we
conclude that u(E;(k)) < oo.

Clearly, for fixed k, E, (k) decreases as n increases. Since p (N2, F,(k)) = 0 and
p(Ei(k)) < oo we conclude that p(FE,(k)) — 0asn — oco. Givene > 0and k € N,
choose ny, such that p(E,, (k) < 5z and let £ = U2, E,, (k). Then pu(E) < € and
we have | f,(z)— f(z)| < 1 forn > nyand z ¢ E. Thus f, — f uniformly on X\ E.

3. Let v be a o-finite signed measure and p a o-finite positive measure on a measurable
space (X,M). Show that the following statement are equivalent:

(a) |[V(E)| < u(E) for every E € M;
(b) |[V|(E) < u(E) for every E € M;

(¢) v < p and ]j—;(E)] < 1 for p-almost every z € X.

Solution: We prove below that (a) implies (b), (b) implies (c¢), and (c) implies
(a).
(a) implies (b). Let X = PU N be a Jordan decomposition of X. If £ € M then

SWENP)+u(ENN) = pu(E).

(b) implies (c¢). If u(E) = 0 then |v|(E) = 0 hence v(£) = 0, which shows that
v < . Thus we have

dv

djs.
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d
dy = —Vdu and therefore d|v| =
dp

Note that if A € M is such that u(A) < oo then for every € > 0 the set A, =

reA: ‘g—;’ > 1+ e} is a p-null set. Indeed we have |v|(A) > (1 + e)u(A) >

(14 €)|v|(Ae), leading to |v|(A.) = u(Ae) = 0.

V|(E)=|v|[(ENP)+v[(ENN)=vT(ENP)+v (ENN)=v(ENP)—-v(ENN)




Since p is o-finite we have X = UpenA*, where p(A*F) < oo for every k& € N.
Thus for every k,n € N the set A’f/n = {x € Ax >1+ %} is p-null. Hence

{z:

(c) implies (a). Since dv = fl—Zdu for every E € M we have

dv
dp

g—: > 1} = U nen A’f/n is a p-null set.
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dv
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dp < [Edu = pu(E).

4. Let H be a separable infinite dimensional Hilbert space and let {u,},eny be an or-
thonormal basis for H. Show that if {v, },en is an orthonormal set in H such that
> s — va||* < oo then it is also an orthonormal basis for H. (Hint: Consider first
the case when Y ||u, — v,||*> < 1)

Solution: Suppose first that > |ju, — v,|[*> < 1. We want to show that if
(x,v,) = 0 for all n, then = 0. Using the Parseval’s identity and Schwarz
inequality we find:
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proving that x = 0.
For the general case, we choose N € N such that Y7 | [|un, — v,||* < 1. Let
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and let us denote by S the linear span of {u},u} ..., u,y}. Then H = S&S+. Note
that v, € S+ for every k > N, and using the same argument we can deduce that
{vg : k > N} is a an orthonormal basis for S*. Indeed, if x € S+ and (z,v;) =0
for every k > N then (z,u;) =0 for £ < N. Thus we have
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showing that z = 0 and therefore {v : k > N} is a an orthonormal basis for S*.
In particular it follows that v, L S+ for k < N, so v, € S for k < N. Since S has
dimension at most N, we conclude that vy, ..., vy form an orthonormal basis for
S, completing the proof.




5. Let (X, M, p) be a measure space and let f, f,, € LP, where 1 < p < co. Prove that
if fo — [ ae., then || fn — f[l, — 0 if and only if [| full, — ||/l

Solution: The “only if” part follows immediately from Minkowski’s inequality
since

1 lle = Lf 1ol < 11F = fullp:

To prove the “if” part denote F,, = |f, — f|P and G,, = 2°(|fu|? + |f|P). Then
F, — 0 ae., G, — G = 2PTY f|P a.e.. Moreover we have F,,G,,G € L', F, <G,
and [ G,dp — [ Gdp.

Applying Fatou’s lemma we find
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/Gdu = / lim (G,, — F,,))dp < lim inf/(Gn — F,)du = /Gdu — lim sup/Fnd,u.
Since [ Gdu < oo, we can subtract it from both sides to get

0 <lim sup/Fndu <0,
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and hence ||f, — fl|l, = ([ Fadp)? — 0.

6. Let E C [0, 1] be a measurable subset with |E| > 0. Let x denote its characteristic
function.

(a) Show that the function below is continuous function of x.
Pla)= [ xta =0 e
[0,1]

(b) Show that the set £+ E ={z+vy : z,y € F} contains a non-empty interval.

Solution:

(a) Fix 0 < z < 1 and let z,, be a sequence in [0, 1] with z,, — 2. Then, we have

X(zn —1)x(t) — x(z —t)x(?)

for all choices of t for which z — t is a Lebesgue point of y. Almost every
x — t is a Lebesgue point, so we conclude that x(x, —t)x(t) — x(x — t)x(¢)
almost every where on ¢ € [0, 1]. All functions are bounded by one, and we
are on a finite measure space, so by the Bounded Convergence Theorem,

F(z,) = /[01} X(x, —t)x(t) dt — F(z)




(b) Since x(z —t)x(¢) is a nonnegative measurable function on R? we can apply
Tonelli’s theorem to deduce

/RF(x)dx - /M URX(;C . t)dx] X(t)dt = u(E)? > 0.

Hence F'(z) is positive on some nonempty interval I. Note that I C F+ E
completing the proof.

7. Let I C [0,1] denote a closed interval of positive length. Say that f : I — R is
Lipschitz on [ if for some constant C' and all z,y € I we have |f(z)— f(y)| < Clz—y|.
Show that there is a continuous function f : [0,1] — R that is not Lipschitz on
any closed interval I C [0, 1].

Solution: While it is possible to write down such a function in closed form, it is
simpler to use the Baire Category Theorem. In so doing, a standard issue arises,
that there are an uncountable number of closed intervals I C [0, 1]. But it suffices
to demonstrate that there is a continuous function which is not Lipschitz on any
closed interval I with rational endpoints. The latter intervals are countable, and
we consider an enumeration of them {I; : k € N}.

The space C[0, 1] is a complete metric space, due to the Arzela-Ascoli Theorem.
For integers k, let By denote those functions f € C]0, 1] for which f is Lipschitz
on Ii. If we show that each Bj has empty interior, with respect to the sup-norm
topology, we conclude from the Baire Category Theorem that the set
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is non-empty, for otherwise the complete metric space C|0, 1] would be the count-
able union of nowhere dense sets.

Consider a function on [0, 1] given by

¢(r) = /min(z,1 —z).

We extend ¢ to all of R by setting ¢(x) = 0 for z € R\[0,1]. The basic fact is
that ¢ is not Lipschitz on [0,1]. Indeed, it suffices to take 0 < € < %, and note
that ¢(€?) — ¢(0) = e. This shows that the Lipschitz constant of ¢ would have to
be at least ¢!, proving the basic fact.

For an interval I, let us set ¢;(x) = ¢((x — ¢r)/|I]) where ¢y is the center of I.
As the map x — (z — ¢;)/|1]| is itself Lipschitz, it follows from the basic fact that
¢r is not Lipschitz on I. Therefore, for f € By, and arbitrary ¢ > 0, we have
f +€¢1, & By, showing that By has empty interior.




