## SPRING 2013 ALGEBRA COMPREHENSIVE EXAM

## Problems: Choose 5.

(1) Let $p$ be a prime number and let $G$ be a $p$-group acting on a finite set $S$. Prove that the number of fixed points of the action is congruent to $|S|$ modulo $p$.
(2) Write down a complete list of all abelian groups of order 270.
(3) Let $R$ be a Noetherian ring. Prove that a surjective homomorphism $\phi: R \rightarrow R$ must be an isomorphism.
(4) Let $R$ be a subring of a commutative ring $S$, and suppose the additive group $S / R$ is finite of order $n$. If $m$ is an integer relatively prime to $n$, prove that $R / m R$ and $S / m S$ are isomorphic rings.
(5) Let $q$ be a prime power and let $\mathbb{F}_{q}$ be a finite field of order $q$. Prove that every element of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ has order dividing either $q^{2}-1$ or $q^{2}-q$.
(6) Let $p$ be a prime number, and let $\mathbb{F}_{p}$ be the field with $p$ elements. How many elements of $\mathbb{F}_{p}$ have cube roots in $\mathbb{F}_{p}$ ?
(7) Let $V$ be a finite-dimensional complex vector space of dimension $n$ and let $T$ be a linear transformation from $V$ to itself. Prove that $V=\operatorname{ker}\left(T^{n}\right) \oplus \operatorname{im}\left(T^{n}\right)$. Find an example where $V \neq \operatorname{ker}(T) \oplus \operatorname{im}(T)$.

[^0]
## Solutions.

(1) Let $s_{1}, \ldots, s_{t}$ represent the different orbits and let $F \subset S$ be the set of fixed points for the action. Then $s_{i} \in F$ iff $\left|G \cdot s_{i}\right|=1$. Also, $\left|G \cdot s_{i}\right|=\left[G: G_{s_{i}}\right]$ divides $|G|=p^{k}$, so it is either 1 (if $s_{i}$ is a fixed point) or a power of $p$ (otherwise). Since the orbits partition $G$, we have

$$
|S|=\sum_{i=1}^{t}\left[G: G_{s_{i}}\right] \equiv|F| \quad(\bmod p)
$$

(2) The structure theorem for finite abelian groups says that every finite abelian group is uniquely isomorphic to a direct sum of cyclic subgroups of prime-power order. Thus the following three groups are the only abelian groups of order $270=2 \cdot 5 \cdot 3^{3}$ up to isomorphism:

$$
\begin{aligned}
& \mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \\
& \mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{9} \\
& \mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{27}
\end{aligned}
$$

(3) Let $I_{n}=\operatorname{ker} \phi^{n}$. Then since $R$ is Noetherian, the ascending chain of ideals $I_{1} \subseteq I_{2} \subseteq \cdots$ must stabilize, i.e., there exists $n$ so that $I_{n}=I_{n+1}$. Let $x \in \operatorname{ker}(\phi)$. Since $\phi^{n}$ is surjective, there exists $y$ such that $\phi^{n}(y)=x$. Then $0=\phi(x)=\phi^{n+1}(y)$, so $y \in I_{n+1}=I_{n}$ which implies that $x=\phi^{n}(y)=0$. Thus $\phi$ is injective and hence an isomorphism.
(4) Let $\phi: S / m S \rightarrow R / m R$ be multiplication by $n$, which is well-defined since $S / R$ is an abelian group of order $n$ with respect to addition. Since $(m, n)=1$, we may choose integers $a$ and $b$ such that $a m+b n=$ 1. To see that $\phi$ is surjective, note that for every $r \in R$ the coset $\overline{b r} \in S / m S$ maps to the coset $\bar{r} \in R / m R$, as $r=(a m+b n) r=$ $n(b r)+a(m r)$. To see that $\phi$ is injective, suppose $\phi(\bar{s})=0 \in R / m R$ with $s \in S$, i.e., $n s \in m R$. Then $s=(a m+b n) s=a(m s)+b(n s) \in$ $m S$.
(5) Let $A \in \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ and let $f$ be its characteristic polynomial, which is a monic polynomial of degree 2 with coefficients in $\mathbb{F}_{q}$. If $f$ has distinct roots then $A$ is diagonalizable over either $\mathbb{F}_{q}$ or a quadratic extension $F$ of $\mathbb{F}_{q}$. Since $\left|\mathbb{F}_{q}^{*}\right|=q-1$ and $\left|F^{*}\right|=q^{2}-1$, the order of a diagonal matrix with entries in $\mathbb{F}_{q}$ or $F$ divides $q^{2}-1$. If $f$ has a repeated root $a$ then $a \in \mathbb{F}_{q}$ and $A$ is similar to a $2 \times 2$ Jordan block

$$
J=\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right] \text { with } a \in \mathbb{F}_{q}^{*}, b \in \mathbb{F}_{q}
$$

If $n=q(q-1)$ then

$$
J^{n}=\left[\begin{array}{cc}
a^{n} & n a^{n-1} b \\
0 & a^{n}
\end{array}\right]=I
$$

as desired.
(6) If $p=2$ then the answer is 2 . We may therefore suppose that $p$ is odd. Clearly 0 always has a cube root. Since $\mathbb{F}_{p}^{*}$ is cyclic, there exists $a \in \mathbb{F}_{p}^{*}$ such that every element can be represented as $a^{k}$ for some integer $k$. The homomorphism $\phi(x)=x^{3}$ from $\mathbb{F}_{p}^{*}$ can then be rewritten as $\phi\left(a^{k}\right)=a^{3 k}$. If $(3, p-1)=1$, i.e., if $p \equiv 2(\bmod 3)$, then we see that $\phi$ is surjective, so all $p$ elements of $\mathbb{F}_{p}$ have cube roots. If $p \equiv 1(\bmod 3)$ then the image of $\phi$ consists of all elements of the form $a^{3 k}$ with $1 \leq k \leq(p-1) / 3$, so there are $1+(p-1) / 3=(p+2) / 3$ elements which have cube roots.
(7) Consider a basis of $V$ in which the matrix $A$ representing $T$ is in Jordan canonical form. We can write $V=\oplus W_{i}$ where each $W_{i}$ is $T$-invariant and the restriction of $T$ to $W_{i}$ is represented by an elementary Jordan block $J_{i}$. It therefore suffices to prove the result when $A=J_{i}$ is an elementary Jordan block of size $\operatorname{dim} W_{i} \leq n$. If $J_{i}$ corresponds to the eigenvalue zero, then $J_{i}^{n}=0$ and thus $\operatorname{ker}\left(J_{i}^{n}\right)=$ $W_{i}$ and $\operatorname{im}\left(J_{i}^{n}\right)=0$. Otherwise, $J_{i}$ is invertible and therefore so is $J_{i}^{n}$, and we have $\operatorname{ker}\left(J_{i}^{n}\right)=0$ and $\operatorname{im}\left(J_{i}^{n}\right)=W_{i}$.

An example of $T$ such that $V \neq \operatorname{ker}(T) \oplus \operatorname{im}(T)$ is as follows: for $T \in L\left(\mathbb{C}^{2}\right)$ given by $T(a, b)=(b, 0)$, we have $\operatorname{ker}(T)=\operatorname{im}(T)=$ $\mathbb{C} \oplus 0 \subset \mathbb{C}^{2}$.


[^0]:    Date: January 17, 2013.

