
SPRING 2013 ALGEBRA COMPREHENSIVE EXAM

Problems: Choose 5.

(1) Let p be a prime number and let G be a p-group acting on a finite set
S. Prove that the number of fixed points of the action is congruent
to |S| modulo p.

(2) Write down a complete list of all abelian groups of order 270.
(3) Let R be a Noetherian ring. Prove that a surjective homomorphism

φ : R → R must be an isomorphism.
(4) Let R be a subring of a commutative ring S, and suppose the additive

group S/R is finite of order n. If m is an integer relatively prime to
n, prove that R/mR and S/mS are isomorphic rings.

(5) Let q be a prime power and let Fq be a finite field of order q. Prove
that every element of GL2(Fq) has order dividing either q2 − 1 or
q2 − q.

(6) Let p be a prime number, and let Fp be the field with p elements.
How many elements of Fp have cube roots in Fp?

(7) Let V be a finite-dimensional complex vector space of dimension n
and let T be a linear transformation from V to itself. Prove that
V = ker(T n)⊕ im(T n). Find an example where V 6= ker(T )⊕ im(T ).
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Solutions.

(1) Let s1, . . . , st represent the different orbits and let F ⊂ S be the set
of fixed points for the action. Then si ∈ F iff |G · si| = 1. Also,
|G · si| = [G : Gsi ] divides |G| = pk, so it is either 1 (if si is a fixed
point) or a power of p (otherwise). Since the orbits partition G, we
have

|S| =

t
∑

i=1

[G : Gsi ] ≡ |F | (mod p).

(2) The structure theorem for finite abelian groups says that every finite
abelian group is uniquely isomorphic to a direct sum of cyclic sub-
groups of prime-power order. Thus the following three groups are
the only abelian groups of order 270 = 2 · 5 · 33 up to isomorphism:

Z2 ⊕ Z5 ⊕ Z3 ⊕ Z3 ⊕ Z3

Z2 ⊕ Z5 ⊕ Z3 ⊕ Z9

Z2 ⊕ Z5 ⊕ Z27

(3) Let In = ker φn. Then since R is Noetherian, the ascending chain
of ideals I1 ⊆ I2 ⊆ · · · must stabilize, i.e., there exists n so that
In = In+1. Let x ∈ ker(φ). Since φn is surjective, there exists y
such that φn(y) = x. Then 0 = φ(x) = φn+1(y), so y ∈ In+1 = In
which implies that x = φn(y) = 0. Thus φ is injective and hence an
isomorphism.

(4) Let φ : S/mS → R/mR be multiplication by n, which is well-defined
since S/R is an abelian group of order n with respect to addition.
Since (m,n) = 1, we may choose integers a and b such that am+bn =
1. To see that φ is surjective, note that for every r ∈ R the coset
br ∈ S/mS maps to the coset r̄ ∈ R/mR, as r = (am + bn)r =
n(br)+a(mr). To see that φ is injective, suppose φ(s̄) = 0 ∈ R/mR
with s ∈ S, i.e., ns ∈ mR. Then s = (am+ bn)s = a(ms) + b(ns) ∈
mS.

(5) Let A ∈ GL2(Fq) and let f be its characteristic polynomial, which
is a monic polynomial of degree 2 with coefficients in Fq. If f has
distinct roots then A is diagonalizable over either Fq or a quadratic
extension F of Fq. Since |F∗

q| = q− 1 and |F ∗| = q2 − 1, the order of

a diagonal matrix with entries in Fq or F divides q2 − 1. If f has a
repeated root a then a ∈ Fq and A is similar to a 2× 2 Jordan block

J =

[

a b
0 a

]

with a ∈ F
∗

q, b ∈ Fq.

If n = q(q − 1) then

Jn =

[

an nan−1b
0 an

]

= I

as desired.
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(6) If p = 2 then the answer is 2. We may therefore suppose that p
is odd. Clearly 0 always has a cube root. Since F

∗

p is cyclic, there

exists a ∈ F
∗

p such that every element can be represented as ak for

some integer k. The homomorphism φ(x) = x3 from F
∗

p can then be

rewritten as φ(ak) = a3k. If (3, p−1) = 1, i.e., if p ≡ 2 (mod 3), then
we see that φ is surjective, so all p elements of Fp have cube roots.
If p ≡ 1 (mod 3) then the image of φ consists of all elements of the
form a3k with 1 ≤ k ≤ (p−1)/3, so there are 1+(p−1)/3 = (p+2)/3
elements which have cube roots.

(7) Consider a basis of V in which the matrix A representing T is in
Jordan canonical form. We can write V = ⊕Wi where each Wi

is T -invariant and the restriction of T to Wi is represented by an
elementary Jordan block Ji. It therefore suffices to prove the result
when A = Ji is an elementary Jordan block of size dimWi ≤ n. If Ji
corresponds to the eigenvalue zero, then Jn

i = 0 and thus ker(Jn
i ) =

Wi and im(Jn
i ) = 0. Otherwise, Ji is invertible and therefore so is

Jn
i , and we have ker(Jn

i ) = 0 and im(Jn
i ) = Wi.

An example of T such that V 6= ker(T )⊕ im(T ) is as follows: for
T ∈ L(C2) given by T (a, b) = (b, 0), we have ker(T ) = im(T ) =
C⊕ 0 ⊂ C

2.


