
Analysis Comprehensive Exam
Spring 2010

1. Let (X, M, µ) be a measure space and let {fn} be a sequence of nonnegative measur-
able functions on X, such that fn → f pointwise.

(a) Show that if limn→∞
∫

X
fndµ =

∫
X

fdµ < ∞ then limn→∞
∫

E
fn =

∫
E

f for all
E ∈ M.

(b) Find an example on R (with Lebesgue measure) which shows that the statement
above is not always true if limn→∞

∫
X

fndµ =
∫

X
fdµ = ∞.

Solution:

(a) By Fatou’s lemma, for every E ∈ M, we have∫
E

fdµ ≤ lim inf
n→∞

∫
E

fndµ.

Using this inequality for E and X \ E we obtain:∫
E

fdµ ≤ lim inf
n→∞

∫
E

fndµ ≤ lim sup
n→∞

∫
E

fndµ

= lim sup
n→∞

[∫
X

fndµ−
∫

X\E
fndµ

]
= lim

n→∞

∫
X

fndµ− lim inf
n→∞

∫
X\E

fndµ

≤
∫

X

fdµ−
∫

X\E
fdµ

≤
∫

E

fdµ,

which shows that we must have equalities everywhere, completing the proof of
(a).

(b) If we take fn(x) = χ(−∞,0)(x) +
χ(0,n)(x)

n
, then fn(x) → f(x) = χ(−∞,0)(x)

pointwise (even uniformly) on R and
∫∞
−∞ fn(x)dx =

∫∞
−∞ f(x)dx = ∞.

However,
∫∞

0
fn(x)dx = 1 6= 0 =

∫∞
0

f(x)dx.

2. Let (X, M, µ) be a measure space, and let f1, f2, . . . and f be measurable complex-
valued functions on X such that fn → f a.e. Suppose that there exists a nonnegative
measurable function g such that |fn| ≤ g and for all ε > 0, we have µ({x ∈ X :
g(x) > ε}) < ∞. Prove that fn → f almost uniformly, that is for all ε > 0 there is a
measurable set E ⊂ X with µ(E) < ε and fn converges uniformly to f on X\E.



Solution:

The proof is similar to the proof of Egoroff’s theorem. For k, n ∈ N let

En(k) =
∞⋃

m=n

{
x : |fm(x)− f(x)| ≥ 1

k

}
.

Note that µ(E1(k)) < ∞. Indeed, we have |fm(x) − f(x)| ≤ 2g for all m and
almost every x. Since A = {x : 2g(x) ≥ 1

k
} has finite measure and E1(k) ⊂ A we

conclude that µ(E1(k)) < ∞.

Clearly, for fixed k, En(k) decreases as n increases. Since µ (∩∞n=1En(k)) = 0 and
µ(E1(k)) < ∞ we conclude that µ(En(k)) → 0 as n →∞. Given ε > 0 and k ∈ N,
choose nk such that µ(Enk

(k)) < ε
2k and let E = ∪∞k=1Enk

(k). Then µ(E) < ε and
we have |fn(x)−f(x)| < 1

k
for n > nk and x /∈ E. Thus fn → f uniformly on X\E.

3. Let ν be a σ-finite signed measure and µ a σ-finite positive measure on a measurable
space (X, M). Show that the following statement are equivalent:

(a) |ν(E)| ≤ µ(E) for every E ∈ M;

(b) |ν|(E) ≤ µ(E) for every E ∈ M;

(c) ν � µ and | dν
dµ

(E)| ≤ 1 for µ-almost every x ∈ X.

Solution: We prove below that (a) implies (b), (b) implies (c), and (c) implies
(a).

(a) implies (b). Let X = P ∪N be a Jordan decomposition of X. If E ∈ M then

|ν|(E) = |ν|(E ∩ P ) + |ν|(E ∩N) = ν+(E ∩ P ) + ν−(E ∩N) = ν(E ∩ P )− ν(E ∩N)

≤ µ(E ∩ P ) + µ(E ∩N) = µ(E).

(b) implies (c). If µ(E) = 0 then |ν|(E) = 0 hence ν(E) = 0, which shows that
ν � µ. Thus we have

dν =
dν

dµ
dµ and therefore d|ν| =

∣∣∣∣dν

dµ

∣∣∣∣ dµ.

Note that if A ∈ M is such that µ(A) < ∞ then for every ε > 0 the set Aε ={
x ∈ A :

∣∣∣ dν
dµ

∣∣∣ ≥ 1 + ε
}

is a µ-null set. Indeed we have |ν|(Aε) ≥ (1 + ε)µ(Aε) ≥
(1 + ε)|ν|(Aε), leading to |ν|(Aε) = µ(Aε) = 0.



Since µ is σ-finite we have X = ∪k∈NAk, where µ(Ak) < ∞ for every k ∈ N.

Thus for every k, n ∈ N the set Ak
1/n =

{
x ∈ Ak :

∣∣∣ dν
dµ

∣∣∣ ≥ 1 + 1
n

}
is µ-null. Hence

{x :
∣∣∣ dν
dµ

∣∣∣ > 1} =
⋃

k,n∈N Ak
1/n is a µ-null set.

(c) implies (a). Since dν = dν
dµ

dµ for every E ∈ M we have

|ν(E)| =
∣∣∣∣∫

E

dν

dµ
dµ

∣∣∣∣ ≤ ∫
E

∣∣∣∣dν

dµ

∣∣∣∣ dµ ≤
∫

E

dµ = µ(E).

4. Let H be a separable infinite dimensional Hilbert space and let {un}n∈N be an or-
thonormal basis for H. Show that if {vn}n∈N is an orthonormal set in H such that∑

n ||un − vn||2 < ∞ then it is also an orthonormal basis for H. (Hint: Consider first
the case when

∑
n ||un − vn||2 < 1)

Solution: Suppose first that
∑

n ||un − vn||2 < 1. We want to show that if
〈x, vn〉 = 0 for all n, then x = 0. Using the Parseval’s identity and Schwarz
inequality we find:

||x||2 =
∞∑

n=1

|〈x, un〉|2 =
∞∑

n=1

|〈x, un − vn〉|2 ≤ ||x||2
∞∑

n=1

||un − vn||2,

proving that x = 0.
For the general case, we choose N ∈ N such that

∑∞
n=N+1 ||un − vn||2 < 1. Let

u′n = un −
∞∑

k=N+1

〈un, vk〉vk

and let us denote by S the linear span of {u′1, u′2 . . . , u′N}. Then H = S⊕S⊥. Note
that vk ∈ S⊥ for every k > N , and using the same argument we can deduce that
{vk : k > N} is a an orthonormal basis for S⊥. Indeed, if x ∈ S⊥ and 〈x, vk〉 = 0
for every k > N then 〈x, uk〉 = 0 for k ≤ N . Thus we have

||x||2 =
∞∑

n=N+1

|〈x, un〉|2 =
∞∑

n=N+1

|〈x, un − vn〉|2 ≤ ||x||2
∞∑

n=N+1

||un − vn||2,

showing that x = 0 and therefore {vk : k > N} is a an orthonormal basis for S⊥.
In particular it follows that vk ⊥ S⊥ for k ≤ N , so vk ∈ S for k ≤ N . Since S has
dimension at most N , we conclude that v1, . . . , vN form an orthonormal basis for
S, completing the proof.



5. Let (X, M, µ) be a measure space and let f, fn ∈ Lp, where 1 ≤ p < ∞. Prove that
if fn → f a.e., then ||fn − f ||p → 0 if and only if ||fn||p → ||f ||p.

Solution: The “only if” part follows immediately from Minkowski’s inequality
since

|||fn||p − ||f ||p| ≤ ||f − fn||p.

To prove the “if” part denote Fn = |fn − f |p and Gn = 2p(|fn|p + |f |p). Then
Fn → 0 a.e., Gn → G = 2p+1|f |p a.e.. Moreover we have Fn, Gn, G ∈ L1, Fn ≤ Gn

and
∫

Gndµ →
∫

Gdµ.

Applying Fatou’s lemma we find∫
Gdµ =

∫
lim

n→∞
(Gn − Fn)dµ ≤ lim inf

n→∞

∫
(Gn − Fn)dµ =

∫
Gdµ− lim sup

n→∞

∫
Fndµ.

Since
∫

Gdµ < ∞, we can subtract it from both sides to get

0 ≤ lim sup
n→∞

∫
Fndµ ≤ 0,

and hence ||fn − f ||p =
(∫

Fndµ
) 1

p → 0.

6. Let E ⊂ [0, 1] be a measurable subset with |E| > 0. Let χ denote its characteristic
function.

(a) Show that the function below is continuous function of x.

F (x) =

∫
[0,1]

χ(x− t)χ(t) dt

(b) Show that the set E + E = {x + y : x, y ∈ E} contains a non-empty interval.

Solution:

(a) Fix 0 < x < 1 and let xn be a sequence in [0, 1] with xn → x. Then, we have

χ(xn − t)χ(t) → χ(x− t)χ(t)

for all choices of t for which x − t is a Lebesgue point of χ. Almost every
x− t is a Lebesgue point, so we conclude that χ(xn − t)χ(t) → χ(x− t)χ(t)
almost every where on t ∈ [0, 1]. All functions are bounded by one, and we
are on a finite measure space, so by the Bounded Convergence Theorem,

F (xn) =

∫
[0,1]

χ(xn − t)χ(t) dt −→ F (x)



(b) Since χ(x− t)χ(t) is a nonnegative measurable function on R2 we can apply
Tonelli’s theorem to deduce∫

R
F (x)dx =

∫
[0,1]

[∫
R

χ(x− t)dx

]
χ(t)dt = µ(E)2 > 0.

Hence F (x) is positive on some nonempty interval I. Note that I ⊂ E + E
completing the proof.

7. Let I ⊂ [0, 1] denote a closed interval of positive length. Say that f : I −→ R is
Lipschitz on I if for some constant C and all x, y ∈ I we have |f(x)−f(y)| ≤ C|x−y|.
Show that there is a continuous function f : [0, 1] −→ R that is not Lipschitz on
any closed interval I ⊂ [0, 1].

Solution: While it is possible to write down such a function in closed form, it is
simpler to use the Baire Category Theorem. In so doing, a standard issue arises,
that there are an uncountable number of closed intervals I ⊂ [0, 1]. But it suffices
to demonstrate that there is a continuous function which is not Lipschitz on any
closed interval I with rational endpoints. The latter intervals are countable, and
we consider an enumeration of them {Ik : k ∈ N}.
The space C[0, 1] is a complete metric space, due to the Arzela-Ascoli Theorem.
For integers k, let Bk denote those functions f ∈ C[0, 1] for which f is Lipschitz
on Ik. If we show that each Bk has empty interior, with respect to the sup-norm
topology, we conclude from the Baire Category Theorem that the set

C[0, 1]\
⋃
k∈N

Bk

is non-empty, for otherwise the complete metric space C[0, 1] would be the count-
able union of nowhere dense sets.

Consider a function on [0, 1] given by

φ(x) =
√

min(x, 1− x) .

We extend φ to all of R by setting φ(x) = 0 for x ∈ R\[0, 1]. The basic fact is
that φ is not Lipschitz on [0, 1]. Indeed, it suffices to take 0 < ε < 1

2
, and note

that φ(ε2)− φ(0) = ε. This shows that the Lipschitz constant of φ would have to
be at least ε−1, proving the basic fact.

For an interval I, let us set φI(x) = φ((x − cI)/|I|) where cI is the center of I.
As the map x → (x− cI)/|I| is itself Lipschitz, it follows from the basic fact that
φI is not Lipschitz on I. Therefore, for f ∈ Bk, and arbitrary ε > 0, we have
f + εφIk

6∈ Bk, showing that Bk has empty interior.


