Analysis Comprehensive Exam Questions

Spring 2013

1. Given $1<p<\infty$ and $x_{n}, y \in \ell^{p}$, show that $x_{n} \xrightarrow{\mathrm{w}} y$ in ℓ^{p} (weak convergence) if and only if $x_{n}(k) \rightarrow y(k)$ for each k and $\sup \left\|x_{n}\right\|_{p}<\infty$. Does either implication remain valid if $p=1$?

Solution: Fix $1<p<\infty$ and $x_{n}, y \in \ell^{p}$. Let $\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ denote the sequence of standard basis vectors.
\Rightarrow. Suppose that $x_{n} \xrightarrow{\mathrm{w}} y$. Then since $\delta_{k} \in \ell^{p^{\prime}}$,

$$
y(k)=\left\langle y, \delta_{k}\right\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, \delta_{k}\right\rangle=\lim _{n \rightarrow \infty} x_{n}(k) .
$$

This is, x_{n} converges componentwise to y. All weakly convergent sequences are bounded, so we also have sup $\left\|x_{n}\right\|_{p}<\infty$.
\Leftarrow. Suppose first that x_{n} converges componentwise to the zero vector, and that $K=\sup \left\|x_{n}\right\|_{p}<\infty$. Choose $z \in \ell^{p^{\prime}}$ and fix $\varepsilon>0$. Since $p^{\prime}<\infty$, there exists an $N>0$ such that $\left\|z-z_{N}\right\|_{p^{\prime}}<\varepsilon$, where $z_{N}=\sum_{k=1}^{N} z(k) \delta_{k}$. Then

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left|\left\langle x_{n}, z\right\rangle\right| & \leq \limsup _{n \rightarrow \infty}\left(\left|\left\langle x_{n}, z-z_{N}\right\rangle\right|+\left|\left\langle x_{n}, z_{N}\right\rangle\right|\right) \\
& \leq \limsup _{n \rightarrow \infty}\left\|x_{n}\right\|_{p}\left\|z-z_{N}\right\|_{p^{\prime}}+\limsup _{n \rightarrow \infty}\left|\left\langle x_{n}, z_{N}\right\rangle\right| \\
& \leq K \varepsilon+\limsup _{n \rightarrow \infty} \sum_{k=1}^{N}\left|x_{n}(k) z(k)\right| \\
& \leq K \varepsilon+\sum_{k=1}^{N} \limsup _{n \rightarrow \infty}\left|x_{n}(k) z(k)\right| \\
& =K \varepsilon+0 .
\end{aligned}
$$

Since ε is arbitrary, we conclude that $\left\langle x_{n}, z\right\rangle \rightarrow 0$. Thus $x_{n} \xrightarrow{\mathrm{w}} 0$. The general case follows by replacing x_{n} with $x_{n}-y$.

Case $p=1$. If $p=1$ then the $" \Rightarrow "$ argument remains valid, i.e., if $x_{n} \xrightarrow{\mathrm{w}} y$ in ℓ^{1} then x_{n} converges componentwise to y and $\sup \left\|x_{n}\right\|<\infty$.

However, the converse fails. Set

$$
x_{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{k}=\left(\frac{1}{n}, \ldots, \frac{1}{n}, 0,0, \ldots\right) .
$$

Then $\left\|x_{n}\right\|_{1}=1$ for all n and x_{n} converges componentwise to 0 . However, x_{n} does not converge weakly to 0 , for if we take $z=(1,1,1, \ldots) \in \ell^{\infty}$ then $\left\langle x_{n}, z\right\rangle=1 \nrightarrow\langle 0, z\rangle$.
2. Suppose that f is a bounded measurable function on a measure space (X, μ). Assume that there exist constants C and $0<\alpha<1$ such that

$$
\mu(\{x \in X:|f(x)|>\lambda\}) \leq \frac{C}{\lambda^{\alpha}}
$$

for all $\lambda>0$. Show that $f \in L^{1}(X ; \mu)$.

Solution: For each $n \in \mathbb{N}$ set

$$
X_{n}:=\left\{x \in X:\|f\|_{L^{\infty}} 2^{-n} \geq|f(x)|>\|f\|_{L^{\infty}} 2^{-n-1}\right\} .
$$

Then $X=\cup_{n} X_{n}$ and the X_{n} are disjoint. Thus, we have that

$$
\begin{aligned}
\int_{X}|f(x)| d \mu(x) & =\sum_{n=0}^{\infty} \int_{X_{n}}|f(x)| d \mu(x) \\
& \leq \sum_{n=0}^{\infty}\|f\|_{L^{\infty}} 2^{-n} \mu\left(X_{n}\right) \\
& \leq C\|f\|_{L^{\infty}} \sum_{n=0}^{\infty} 2^{(n+1) \alpha}\|f\|_{L^{\infty}}^{-\alpha} 2^{-n} \\
& =2^{\alpha} C\|f\|_{L^{\infty}}^{1-\alpha} \sum_{n=0}^{\infty} 2^{(\alpha-1) n} \\
& =C(\alpha) C\|f\|_{L^{\infty}}^{1-\alpha} .
\end{aligned}
$$

In the above estimates, the first inequality follows since the absolute value of f is controlled on X_{n}, the second follows from the assumption about the measure of μ, and the last equality holds since $0<\alpha<1$ and so the series converges.
3. Let (X, μ) be a measure space with $\mu(X)<\infty$ and let $\left\{f_{n}\right\} \in L^{1}(X ; \mu)$ converge to a measurable function f at almost every $x \in X$. Assume there exists a constant C and $p>1$ such that

$$
\sup _{n \geq 1} \int_{X}\left|f_{n}(x)\right|^{p} d \mu(x) \leq C^{p}<\infty
$$

Prove
(a) $f \in L^{1}(X ; \mu)$;
(b) $\left\|f_{n}-f\right\|_{L^{1}(\mu)} \rightarrow 0$ as $n \rightarrow \infty$.

Solution: (a) By Hölder's Inequality we have that

$$
\int_{X}\left|f_{n}(x)\right| d \mu(x) \leq\left(\int_{X}\left|f_{n}(x)\right|^{p} d \mu(x)\right)^{\frac{1}{p}} \mu(X)^{\frac{1}{q}} \leq C \mu(X)^{\frac{1}{q}}<\infty
$$

since $\mu(X)<\infty$. Thus, we have that

$$
\sup _{n \geq 1} \int_{X}\left|f_{n}(x)\right| d \mu(x) \leq C \mu(X)^{\frac{1}{q}}<\infty .
$$

Now, apply Fatou's Theorem to see that

$$
\begin{aligned}
\int_{X}|f(x)| d \mu(x) & =\int_{X} \liminf _{n \rightarrow \infty}\left|f_{n}(x)\right| d \mu(x) \\
& \leq \liminf _{n \rightarrow \infty} \int_{X}\left|f_{n}(x)\right| d \mu(x) \\
& \leq \sup _{n \geq 1} \int_{X}\left|f_{n}(x)\right| d \mu(x)<\infty
\end{aligned}
$$

So $f \in L^{1}(X ; \mu)$ as claimed.
(b) By Egorov's Theorem, given $\epsilon>0$ there exists a measurable set $E \subset X$ with $\mu(X \backslash E)<\frac{\epsilon}{4 C \mu(X)^{1+\frac{1}{q}}}$ such that $f_{k} \rightarrow f$ uniformly on E. Since $f_{n} \rightarrow f$ uniformly on E there exists an integer N such that for all $n \geq N$ we have that

$$
\int_{E}\left|f_{n}(x)-f(x)\right| d \mu(x)<\frac{\epsilon}{2}
$$

Then, for $n \geq N$ we have that

$$
\begin{aligned}
\int_{X}\left|f_{n}(x)-f(x)\right| d \mu(x) & =\int_{X \backslash E}\left|f_{n}(x)-f(x)\right| d \mu(x)+\int_{E}\left|f_{n}(x)-f(x)\right| d \mu(x) \\
& \leq 2 C \mu(X)^{\frac{1}{q}+1} \frac{\epsilon}{4 C \mu(X)^{1+\frac{1}{q}}}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

So we have that $\left\|f_{n}-f\right\|_{L^{1}(\mu)} \rightarrow 0$ as claimed.
4. Let X and Y be Banach spaces and let $T: X \rightarrow Y$ be bounded and linear. Show that there is a constant $c>0$ such that $\|T x\|_{Y} \geq c\|x\|_{X}$ for all $x \in X$ if and only if $\operatorname{ker} T=\{0\}$ and $\operatorname{ran} T$ is closed.

Solution: Suppose that $\|T x\|_{Y} \geq c\|x\|_{X}$ for all $x \in X$. If we have $x \in \operatorname{ker} T$ then

$$
0=\|T x\|_{Y} \geq c\|x\|_{X}
$$

which gives $x=0$, and so ker $T=\{0\}$. Suppose that $y \in \overline{\operatorname{ran} T}$, and let $y_{n} \in \operatorname{ran} T$ be such that $y_{n} \rightarrow y$. Since $y_{n} \in \operatorname{ran} T$, we have that $y_{n}=T x_{n}$ for some $x_{n} \in X$. Note that $\left\{x_{n}\right\}$ is a Cauchy sequence since

$$
\left\|y_{n}-y_{m}\right\|_{Y}=\left\|T x_{n}-T x_{m}\right\|_{Y} \geq c\left\|x_{n}-x_{m}\right\|_{X}
$$

Since X is complete, we have that $x_{n} \rightarrow x$ for some $x \in X$. As T is bounded, hence continuous, we have $T x_{n} \rightarrow T x$, and therefore $T x=y$. Thus $\overline{\operatorname{ran} T} \subset \operatorname{ran} T$, so $\operatorname{ran} T$ is closed.

Now suppose that ker $T=\{0\}$ and $\operatorname{ran} T$ is closed. Note that since T is bounded and linear and $\operatorname{ker} T=\{0\}$, we have that T is injective. Also, since $Z=\operatorname{ran} T$ is closed, T is a surjective map of X onto the Banach space Z. So, $T: X \rightarrow Z$ is bounded, linear, and bijective, and so by the Open Mapping Theorem (Bounded Inverse Theorem) we have that $T^{-1}: Z \rightarrow X$ is bounded. Therefore there is a c such that

$$
\left\|T^{-1} y\right\|_{X} \leq c\|y\|_{Y}, \quad y \in Z=\operatorname{ran} T
$$

Applying this inequality to $y=T x$, we get the desired result.
5. Let $\left\{h_{n}\right\}_{n \geq 1}$ be a sequence of vectors in a Hilbert space H with the property that $\left(h_{n}-h_{m}\right) \perp h_{m}$ whenever $n \geq m$. Then $\sum_{n} \frac{h_{n}}{\left\|h_{n}\right\|_{H}^{2}}$ converges in H if and only if $\sum_{n \geq 1} \frac{n}{\left\|h_{n}\right\|_{H}^{2}}<$ ∞.

Solution: We have that $\left\langle h_{n}, h_{m}\right\rangle_{H}=\left\|h_{m}\right\|^{2}$ for all $n \geq m$. Thus

$$
\begin{equation*}
\left\|\sum_{k=m}^{n} \frac{h_{k}}{\left\|h_{k}\right\|_{H}^{2}}\right\|_{H}^{2}=\sum_{k=m}^{n} \sum_{l=m}^{n} \frac{\left\|h_{\min \{k, l\}}\right\|_{H}^{2}}{\left\|h_{k}\right\|_{H}^{2}\left\|h_{l}\right\|_{H}^{2}}=\sum_{k=m}^{n} \frac{2 k-2 m+1}{\left\|h_{k}\right\|_{H}^{2}} \tag{1}
\end{equation*}
$$

First, suppose that $\sum_{n \geq 1} \frac{n}{\left\|h_{n}\right\|_{H}^{2}}<\infty$. Then by (1) the partial sums of

$$
\sum_{n} \frac{h_{n}}{\left\|h_{n}\right\|_{H}^{2}}
$$

form a Cauchy sequence in H, and therefore must converge in H. Conversely, if $\sum_{k} \frac{h_{k}}{\left\|h_{k}\right\|_{H}^{2}}$ converges in H, then its partial sums are bounded in norm. Using (1) with $m=1$ show that

$$
\sum_{k=1}^{n} \frac{k}{\left\|h_{k}\right\|_{H}^{2}} \leq \sum_{k=1}^{n} \frac{2 k-1}{\left\|h_{k}\right\|_{H}^{2}}=\| \sum_{k=1}^{n} \frac{h_{k}}{\left\|h_{k}\right\|_{H}^{2} \|_{H}^{2}<\infty}
$$

so $\sum_{n \geq 1} \frac{n}{\left\|h_{n}\right\|_{H}^{2}}<\infty$ as claimed.
6. Let $|E|_{e}$ denote the exterior Lebesgue measure of a set $E \subset \mathbb{R}^{n}$, and let us define the inner Lebesgue measure of E to be

$$
|E|_{i}=\sup \left\{|F|_{e}: F \text { is closed and } F \subset E\right\} .
$$

(a) Show that if $|E|_{e}<\infty$, then E is Lebesgue measurable if and only if $|E|_{e}=|E|_{i}$.
(b) Is the statement true if $|E|_{e}=\infty$?

Solution: (a) Let $|A|$ denote the Lebesgue measure of a measurable set A. If E is measurable then for every $\epsilon>0$ there exists a closed set $F \subset E$ such that $|E \backslash F|<\epsilon$ and therefore $|E|=|E \backslash F|+|F|<\epsilon+|F|$, or equivalently $|F|>|E|-\epsilon$. Since $\epsilon>0$ is arbitrary we see that $|E|_{i} \geq|E|=|E|_{e}$.

Conversely, if $|E|_{i}=|E|_{e}$ then there exist an F_{σ}-set F and a G_{δ}-set U, such that $F \subset E \subset U$ and $|F|=|E|_{i}=|E|_{e}=|U|$. Since $|E|_{e}<\infty$, we have

$$
|U \backslash E|_{e} \leq|U \backslash F|_{e}=|U|-|F|=0,
$$

hence E is measurable.
(b) The statement is not true in general if $|E|_{e}=\infty$. For instance, if N is a nonmeasurable subset of $[0,1]^{n}$ and if we set $E=\mathbb{R}^{n} \backslash N$, then $|E|_{i}=|E|_{e}=\infty$, but E not measurable.
7. Let (X, \mathcal{M}, μ) be a measure space. A collection of functions $\left\{f_{\alpha}\right\}_{\alpha \in A} \subset L^{1}(\mu)$ is called uniformly integrable if for every $\epsilon>0$ there exists $\delta>0$ such that $\left|\int_{E} f_{\alpha} d \mu\right|<\epsilon$ for all $\alpha \in A$ whenever $\mu(E)<\delta$.
(a) Show that any finite subset of $L^{1}(\mu)$ is uniformly integrable.
(b) If $\left\{f_{n}\right\}$ is a sequence in $L^{1}(\mu)$ that converges in the L^{1} metric to $f \in L^{1}(\mu)$, then $\left\{f_{n}\right\}$ is uniformly integrable.

Solution: Note that if $f \in L^{1}(\mu)$ and $d \nu=f d \mu$, then $\nu \ll \mu, d|\nu|=|f| d \mu$ and $|\nu|(X)=\int|f| d \mu<\infty$, i.e. ν is finite. Therefore, the condition $\nu \ll \mu$ can be rewritten in $\epsilon-\delta$ terms as follows: for every $\epsilon>0$ there exists $\delta>0$ such that

$$
\begin{equation*}
\mu(E)<\delta \quad \text { implies } \quad|\nu(E)|=\left|\int_{E} f d \mu\right|<\epsilon \tag{**}
\end{equation*}
$$

Take arbitrary $\epsilon>0$.
(a) For a finite set $\left\{f_{\alpha}\right\}_{\alpha \in A}$, we can pick $\delta_{\alpha}>0$ for the function f_{α} such that ($* *$) holds, and then take $\delta=\min \left\{\delta_{\alpha}: \alpha \in A\right\}$.
(b) If $f_{n} \rightarrow f$ in L^{1}, then for every $E \in \mathcal{M}$

$$
\left|\int_{E} f_{n} d \mu-\int_{E} f d \mu\right| \leq\left\|f_{n}-f\right\|_{1}<\frac{\epsilon}{2} \quad \text { for } \quad n \geq N_{\epsilon},
$$

and therefore

$$
\left|\int_{E} f_{n} d \mu\right| \leq\left|\int_{E} f d \mu\right|+\frac{\epsilon}{2} \quad \text { for } \quad n \geq N_{\epsilon} .
$$

The proof now follows similarly to (a) by applying (**) with $\frac{\epsilon}{2}$ for the functions $\left\{f_{1}, f_{2} \ldots, f_{N_{\epsilon}-1}, f\right\}$.
8. Let (X, \mathcal{M}, μ) be a measure space, and let f_{n}, f, g_{n}, g for $n \in \mathbb{N}$ be measurable complexvalued functions on X such that $f_{n} \rightarrow f$ in measure and $g_{n} \rightarrow g$ in measure.
(a) Show that $f_{n}+g_{n} \rightarrow f+g$ in measure.
(b) Show that $f_{n} g_{n} \rightarrow f g$ in measure if $\mu(X)<\infty$, but not necessarily if $\mu(X)=\infty$.

Solution: (a) By the triangle inequality $\left|\left(f_{n}(x)+g_{n}(x)\right)-(f(x)+g(x))\right| \leq \mid f_{n}(x)-$ $f(x)\left|+\left|g_{n}(x)-g(x)\right|\right.$, we see that

$$
\begin{aligned}
E_{n}^{\alpha}:= & \left\{x:\left|\left(f_{n}(x)+g_{n}(x)\right)-(f(x)+g(x))\right| \geq \alpha\right\} \\
& \subset \underbrace{\left\{x:\left|f_{n}(x)-f(x)\right| \geq \alpha / 2\right\}}_{A_{n}^{\alpha}} \cup \underbrace{\left\{x:\left|g_{n}(x)-g(x)\right| \geq \alpha / 2\right\}}_{B_{n}^{\alpha}} .
\end{aligned}
$$

Thus

$$
\mu\left(E_{n}^{\alpha}\right) \leq \mu\left(A_{n}^{\alpha}\right)+\mu\left(B_{n}^{\alpha}\right),
$$

and since $\mu\left(A_{n}^{\alpha}\right) \rightarrow 0, \mu\left(B_{n}^{\alpha}\right) \rightarrow 0$, as $n \rightarrow \infty$, we see that $\mu\left(E_{n}^{\alpha}\right) \rightarrow 0$.
(b) Let $\mu(X)<\infty$ and suppose that the statement is not true. Then, for some $\alpha, \epsilon>0$ there exists a subsequence $\left\{f_{n_{k}} g_{n_{k}}\right\}$ of $\left\{f_{n} g_{n}\right\}$ such that

$$
\begin{equation*}
\mu\left(\left\{x:\left|f_{n_{k}}(x) g_{n_{k}}(x)-f(x) g(x)\right| \geq \alpha\right\}\right) \geq \epsilon, \quad \text { for all } \quad k \in \mathbb{N} . \tag{2}
\end{equation*}
$$

Since $f_{n_{k}} \rightarrow f, g_{n_{k}} \rightarrow g$ in measure, we can find subsequences $\left\{f_{n_{k_{j}}}\right\}$ and $\left\{g_{n_{k_{j}}}\right\}$ such that $f_{n_{k_{j}}} \rightarrow f$ a.e. and $g_{n_{k_{j}}} \rightarrow g$ a.e. Then, $f_{n_{k_{j}}} g_{n_{k_{j}}} \rightarrow f g$ a.e. and therefore, by Egoroff's theorem, $f_{n_{k_{j}}} g_{n_{k_{j}}} \rightarrow f g$ almost uniformly, which implies convergence in measure, contradicting (2).

As a simple counterexample when $\mu(X)=\infty$, consider \mathbb{R} with the Lebesgue measure. Then $f_{n}(x)=x+\frac{1}{n} \rightarrow f(x)=x$ in measure, but $f_{n}^{2}(x) \nrightarrow f^{2}(x)$ in measure.

