SPRING 2013 ALGEBRA COMPREHENSIVE EXAM

Problems: Choose 5.

(1) Let p be a prime number and let G be a p-group acting on a finite set
S. Prove that the number of fixed points of the action is congruent
to |S| modulo p.

(2) Write down a complete list of all abelian groups of order 270.

(3) Let R be a Noetherian ring. Prove that a surjective homomorphism
¢ : R — R must be an isomorphism.

(4) Let R be a subring of a commutative ring .S, and suppose the additive
group S/ R is finite of order n. If m is an integer relatively prime to
n, prove that R/mR and S/mS are isomorphic rings.

(5) Let g be a prime power and let IF, be a finite field of order ¢q. Prove
that every element of GLa(F,) has order dividing either ¢> — 1 or
7 —q.

(6) Let p be a prime number, and let F), be the field with p elements.
How many elements of ), have cube roots in F,?

(7) Let V be a finite-dimensional complex vector space of dimension n
and let T" be a linear transformation from V to itself. Prove that
V = ker(T") ®im(7™). Find an example where V' # ker(T) ®&im(T).
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Solutions.

(1)

Let sq,...,s; represent the different orbits and let /' C S be the set
of fixed points for the action. Then s; € F iff |G - s;| = 1. Also,
|G - s;| =[G : G, divides |G| = p*, so it is either 1 (if s; is a fixed
point) or a power of p (otherwise). Since the orbits partition G, we

have
t

SI=D206 Gu] = |F| (mod p).
i=1
The structure theorem for finite abelian groups says that every finite
abelian group is uniquely isomorphic to a direct sum of cyclic sub-
groups of prime-power order. Thus the following three groups are
the only abelian groups of order 270 = 2 -5 - 3% up to isomorphism:

Lo @ L5 © L3 D L3 D 73
Lo D L5 D L3 D Zyg
Ly ® s @ Lia7

Let I,, = ker ¢". Then since R is Noetherian, the ascending chain
of ideals I1 C Iy C --- must stabilize, i.e., there exists n so that
I, = In+1. Let o € ker(¢). Since ¢" is surjective, there exists y
such that ¢"(y) = z. Then 0 = ¢(x) = ¢""(y), soy € I,11 = I,
which implies that z = ¢"(y) = 0. Thus ¢ is injective and hence an
isomorphism.

Let ¢ : S/mS — R/mR be multiplication by n, which is well-defined
since S/R is an abelian group of order n with respect to addition.
Since (m,n) = 1, we may choose integers a and b such that am+bn =
1. To see that ¢ is surjective, note that for every r € R the coset
br € S/mS maps to the coset ¥ € R/mR, as r = (am + bn)r =
n(br)+a(mr). To see that ¢ is injective, suppose ¢(5) =0 € R/mR
with s € S, i.e., ns € mR. Then s = (am + bn)s = a(ms) + b(ns) €
mS.

Let A € GLy(F,) and let f be its characteristic polynomial, which
is a monic polynomial of degree 2 with coefficients in F,. If f has
distinct roots then A is diagonalizable over either F, or a quadratic
extension F' of Fy. Since |[Fi| = ¢ —1 and |[F*| = ¢* — 1, the order of
a diagonal matrix with entries in IF, or F' divides ¢>—1.If f has a
repeated root a then a € F, and A is similar to a 2 x 2 Jordan block

J = [g Z] with a € F},b € F,.

If n=¢q(q—1) then

n a® na™ b
T = [0 a™ ]_I

as desired.
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If p = 2 then the answer is 2. We may therefore suppose that p
is odd. Clearly 0 always has a cube root. Since F} is cyclic, there
exists a € [}, such that every element can be represented as a® for
some integer k. The homomorphism ¢(z) = 23 from [, can then be
rewritten as ¢(a¥) = a3, If (3,p—1) = 1, i.e., if p = 2 (mod 3), then
we see that ¢ is surjective, so all p elements of I, have cube roots.
If p=1 (mod 3) then the image of ¢ consists of all elements of the
form a3 with 1 < k < (p—1)/3, so there are 1+(p—1)/3 = (p+2)/3
elements which have cube roots.
Consider a basis of V' in which the matrix A representing T is in
Jordan canonical form. We can write V = ®W, where each W;
is T-invariant and the restriction of 7" to W; is represented by an
elementary Jordan block J;. It therefore suffices to prove the result
when A = J; is an elementary Jordan block of size dim W; < n. If J;
corresponds to the eigenvalue zero, then JJ* = 0 and thus ker(J]) =
W; and im(J*) = 0. Otherwise, J; is invertible and therefore so is
JI', and we have ker(J") = 0 and im(J") = W;.

An example of T such that V # ker(T') @ im(7T) is as follows: for
T € L(C?) given by T'(a,b) = (b,0), we have ker(T) = im(T) =
Co0cCC2



