1. Let $E \subset(-\pi, \pi)$ with Lebesgue measure $m(E)>0$. Show that for every $\delta>0$, there are at most finitely many positive integers n such that $\sin (n x) \geq \delta$ for every $x \in E$.

Solution: Suppose to the contrary that there exist $\delta>0$ and a strictly increasing sequence of positive integers $\left\{n_{k}\right\}$ such that $\sin \left(n_{k} x\right) \geq \delta$ for all $x \in E$. Consider

$$
f(x):=\sum_{k=1}^{\infty} \frac{1}{k} \sin \left(n_{k} x\right)
$$

Since $\sum_{k=1}^{\infty} 1 / k^{2}<\infty$, we have $f \in \mathscr{L}^{2}([-\pi, \pi])$. Therefore

$$
m(\{x \in(-\pi, \pi):|f(x)|=\infty\})=0
$$

However $\sum_{k=1}^{\infty} 1 / k=\infty$, so for every $x \in E, f(x)=\infty$. This contradicts the fact that $f \in \mathscr{L}^{2}([-\pi, \pi])$ as $m(E)>0$.
2. Let X be a topological vector space and $A, B \subset X$. Recall that

$$
A+B=\{x+y: x \in A, y \in B\}
$$

Show that
(a) if A and B are compact, then $A+B$ is compact;
(b) if A is compact and B is closed, then $A+B$ is closed;
(c) $\operatorname{cl}(A)+\operatorname{cl}(B) \subset \operatorname{cl}(A+B)$, and give an example when the inclusion is strict.

Hint: Think about an example in a Hilbert space.

Solution: (a) Let $\left\{x_{n}+y_{n}\right\}$ be a sequence in $A+B$ with $x_{n} \in A$ and $y_{n} \in B$. A is compact implies that there exists a subsequence $\left\{x_{n_{k}}\right\}$ converging to some x in A. The set B is compact implies that the sequence $\left\{y_{n_{k}}\right\}$ also has a convergent subsequence in B, namely $\left\{y_{n_{k_{j}}}\right\}$ converges to some $y \in B$. Therefore, the subsequence $\left\{x_{n_{k_{j}}}+y_{n_{k_{j}}}\right\}$ converges in $A+B$ and therefore $A+B$ is compact.
(b) Now suppose A is compact and B is closed. Let $\left\{x_{n}+y_{n}\right\}$ be a sequence in $A+B$ such that $x_{n} \in A$ and $y_{n} \in B$ and $x_{n}+y_{n} \rightarrow z$ for some $z \in X$ as $n \rightarrow \infty$. The set A is compact implies that there exists a subsequence $\left\{x_{n_{k}}\right\}$ converges to some x in A. Therefore $x_{n_{k}}+y_{n_{k}} \rightarrow z$ and so $y_{n_{k}} \rightarrow z-x$. But B is closed, therefore $z-x \in B$ and so $z \in A+B$. Hense $A+B$ is closed.
(c) Consider $X=l_{2}:=\left\{\left(x_{1}, x_{2}, \ldots\right): \sum\left|x_{n}\right|^{2}<\infty\right\}$, with the standard basis $\left\{e_{n}\right\}$, where $e_{n}=\left(\delta_{1 n}, \delta_{2 n}, \ldots\right)$ and $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ if $i \neq j$. Let

$$
\mathscr{M}=\operatorname{cl}\left(\operatorname{span}\left\{e_{2 n}: n=1,2, \ldots\right\}\right)
$$

and

$$
\mathscr{N}=\operatorname{cl}\left(\operatorname{span}\left\{\frac{1}{n} e_{2 n-1}+e_{2 n}: n=1,2, \ldots\right\}\right)
$$

Notice that $\sum_{n=1}^{\infty} \frac{1}{n} e_{2 n-1} \in \operatorname{cl}(\mathscr{M}+\mathscr{N})$, but $\sum_{n=1}^{\infty} \frac{1}{n} e_{2 n-1}$ is not in $\mathscr{M}+\mathscr{N}$. Indeed, it is easy to see that $e_{2 n-1} \in \mathscr{M}+\mathscr{N}$ for each $n=1,2, \ldots$, therefore
$\sum_{n=1}^{\infty} \frac{1}{n} e_{2 n-1} \in \operatorname{cl}(\mathscr{M}+\mathscr{N})$ as $\sum\left(\frac{1}{n}\right)^{2}<\infty$. On the other hand, if $\sum_{n=1}^{\infty} \frac{1}{n} e_{2 n-1}$ were in $\mathscr{M}+\mathscr{N}$, write

$$
\sum_{n=1}^{\infty} \frac{1}{n} e_{2 n-1}=\sum_{n=1}^{\infty} a_{n} e_{2 n}+\sum_{n=1}^{\infty} b_{n}\left(\frac{1}{n} e_{2 n-1}+e_{2 n}\right)
$$

Since $\left\{e_{n}\right\}$ is an orthonormal basis, we must have $b_{n}=1$ and $a_{n}=-1$ for all $n=1,2, \ldots$ But then $\sum_{n=1}^{\infty} a_{n} e_{2 n}$ is not in \mathscr{M} (or l_{2}). Hence, $\sum_{n=1}^{\infty} \frac{1}{n} e_{2 n-1}$ is not in $\mathscr{M}+\mathscr{N}$.
3. Let $k(x, y)=\sum_{n=0}^{\infty} a_{n} \cos n(x-y)+b_{n} \sin n(x-y)$, where a_{n}, b_{n} are real numbers with $\sum_{n}\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}<\infty$. Define a linear operator $K: \mathscr{L}^{2}([-\pi, \pi]) \longrightarrow \mathscr{L}^{2}([-\pi, \pi])$ as

$$
(K f)(x)=\int_{-\pi}^{\pi} f(y) k(x, y) d y
$$

Find all the eigenvalues of K.

Solution: Recall that $\left\{\frac{1}{\sqrt{2 \pi}}\right\} \cup\left\{\frac{1}{\sqrt{\pi}} \cos n x, \frac{1}{\sqrt{\pi}} \sin n x: n=1,2, \ldots\right\}$ is an orthonormal basis for $\mathscr{L}^{2}([-\pi, \pi])$ with the usual inner product defined as

$$
<f, g>=\int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

Observe that

$$
\begin{aligned}
k(x, y) & =\sum_{n=0}^{\infty} a_{n} \cos n(x-y)+b_{n} \sin n(x-y) \\
& =a_{0}+\sum_{n=0}^{\infty}\left(a_{n} \cos n x \cos n y+a_{n} \sin n x \sin n y+b_{n} \sin n x \cos n y-b_{n} \cos n x \sin n y\right) .
\end{aligned}
$$

Every vector $f \in \mathscr{L}^{2}([-\pi, \pi])$ can be written as

$$
f(x)=\frac{\alpha_{0}}{\sqrt{2 \pi}}+\sum_{n=1}^{\infty} \frac{\alpha_{n}}{\sqrt{\pi}} \cos n x+\sum_{n=1}^{\infty} \frac{\beta_{n}}{\sqrt{\pi}} \sin n x
$$

with $\sum_{n=0}^{\infty}\left|\alpha_{n}\right|^{2}+\left|\beta_{n}\right|^{2}<\infty$, and for such an f,

$$
\begin{aligned}
(K f)(x)= & \int_{-\pi}^{\pi}\left(\frac{\alpha_{0}}{\sqrt{2 \pi}}+\sum_{n=0}^{\infty} \frac{\alpha_{n}}{\sqrt{\pi}} \cos n y+\sum_{n=0}^{\infty} \frac{\beta_{n}}{\sqrt{\pi}} \sin n y\right) \\
& \left(a_{0}+\sum_{n=0}^{\infty}\left(a_{n} \cos n x \cos n y+a_{n} \sin n x \sin n y+b_{n} \sin n x \cos n y-b_{n} \cos n x \sin n y\right)\right) d y \\
= & a_{0} \alpha_{0} \sqrt{2 \pi}+\sum_{n=1}^{\infty} \sqrt{\pi}\left(a_{n} \alpha_{n}-b_{n} \beta_{n}\right) \cos n x+\sqrt{\pi}\left(a_{n} \beta_{n}+b_{n} \alpha_{n}\right) \sin n x
\end{aligned}
$$

If $K f=\lambda f$ for some non-zero f, by comparing the coefficients of f and $K f$, we have eigenvalue $\lambda_{0}=2 \pi a_{0}$ (corresponds to $f(x)=1$), and

$$
\left(\pi a_{n}-\lambda\right) \alpha_{n}-\pi b_{n} \beta_{n}=0, \quad \pi b_{n} \alpha_{n}+\left(\pi a_{n}-\lambda\right) \beta_{n}=0 .
$$

Such a system has non-trivial solution if and only if

$$
\left|\begin{array}{ll}
\pi a_{n}-\lambda & -\pi b_{n} \\
\pi b_{n} & \pi a_{n}-\lambda
\end{array}\right|=0
$$

This is equivalent to $\left(\pi a_{n}-\lambda\right)^{2}+\pi^{2} b_{n}^{2}=0$, or $\lambda=\pi a_{n} \pm i \pi b_{n}$. Therefore $\lambda_{n}=$ $\pi a_{n} \pm i \pi b_{n}$ are eigenvalues (correspond to eigenvectors $f_{n}(x)=\cos n x \mp i \sin n x$). Hence, the eigenvalues of K are $\lambda_{0}=2 \pi a_{0}$ and $\lambda_{n}=\pi\left(a_{n} \pm i b_{n}\right)$ for $n=1,2, \ldots$.
4. Let ϕ be a monotonically increasing smooth (continuously differentiable) funtion on $[a, b]$, and ψ be the inverse of ϕ on $[\phi(a), \phi(b)]$. Show that

$$
\int_{a}^{b} \phi(x) d x=\int_{\phi(a)}^{\phi(b)} y \psi^{\prime}(y) d y
$$

Solution: Let μ denote the Lebesgue measure on $[a, b]$. Let

$$
P:=\left\{\phi(a)=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=\phi(b)\right\}
$$

be a partition of $[\phi(a), \phi(b)]$. Since ϕ is monotonically increasing, we have

$$
\mu\left(\left\{x \in[a, b]: t_{k} \leq \phi(x) \leq t_{k+1}\right\}\right)=\psi\left(t_{k+1}\right)-\psi\left(t_{k}\right)=\psi^{\prime}\left(\xi_{k}\right)\left(t_{k+1}-t_{k}\right)
$$

for each k, for some $t_{k}<\xi_{k}<t_{k+1}$, where the last equality follows from the Mean Value Theorem applied to ψ. Now for partitions

$$
P^{(m)}:=\left\{\phi(a)=t_{0}^{(m)}<t_{1}^{(m)}<t_{2}^{(m)}<\cdots<t_{n_{m}}^{(m)}=\phi(b)\right\}
$$

such that $\max \left\{t_{k+1}^{(m)}-t_{k}^{(m)}: k=1, \ldots, n_{m}\right\} \longrightarrow 0$ as $m \rightarrow \infty$, then

$$
\begin{aligned}
\int_{a}^{b} \phi(x) d x & =\lim _{m \rightarrow \infty} \sum_{k} t_{k}^{(m)} \mu\left(\left\{x \in[a, b]: t_{k}^{(m)} \leq \phi(x) \leq t_{k+1}^{(m)}\right\}\right) \\
& =\lim _{m \rightarrow \infty} \sum_{k} t_{k}^{(m)} \psi^{\prime}\left(\xi_{k}^{(m)}\right)\left(t_{k+1}^{(m)}-t_{k}^{(m)}\right) \\
& =\int_{\phi(a)}^{\phi(b)} y \psi^{\prime}(y) d y
\end{aligned}
$$

5. With (X, \mathcal{M}, μ) some measure space, consider $f: X \longrightarrow \overline{\mathbb{R}}$ such that $f \in \mathscr{L}^{1}(X)$.
(a) Prove that $\mu(A)=0$ where $A:=\{x \in X:|f(x)|=\infty\}$.
(b) Prove that the set $B:=\{x \in X: f(x) \neq 0\}$ is σ-finite.
(c) Prove that for every $\varepsilon>0$ there exists a $\delta>0$ such that whenever $E \in \mathcal{M}$ with $\mu(E)<\delta$, then $\int_{E}|f| d \mu<\varepsilon$.

Solution:

(a) Follows from Cheyshev's inequality: for all $\alpha>0$ we have

$$
\alpha \mu(\{x \in X:|f(x)| \geqslant \alpha\}) \leqslant \int_{\{x \in X:|f(x)| \geqslant \alpha\}}|f(x)| d \mu \leqslant\|f\|_{\mathscr{L}^{1}(X)}<\infty .
$$

Sending $\alpha \longrightarrow \infty$, the result follows.
(b) Again by Chebyshesh's inequality, we have that $\mu\left(E_{n}\right)<\infty$ for all $n \in \mathbb{N}$, where

$$
E_{n}:=\{x \in X:|f(x)| \geqslant 1 / n\} .
$$

Then we use that $\{x \in X: f(x) \neq 0\}=\bigcup_{n=1}^{\infty} E_{n}$.
(c) For any $\varepsilon>0$ there exists a simple function $s=\sum_{i=1}^{N} a_{i} \mathbf{1}_{E_{i}}$ with $a_{i} \in \mathbb{R}$ and $E_{i} \in \mathcal{M}$ auch that $\int_{X}|f-s| d \mu<\varepsilon / 2$. Without loss of generality, we may assume that the E_{i} are pairwise disjoint. Let $\delta:=\varepsilon /\left(2 \max _{i}\left|a_{i}\right|\right)>0$. Then for all $E \in \mathcal{M}$ with $\mu(E)<\delta$ we can estimate

$$
\int_{E}|f| d \mu \leqslant \int_{X}|f-s| d \mu+\int_{E}|s| d \mu \leqslant \frac{\varepsilon}{2}+\left(\max _{i}\left|a_{i}\right|\right) \mu(E)<\varepsilon
$$

6. Consider a σ-finite measure space (X, \mathcal{M}, μ). Fix a function $K \in \mathscr{L}^{2}(X \times X)$ (defined with respect to the product σ-algebra and product measure) and define a linear map

$$
\begin{equation*}
T: \mathscr{L}^{2}(X) \longrightarrow \mathscr{L}^{2}(X) \quad \text { by } \quad(T f)(x):=\int_{X} K(x, y) f(y) d \mu(y) \tag{1}
\end{equation*}
$$

Prove that the operator T is well-defined: the integral in (1) converges for μ-almost every $x \in X$ and defines a function in $\mathscr{L}^{2}(X)$ for all $f \in \mathscr{L}^{2}(X)$. Moreover, the operator T is bounded with operator norm bounded by $\|T\| \leqslant\|K\|_{\mathscr{L}^{2}(X \times X)}$.

Solution: For any $f, g \in \mathscr{L}^{2}(X)$, the map $(x, y) \mapsto g(x) f(y)$ is in $\mathscr{L}^{2}(X \times X)$ since

$$
\int_{X \times X}|g(x) f(y)|^{2} d \mu \otimes \mu(x, y)=\left(\int_{X}|g(x)|^{2} d \mu(x)\right)\left(\int_{X}|f(x)|^{2} d \mu(y)\right)
$$

which is finite. The Cauchy inequality therefore implies the estimate

$$
\left|\int_{X \times X} K(x, y) g(x) f(y) d \mu \otimes \mu(x, y)\right| \leqslant\|K\|_{\mathscr{L}^{2}(X \times X)}\|g\|_{\mathscr{L}^{2}(X)}\|f\|_{\mathscr{L}^{2}(X)}
$$

This implies that for any $f \in \mathscr{L}^{2}(X)$, the map

$$
g \mapsto \int_{X \times X} K(x, y) g(x) f(y) d \mu \otimes \mu(x, y)
$$

is a linear functional on $\mathscr{L}^{2}(X)$, with norm bounded by $\|K\|_{\mathscr{L}^{2}(X \times X)}\|f\|_{\mathscr{L}^{2}(X)}$. By Riesz representation, any such linear functional can be represented by integration against a square integrable function, which is uniquely determined. Since the map $(x, y) \mapsto K(x, y) g(x) f(y)$ is in $\mathscr{L}^{1}(X \times X)$, by Fubini's theorem we have that

$$
\int_{X \times X} K(x, y) g(x) f(y) d \mu \otimes \mu(x, y)=\int_{X} g(x) \int_{X} K(x, y) f(y) d \mu(y) d \mu(x)
$$

for all f, g. Therefore $\int_{X \times X} K(\cdot, y) f(y) d \mu(y)=: T f$ is a function in $\mathscr{L}^{2}(X)$ and as such finite μ-a.e. Finally, we can estimate

$$
\|T f\|_{\mathscr{L}^{2}(X)}=\sup \left\{\left|\int_{X} g(x) T f(x) d \mu(x)\right|:\|g\|_{L^{2}(X)} \leqslant 1\right\} \leqslant\|K\|_{\mathscr{L}^{2}(X \times X)}\|f\|_{\mathscr{L}^{2}(X)}
$$

which implies that the operator norm $\|T\| \leqslant\|K\|_{\mathscr{L}^{2}(X \times X)}$.
7. (a) Assume that μ is a finite measure on a measurable space (X, \mathcal{M}). With $q \in(1, \infty)$, let $\left\{f_{k}\right\}_{k=1}^{\infty} \subset \mathscr{L}^{q}(X)$ and $f \in \mathscr{L}^{q}(X)$ be given. Suppose that also

- $\sup _{k \in \mathbb{N}}\left\|f_{k}\right\|_{L^{q}(X)}<\infty$ and
- $f_{k}(x) \longrightarrow f(x)$ for μ-a.e. $x \in X$.

Prove that $f_{k} \longrightarrow f$ in $\mathscr{L}^{p}(X)$ for all $p \in[1, q)$.
(b) Is the statement in part (a) still true if μ is only assumed to be σ-finite? Justify your answer.

Solution:

(a) By Fatou's lemma, we have that $\int_{X}|f|^{q} d \mu \leqslant \liminf _{k \rightarrow \infty} \int_{X}\left|f_{k}\right|^{q}<\infty$. We may therefore consider a sequence $g_{k}:=f_{k}-f$, which is uniformly bounded in $\mathscr{L}^{q}(X)$ and converges to zero pointwise almost everywhere. We want to show that $g_{k} \longrightarrow 0$ strongly in $\mathscr{L}^{p}(X)$ for all $p \in[1, q)$.

Notice first that by Hölder's and Chebyshev's inequalities, we can estimate

$$
\begin{equation*}
\int_{X} 1_{\left\{\left|g_{k}\right|>m\right\}}\left|g_{k}\right|^{p} d \mu \leqslant\left\|g_{k}\right\|_{\mathscr{L}^{q}(X)}^{p}\left(\mu\left(\left\{\left|g_{k}\right|>m\right\}\right)\right)^{(q-p) / q} \leqslant m^{p-q}\left\|g_{k}\right\|_{\mathscr{L}^{q}(X)}^{q} \tag{2}
\end{equation*}
$$

for all $m \geqslant 0$. Let \tilde{g}_{k} be the function that is equal to g_{k} if $\left|g_{k}\right| \leqslant m$ and zero otherwise. Then \tilde{g}_{k} is pointwise bounded by m and the sequence converges to zero almost everywhere. Hence $\tilde{g}_{k} \longrightarrow 0$ strongly in $\mathscr{L}^{p}(X)$ by dominated convergence, using the constant function as a majorant and the fact the μ is finite. Combining this with the estimate (2), we obtain the result.
(b) No. If μ is not finite, then a function in $\mathscr{L}^{q}(X)$ does not even have to be in $\mathscr{L}^{p}(X)$ for any $p \in[1, q)$. Consider, for (counter)example, the case when $X:=[1, \infty)$ equipped with Lebesgue measure. Then $f(x):=1 /(x \log x)^{1 / q}$ is in $\mathscr{L}^{q}(X)$, but not in $\mathscr{L}^{p}(X)$ for $p<q$ since it does not decay fast enough.
8. Assume that μ is a finite measure on a measurable space (X, \mathcal{M}). Let $f: X \longrightarrow[0, \infty)$ be \mathcal{M}-measurable and $g:[0, \infty) \longrightarrow[0, \infty)$ be smooth and increasing. Prove that

$$
\int_{X} g \circ f d \mu \geqslant \int_{0}^{\infty} g^{\prime}(t) \mu(\{x \in X: f(x)>t\}) d t .
$$

You may assume without proof that the composition $g \circ f$ is \mathcal{M}-measurable.

Solution: Note first that if s is a simple function, then $g \circ s$ is a simple function as well. Moreover, by definition of integrals over nonnegative functions, we have that $\int_{X} g \circ f d \mu=\sup _{s} \int_{X} g \circ s d \mu$, where the sup is taking over all simple functions s with $0 \leqslant s(x) \leqslant f(x)$ for a.e. $x \in X$. We may therefore assume that f is simple, thus bounded. Let $M:=\sup _{x \in X}|f(x)|$, which is finite. We have that

$$
g(f(x))=\int_{0}^{f(x)} g^{\prime}(t) d t+g(0) \geqslant \int_{0}^{\infty} g^{\prime}(t) \mathbf{1}_{\{f(x)>t\}} d t
$$

because $g(0) \geqslant 0$. Since

$$
\int_{X} \int_{0}^{\infty} g^{\prime}(t) \mathbf{1}_{\{f(x)>t\}} d t d \mu \leqslant g(M) \mu(X)<\infty
$$

we can use Fubini's theorem to interchange the order of integration to obtain

$$
\begin{aligned}
\int_{X} \int_{0}^{\infty} g^{\prime}(t) \mathbf{1}_{\{f(x)>t\}} d t d \mu(x) & =\int_{0}^{\infty} \int_{X} g^{\prime}(t) \mathbf{1}_{\{f(x)>t\}} d \mu(x) d t \\
& =\int_{0}^{\infty} g^{\prime}(t) \mu(\{f(x)>t\}) d t
\end{aligned}
$$

