
Algebra Comprehensive Exam Spring 2011

Problems and Solutions

1. Determine all finitely generated abelian groups G whose automorphism
group is finite.

Solution: Let G be a finitely generated abelian group. By the classifica-
tion of finitely generated abelian groups, we know that G is isomorphic to
a direct product of finitely many cyclic groups. In particular, G ∼= Zr×H
where H is a finite group and r ≥ 0. The subgroup H is precisely the
torsion subgroup of Zr × H. Any element of Aut(G) must preserve the
torsion subgroup. It follows that Aut(G) ∼= Aut(Zr)×Aut(H). Since H is
finite, it follows that Aut(H) is finite. Thus, it suffices to determine when
Aut(Zr) is finite. We have Aut(Z0) = Aut(1) = 1 and Aut(Z) ∼= Z/2Z,
and so for r = 0, 1, we have that Aut(G) is finite. For r ≥ 2, we have

GL(2,Z) ∼= Aut(Z2) ≤ Aut(Zr) ≤ Aut(Zr)× Aut(H) ∼= Aut(G).

Since GL(2,Z) is an infinite group, we see that Aut(G) is infinite. Thus
Aut(G) ∼= Aut(Zr ×H) is finite if and only if r ≤ 1.

2. Prove that if G is a finite group containing no subgroup of index 2, then
any subgroup of index 3 is normal in G.

Solution: Let H < G be a subgroup of index 3. The group G acts
on the set of left cosets of H by left multiplication. This action gives a
homomorphism φ : G → S3. Let K = ker(φ). If g ∈ K, then in particular
gH = H, and so we see that K < H. Let k = [H : K]. Since K is normal
in G it suffices to show H = K, that is, k = 1.

We know that [G : K] = [G : H][H : K] = 3k. By the first isomorphism
theorem we also have

3k = [G : K] = |G|/|K| = |φ(G)|.

Since φ(G) is a subgroup of S3, it follows from Lagrange’s theorem that
|φ(G)| divides |S3| = 6 and so 3k divides 6. Thus k is equal to either 1
or 2.
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Suppose that k = 2. This means that [G : K] = |φ(G)| = 6, which is to
say that φ is surjective. It follows that [G : φ−1(A3)] = [S3 : A3] = 2,
contradicting the assumption that G does not contain any subgroup of
index 2. Thus, it must be that k = 1, which is what we wanted to show.

3. Prove the following special case of Gauss’ lemma: If p(x) ∈ Z[x] is re-
ducible in Q[x], then p(x) is reducible in Z[x].

Solution: This is a special case of Gauss’ lemma, which can be found in
any textbook on abstract algebra.

4. Let R be a local ring, i.e., a commutative ring with identity having a
unique maximal ideal m. Let A be a 2 × 2 matrix with coefficients in
m. Show that the matrix B = A + I is invertible over R, i.e., that there
exists a 2× 2 matrix B′ with coefficients in R such that BB′ = B′B = I.

Solution: First note that an element x ∈ R is invertible iff x 6∈ m.
Indeed, if x ∈ m then clearly x is not invertible; conversely, if x 6∈ m

then x is not contained in any maximal ideal of R so (x) = R. The
determinant of B is

det(B) = b11b22 − b12b21 = (a11 + 1)(a22 + 1)− a12a21

with aij ∈ m. Thus det(B) = 1+a with a ∈ m which implies that det(B)
is invertible in R. We can take B′ to be the matrix

B′ = det(B)−1

(
b22 −b12

−b21 b11

)
.

5. Suppose L/K is an algebraic field extension, and that R is a subring of
L containing K. Prove that R is a field.

Solution: Let r ∈ R be any nonzero element. Since L/K is algebraic
and r ∈ L is nonzero, r satisfies a polynomial equation

anr
n + an−1r

n−1 + · · ·+ a1r + a0 = 0

with an 6= 0 and ai ∈ K for all i. We may assume that n is minimal, and
thus that a0 6= 0. We can rewrite the above equation as

r
(
−a−1

0 (anr
n−1 + an−1r

n−2 + · · ·+ a1)
)

= 1

in which all terms belong to R, since K is a field contained in R. It
follows that r is invertible in R as desired.
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6. Prove that every element of finite order in the group SL(2,Z) of 2 × 2
integer matrices with determinant 1 has order dividing 12. [Hint: First
show that the eigenvalues of any torsion element must be roots of unity.]

Solution: Let A be an element of exact order m in SL(2,Z), so that
the minimal polynomial of A over Q is Xm − 1. Since the minimal and
characteristic polynomial of A have the same irreducible factors, it follows
that the eigenvalues of A are mth roots of unity. (Alternately, one can use
the fact that the eigenvalues of Am are the mth powers of the eigenvalues
of A.) Also, since the minimal polynomial of A is square-free (since there
are m distinct mth roots of unity in C), it follows that A is diagonalizable.
Thus the eigenvalues of A are primitive mth roots of unity.

On the other hand, the eigenvalues of A satisfy the characteristic poly-
nomial of A, which is a monic polynomial of degree 2 with integer coef-
ficients. In particular, the eigenvalues of A are defined over a quadratic
extension of Q. By the irreducibility of the mth cyclotomic polynomial,
we have [Q(ζm) : Q] = ϕ(m) (Euler’s ϕ-function) if ζm is a primitive mth

root of unity. By the explicit formula for ϕ, it is easy to see that ϕ(n) ≤ 2
iff n | 4 or n | 6. In particular, we must have m | 12.

7. Let V be a finite dimensional vector space over a field F , and let T :
V → V be a linear endomorphism. Prove that there is a direct sum
decomposition V = V1 ⊕ V2 with the following properties:

(1) T (Vi) ⊆ Vi for i = 1, 2.

(2) T is an isomorphism on V1.

(3) T is nilpotent on V2.

[Hint: Consider the subspaces Im(T ) ⊇ Im(T 2) ⊇ · · · and Ker(T ) ⊆
Ker(T 2) ⊆ · · · ]
Solution: The chain Im(T ) ⊇ Im(T 2) ⊇ · · · must stabilize to a T -
invariant subspace V1 and the chain Ker(T ) ⊆ Ker(T 2) ⊆ · · · must sta-
bilize to a T -invariant subspace V2.

We claim that T is an isomorphism on V1 and T is nilpotent on V2. Indeed,
it is easy to see that T (V1) = V1, which implies that T is an isomorphism
on V1 by the rank-nullity theorem. Moreover, V2 = Ker(Tm) for some
positive integer m and thus Tm|V2 = 0, so T is nilpotent on V2.
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Finally, we claim that V = V1⊕V2. It is clear from what we have already
shown that V1 ∩ V2 = (0). So it suffices to show that every v ∈ V can
be written as v1 + v2 with vi ∈ Vi. Without loss of generality (replacing
m by a larger integer if necessary), we may assume that V1 = Tm(V )
and V2 = Ker(Tm) for the same m. Since Im(T 2m) = Im(Tm), we have
Tm(v) = T 2m(w) for some w ∈ V . Then Tm(v − Tm(w)) = Tm(v) −
T 2m(w) = 0, so v2 := v − Tm(w) ∈ V2. Setting v1 := Tm(w) ∈ V1 gives
the desired decomposition of v.
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