
1. Let E ⊂ (−π, π) with Lebesgue measure m(E) > 0. Show that for every δ > 0, there
are at most finitely many positive integers n such that sin (nx) ≥ δ for every x ∈ E.

Solution: Suppose to the contrary that there exist δ > 0 and a strictly increasing
sequence of positive integers {nk} such that sin (nkx) ≥ δ for all x ∈ E. Consider

f(x) :=
∞
∑

k=1

1

k
sin (nkx).

Since
∑∞

k=1 1/k2 <∞, we have f ∈ L 2([−π, π]). Therefore

m({x ∈ (−π, π) : |f(x)| = ∞}) = 0.

However
∑∞

k=1 1/k = ∞, so for every x ∈ E, f(x) = ∞. This contradicts the fact
that f ∈ L 2([−π, π]) as m(E) > 0.

2. Let X be a topological vector space and A,B ⊂ X. Recall that

A+B = {x+ y : x ∈ A, y ∈ B}.
Show that

(a) if A and B are compact, then A+B is compact;

(b) if A is compact and B is closed, then A+B is closed;

(c) cl(A) + cl(B) ⊂ cl(A +B), and give an example when the inclusion is strict.

Hint: Think about an example in a Hilbert space.

Solution: (a) Let {xn + yn} be a sequence in A + B with xn ∈ A and yn ∈ B. A
is compact implies that there exists a subsequence {xnk

} converging to some x in A.
The set B is compact implies that the sequence {ynk

} also has a convergent subse-
quence in B, namely {ynkj

} converges to some y ∈ B. Therefore, the subsequence

{xnkj
+ ynkj

} converges in A +B and therefore A +B is compact.

(b) Now suppose A is compact and B is closed. Let {xn +yn} be a sequence in A+B
such that xn ∈ A and yn ∈ B and xn +yn → z for some z ∈ X as n→ ∞. The set A
is compact implies that there exists a subsequence {xnk

} converges to some x in A.
Therefore xnk

+ ynk
→ z and so ynk

→ z − x. But B is closed, therefore z − x ∈ B
and so z ∈ A +B. Hense A +B is closed.

(c) Consider X = l2 := {(x1, x2, . . . ) :
∑

|xn|2 < ∞}, with the standard basis {en},
where en = (δ1n, δ2n, . . . ) and δij = 1 if i = j and δij = 0 if i 6= j. Let

M = cl(span{e2n : n = 1, 2, . . .})



and

N = cl(span{ 1

n
e2n−1 + e2n : n = 1, 2, . . .}).

Notice that

∞
∑

n=1

1

n
e2n−1 ∈ cl(M + N ), but

∞
∑

n=1

1

n
e2n−1 is not in M + N . Indeed, it

is easy to see that e2n−1 ∈ M + N for each n = 1, 2, . . . , therefore
∞
∑

n=1

1

n
e2n−1 ∈ cl(M + N ) as

∑

( 1
n
)2 <∞. On the other hand, if

∞
∑

n=1

1

n
e2n−1 were in

M + N , write

∞
∑

n=1

1

n
e2n−1 =

∞
∑

n=1

ane2n +

∞
∑

n=1

bn(
1

n
e2n−1 + e2n).

Since {en} is an orthonormal basis, we must have bn = 1 and an = −1 for all

n = 1, 2, . . . . But then
∑∞

n=1 ane2n is not in M (or l2). Hence,
∞
∑

n=1

1

n
e2n−1 is not in

M + N .

3. Let k(x, y) =
∑∞

n=0 an cos n(x− y) + bn sin n(x− y), where an, bn are real numbers with
∑

n |an|2 + |bn|2 <∞. Define a linear operator K : L 2([−π, π]) −→ L 2([−π, π]) as

(Kf)(x) =

∫ π

−π

f(y)k(x, y) dy.

Find all the eigenvalues of K.

Solution: Recall that { 1√
2π
} ∪ { 1√

π
cosnx, 1√

π
sinnx : n = 1, 2, . . .} is an orthonor-

mal basis for L 2([−π, π]) with the usual inner product defined as

< f, g >=

∫ π

−π

f(x)g(x) dx.

Observe that

k(x, y) =
∞
∑

n=0

an cosn(x− y) + bn sinn(x− y)

= a0 +
∞
∑

n=0

(an cosnx cos ny + an sinnx sin ny + bn sinnx cosny − bn cosnx sinny) .

Every vector f ∈ L 2([−π, π]) can be written as

f(x) =
α0√
2π

+
∞
∑

n=1

αn√
π

cosnx+
∞
∑

n=1

βn√
π

sin nx
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with
∑∞

n=0 |αn|2 + |βn|2 <∞, and for such an f ,

(Kf)(x) =

∫ π

−π

(

α0√
2π

+
∞
∑

n=0

αn√
π

cosny +
∞
∑

n=0

βn√
π

sinny

)

·
(

a0 +
∞
∑

n=0

(an cosnx cosny + an sinnx sin ny + bn sin nx cosny − bn cosnx sin ny)

)

dy

=a0α0

√
2π +

∞
∑

n=1

√
π(anαn − bnβn) cosnx+

√
π(anβn + bnαn) sinnx

If Kf = λf for some non-zero f , by comparing the coefficients of f and Kf , we have
eigenvalue λ0 = 2πa0 (corresponds to f(x) = 1), and

(πan − λ)αn − πbnβn = 0, πbnαn + (πan − λ)βn = 0.

Such a system has non-trivial solution if and only if

∣

∣

∣

∣

πan − λ −πbn
πbn πan − λ

∣

∣

∣

∣

= 0.

This is equivalent to (πan − λ)2 + π2b2n = 0, or λ = πan ± iπbn. Therefore λn =
πan ± iπbn are eigenvalues (correspond to eigenvectors fn(x) = cosnx ∓ i sinnx).
Hence, the eigenvalues of K are λ0 = 2πa0 and λn = π(an ± ibn) for n = 1, 2, . . . .

4. Let φ be a monotonically increasing smooth (continuously differentiable) funtion on [a, b],
and ψ be the inverse of φ on [φ(a), φ(b)]. Show that

∫ b

a

φ(x) dx =

∫ φ(b)

φ(a)

yψ′(y) dy.

Solution: Let µ denote the Lebesgue measure on [a, b]. Let

P := {φ(a) = t0 < t1 < t2 < · · · < tn = φ(b)}

be a partition of [φ(a), φ(b)]. Since φ is monotonically increasing, we have

µ({x ∈ [a, b] : tk ≤ φ(x) ≤ tk+1}) = ψ(tk+1) − ψ(tk) = ψ′(ξk)(tk+1 − tk)

for each k, for some tk < ξk < tk+1, where the last equality follows from the Mean
Value Theorem applied to ψ. Now for partitions

P (m) := {φ(a) = t
(m)
0 < t

(m)
1 < t

(m)
2 < · · · < t(m)

nm
= φ(b)}
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such that max{t(m)
k+1 − t

(m)
k : k = 1, . . . , nm} −→ 0 as m→ ∞, then

∫ b

a

φ(x) dx = lim
m→∞

∑

k

t
(m)
k µ({x ∈ [a, b] : t

(m)
k ≤ φ(x) ≤ t

(m)
k+1})

= lim
m→∞

∑

k

t
(m)
k ψ′(ξ

(m)
k )(t

(m)
k+1 − t

(m)
k )

=

∫ φ(b)

φ(a)

yψ′(y) dy.

5. With (X,M, µ) some measure space, consider f : X −→ R̄ such that f ∈ L 1(X).

(a) Prove that µ(A) = 0 where A := {x ∈ X : |f(x)| = ∞}.
(b) Prove that the set B := {x ∈ X : f(x) 6= 0} is σ-finite.

(c) Prove that for every ε > 0 there exists a δ > 0 such that whenever E ∈ M with
µ(E) < δ, then

∫

E
|f | dµ < ε.

Solution:

(a) Follows from Cheyshev’s inequality: for all α > 0 we have

αµ({x ∈ X : |f(x)| > α}) 6

∫

{x∈X : |f(x)|>α}
|f(x)| dµ 6 ‖f‖L 1(X) <∞.

Sending α −→ ∞, the result follows.

(b) Again by Chebyshesh’s inequality, we have that µ(En) <∞ for all n ∈ N, where

En := {x ∈ X : |f(x)| > 1/n}.

Then we use that {x ∈ X : f(x) 6= 0} =
⋃∞

n=1En.

(c) For any ε > 0 there exists a simple function s =
∑N

i=1 ai1Ei
with ai ∈ R and

Ei ∈ M auch that
∫

X
|f − s| dµ < ε/2. Without loss of generality, we may

assume that the Ei are pairwise disjoint. Let δ := ε/(2 maxi |ai|) > 0. Then for
all E ∈ M with µ(E) < δ we can estimate

∫

E

|f | dµ 6

∫

X

|f − s| dµ+

∫

E

|s| dµ 6
ε

2
+ (max

i
|ai|)µ(E) < ε.
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6. Consider a σ-finite measure space (X,M, µ). Fix a function K ∈ L 2(X ×X) (defined
with respect to the product σ-algebra and product measure) and define a linear map

T : L
2(X) −→ L

2(X) by (Tf)(x) :=

∫

X

K(x, y)f(y) dµ(y). (1)

Prove that the operator T is well-defined: the integral in (1) converges for µ-almost every
x ∈ X and defines a function in L 2(X) for all f ∈ L 2(X). Moreover, the operator T is
bounded with operator norm bounded by ‖T‖ 6 ‖K‖L 2(X×X).

Solution: For any f, g ∈ L 2(X), the map (x, y) 7→ g(x)f(y) is in L 2(X×X) since

∫

X×X

|g(x)f(y)|2 dµ⊗ µ(x, y) =

(
∫

X

|g(x)|2 dµ(x)

)(
∫

X

|f(x)|2 dµ(y)

)

,

which is finite. The Cauchy inequality therefore implies the estimate

∣

∣

∣

∣

∫

X×X

K(x, y)g(x)f(y) dµ⊗ µ(x, y)

∣

∣

∣

∣

6 ‖K‖L 2(X×X)‖g‖L 2(X)‖f‖L 2(X).

This implies that for any f ∈ L 2(X), the map

g 7→
∫

X×X

K(x, y)g(x)f(y) dµ⊗ µ(x, y)

is a linear functional on L 2(X), with norm bounded by ‖K‖L 2(X×X)‖f‖L 2(X). By
Riesz representation, any such linear functional can be represented by integration
against a square integrable function, which is uniquely determined. Since the map
(x, y) 7→ K(x, y)g(x)f(y) is in L 1(X ×X), by Fubini’s theorem we have that

∫

X×X

K(x, y)g(x)f(y) dµ⊗ µ(x, y) =

∫

X

g(x)

∫

X

K(x, y)f(y) dµ(y) dµ(x)

for all f, g. Therefore
∫

X×X
K(·, y)f(y) dµ(y) =: Tf is a function in L 2(X) and as

such finite µ-a.e. Finally, we can estimate

‖Tf‖L 2(X) = sup

{
∣

∣

∣

∣

∫

X

g(x)Tf(x) dµ(x)

∣

∣

∣

∣

: ‖g‖L2(X) 6 1

}

6 ‖K‖L 2(X×X)‖f‖L 2(X),

which implies that the operator norm ‖T‖ 6 ‖K‖L 2(X×X).

7. (a) Assume that µ is a finite measure on a measurable space (X,M). With q ∈ (1,∞),
let {fk}∞k=1 ⊂ L q(X) and f ∈ L q(X) be given. Suppose that also

• supk∈N
‖fk‖Lq(X) <∞ and
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• fk(x) −→ f(x) for µ-a.e. x ∈ X.

Prove that fk −→ f in L p(X) for all p ∈ [1, q).

(b) Is the statement in part (a) still true if µ is only assumed to be σ-finite? Justify
your answer.

Solution:

(a) By Fatou’s lemma, we have that
∫

X
|f |q dµ 6 lim infk→∞

∫

X
|fk|q < ∞. We

may therefore consider a sequence gk := fk − f , which is uniformly bounded in
L q(X) and converges to zero pointwise almost everywhere. We want to show
that gk −→ 0 strongly in L p(X) for all p ∈ [1, q).

Notice first that by Hölder’s and Chebyshev’s inequalities, we can estimate

∫

X

1{|gk|>m}|gk|p dµ 6 ‖gk‖p
L q(X)

(

µ({|gk| > m})
)(q−p)/q

6 mp−q‖gk‖q
L q(X) (2)

for all m > 0. Let g̃k be the function that is equal to gk if |gk| 6 m and zero
otherwise. Then g̃k is pointwise bounded by m and the sequence converges
to zero almost everywhere. Hence g̃k −→ 0 strongly in L p(X) by dominated
convergence, using the constant function as a majorant and the fact the µ is
finite. Combining this with the estimate (2), we obtain the result.

(b) No. If µ is not finite, then a function in L q(X) does not even have to be
in L p(X) for any p ∈ [1, q). Consider, for (counter)example, the case when
X := [1,∞) equipped with Lebesgue measure. Then f(x) := 1/(x log x)1/q is in
L q(X), but not in L p(X) for p < q since it does not decay fast enough.

8. Assume that µ is a finite measure on a measurable space (X,M). Let f : X −→ [0,∞)
be M-measurable and g : [0,∞) −→ [0,∞) be smooth and increasing. Prove that

∫

X

g ◦ f dµ >

∫ ∞

0

g′(t)µ({x ∈ X : f(x) > t}) dt.

You may assume without proof that the composition g ◦ f is M-measurable.

Solution: Note first that if s is a simple function, then g ◦ s is a simple function as
well. Moreover, by definition of integrals over nonnegative functions, we have that
∫

X
g ◦ f dµ = sups

∫

X
g ◦ s d µ, where the sup is taking over all simple functions s

with 0 6 s(x) 6 f(x) for a.e. x ∈ X. We may therefore assume that f is simple,
thus bounded. Let M := supx∈X |f(x)|, which is finite. We have that

g(f(x)) =

∫ f(x)

0

g′(t) dt+ g(0) >

∫ ∞

0

g′(t)1{f(x)>t} dt,
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because g(0) > 0. Since

∫

X

∫ ∞

0

g′(t)1{f(x)>t} dt dµ 6 g(M)µ(X) <∞

we can use Fubini’s theorem to interchange the order of integration to obtain

∫

X

∫ ∞

0

g′(t)1{f(x)>t} dt dµ(x) =

∫ ∞

0

∫

X

g′(t)1{f(x)>t} dµ(x) dt

=

∫ ∞

0

g′(t)µ({f(x) > t}) dt.
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