Problems and Solutions

1. Determine all finitely generated abelian groups G whose automorphism group is finite.
Solution: Let G be a finitely generated abelian group. By the classification of finitely generated abelian groups, we know that G is isomorphic to a direct product of finitely many cyclic groups. In particular, $G \cong \mathbf{Z}^{r} \times H$ where H is a finite group and $r \geq 0$. The subgroup H is precisely the torsion subgroup of $\mathbf{Z}^{r} \times H$. Any element of $\operatorname{Aut}(G)$ must preserve the torsion subgroup. It follows that $\operatorname{Aut}(G) \cong \operatorname{Aut}\left(\mathbf{Z}^{r}\right) \times \operatorname{Aut}(H)$. Since H is finite, it follows that $\operatorname{Aut}(H)$ is finite. Thus, it suffices to determine when $\operatorname{Aut}\left(\mathbf{Z}^{r}\right)$ is finite. We have $\operatorname{Aut}\left(\mathbf{Z}^{0}\right)=\operatorname{Aut}(1)=1$ and $\operatorname{Aut}(\mathbf{Z}) \cong \mathbf{Z} / 2 \mathbf{Z}$, and so for $r=0$, 1 , we have that $\operatorname{Aut}(G)$ is finite. For $r \geq 2$, we have

$$
\mathrm{GL}(2, \mathbf{Z}) \cong \operatorname{Aut}\left(\mathbf{Z}^{2}\right) \leq \operatorname{Aut}\left(\mathbf{Z}^{r}\right) \leq \operatorname{Aut}\left(\mathbf{Z}^{r}\right) \times \operatorname{Aut}(H) \cong \operatorname{Aut}(G)
$$

Since $\mathrm{GL}(2, \mathbf{Z})$ is an infinite group, we see that $\operatorname{Aut}(G)$ is infinite. Thus $\operatorname{Aut}(G) \cong \operatorname{Aut}\left(\mathbf{Z}^{r} \times H\right)$ is finite if and only if $r \leq 1$.
2. Prove that if G is a finite group containing no subgroup of index 2 , then any subgroup of index 3 is normal in G.

Solution: Let $H<G$ be a subgroup of index 3. The group G acts on the set of left cosets of H by left multiplication. This action gives a homomorphism $\phi: G \rightarrow S_{3}$. Let $K=\operatorname{ker}(\phi)$. If $g \in K$, then in particular $g H=H$, and so we see that $K<H$. Let $k=[H: K]$. Since K is normal in G it suffices to show $H=K$, that is, $k=1$.
We know that $[G: K]=[G: H][H: K]=3 k$. By the first isomorphism theorem we also have

$$
3 k=[G: K]=|G| /|K|=|\phi(G)| .
$$

Since $\phi(G)$ is a subgroup of S_{3}, it follows from Lagrange's theorem that $|\phi(G)|$ divides $\left|S_{3}\right|=6$ and so $3 k$ divides 6 . Thus k is equal to either 1 or 2 .

Suppose that $k=2$. This means that $[G: K]=|\phi(G)|=6$, which is to say that ϕ is surjective. It follows that $\left[G: \phi^{-1}\left(A_{3}\right)\right]=\left[S_{3}: A_{3}\right]=2$, contradicting the assumption that G does not contain any subgroup of index 2 . Thus, it must be that $k=1$, which is what we wanted to show.
3. Prove the following special case of Gauss' lemma: If $p(x) \in \mathbf{Z}[x]$ is reducible in $\mathbf{Q}[x]$, then $p(x)$ is reducible in $\mathbf{Z}[x]$.
Solution: This is a special case of Gauss' lemma, which can be found in any textbook on abstract algebra.
4. Let R be a local ring, i.e., a commutative ring with identity having a unique maximal ideal \mathfrak{m}. Let A be a 2×2 matrix with coefficients in \mathfrak{m}. Show that the matrix $B=A+I$ is invertible over R, i.e., that there exists a 2×2 matrix B^{\prime} with coefficients in R such that $B B^{\prime}=B^{\prime} B=I$.
Solution: First note that an element $x \in R$ is invertible iff $x \notin \mathfrak{m}$. Indeed, if $x \in \mathfrak{m}$ then clearly x is not invertible; conversely, if $x \notin \mathfrak{m}$ then x is not contained in any maximal ideal of R so $(x)=R$. The determinant of B is

$$
\operatorname{det}(B)=b_{11} b_{22}-b_{12} b_{21}=\left(a_{11}+1\right)\left(a_{22}+1\right)-a_{12} a_{21}
$$

with $a_{i j} \in \mathfrak{m}$. Thus $\operatorname{det}(B)=1+a$ with $a \in \mathfrak{m}$ which implies that $\operatorname{det}(B)$ is invertible in R. We can take B^{\prime} to be the matrix

$$
B^{\prime}=\operatorname{det}(B)^{-1}\left(\begin{array}{ll}
b_{22} & -b_{12} \\
-b_{21} & b_{11}
\end{array}\right) .
$$

5. Suppose L / K is an algebraic field extension, and that R is a subring of L containing K. Prove that R is a field.
Solution: Let $r \in R$ be any nonzero element. Since L / K is algebraic and $r \in L$ is nonzero, r satisfies a polynomial equation

$$
a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}=0
$$

with $a_{n} \neq 0$ and $a_{i} \in K$ for all i. We may assume that n is minimal, and thus that $a_{0} \neq 0$. We can rewrite the above equation as

$$
r\left(-a_{0}^{-1}\left(a_{n} r^{n-1}+a_{n-1} r^{n-2}+\cdots+a_{1}\right)\right)=1
$$

in which all terms belong to R, since K is a field contained in R. It follows that r is invertible in R as desired.
6. Prove that every element of finite order in the group $\mathrm{SL}(2, \mathbf{Z})$ of 2×2 integer matrices with determinant 1 has order dividing 12. [Hint: First show that the eigenvalues of any torsion element must be roots of unity.]
Solution: Let A be an element of exact order m in $\operatorname{SL}(2, \mathbf{Z})$, so that the minimal polynomial of A over \mathbf{Q} is $X^{m}-1$. Since the minimal and characteristic polynomial of A have the same irreducible factors, it follows that the eigenvalues of A are $m^{\text {th }}$ roots of unity. (Alternately, one can use the fact that the eigenvalues of A^{m} are the $m^{\text {th }}$ powers of the eigenvalues of A.) Also, since the minimal polynomial of A is square-free (since there are m distinct $m^{\text {th }}$ roots of unity in \mathbf{C}), it follows that A is diagonalizable. Thus the eigenvalues of A are primitive $m^{\text {th }}$ roots of unity.
On the other hand, the eigenvalues of A satisfy the characteristic polynomial of A, which is a monic polynomial of degree 2 with integer coefficients. In particular, the eigenvalues of A are defined over a quadratic extension of \mathbf{Q}. By the irreducibility of the $m^{\text {th }}$ cyclotomic polynomial, we have $\left[\mathbf{Q}\left(\zeta_{m}\right): \mathbf{Q}\right]=\varphi(m)$ (Euler's φ-function) if ζ_{m} is a primitive $m^{\text {th }}$ root of unity. By the explicit formula for φ, it is easy to see that $\varphi(n) \leq 2$ iff $n \mid 4$ or $n \mid 6$. In particular, we must have $m \mid 12$.
7. Let V be a finite dimensional vector space over a field F, and let T : $V \rightarrow V$ be a linear endomorphism. Prove that there is a direct sum decomposition $V=V_{1} \oplus V_{2}$ with the following properties:
(1) $T\left(V_{i}\right) \subseteq V_{i}$ for $i=1,2$.
(2) T is an isomorphism on V_{1}.
(3) T is nilpotent on V_{2}.
[Hint: Consider the subspaces $\operatorname{Im}(T) \supseteq \operatorname{Im}\left(T^{2}\right) \supseteq \cdots$ and $\operatorname{Ker}(T) \subseteq$ $\left.\operatorname{Ker}\left(T^{2}\right) \subseteq \cdots\right]$
Solution: The chain $\operatorname{Im}(T) \supseteq \operatorname{Im}\left(T^{2}\right) \supseteq \cdots$ must stabilize to a T invariant subspace V_{1} and the chain $\operatorname{Ker}(T) \subseteq \operatorname{Ker}\left(T^{2}\right) \subseteq \cdots$ must stabilize to a T-invariant subspace V_{2}.
We claim that T is an isomorphism on V_{1} and T is nilpotent on V_{2}. Indeed, it is easy to see that $T\left(V_{1}\right)=V_{1}$, which implies that T is an isomorphism on V_{1} by the rank-nullity theorem. Moreover, $V_{2}=\operatorname{Ker}\left(T^{m}\right)$ for some positive integer m and thus $\left.T^{m}\right|_{V_{2}}=0$, so T is nilpotent on V_{2}.

Finally, we claim that $V=V_{1} \oplus V_{2}$. It is clear from what we have already shown that $V_{1} \cap V_{2}=(0)$. So it suffices to show that every $v \in V$ can be written as $v_{1}+v_{2}$ with $v_{i} \in V_{i}$. Without loss of generality (replacing m by a larger integer if necessary), we may assume that $V_{1}=T^{m}(V)$ and $V_{2}=\operatorname{Ker}\left(T^{m}\right)$ for the same m. Since $\operatorname{Im}\left(T^{2 m}\right)=\operatorname{Im}\left(T^{m}\right)$, we have $T^{m}(v)=T^{2 m}(w)$ for some $w \in V$. Then $T^{m}\left(v-T^{m}(w)\right)=T^{m}(v)-$ $T^{2 m}(w)=0$, so $v_{2}:=v-T^{m}(w) \in V_{2}$. Setting $v_{1}:=T^{m}(w) \in V_{1}$ gives the desired decomposition of v.

