Analysis Comprehensive Exam Questions Spring 2013

1. Given $1 and <math>x_n, y \in \ell^p$, show that $x_n \xrightarrow{w} y$ in ℓ^p (weak convergence) if and only if $x_n(k) \to y(k)$ for each k and $\sup ||x_n||_p < \infty$. Does either implication remain valid if p = 1?

Solution: Fix $1 and <math>x_n, y \in \ell^p$. Let $\{\delta_n\}_{n \in \mathbb{N}}$ denote the sequence of standard basis vectors.

 \Rightarrow . Suppose that $x_n \stackrel{\mathrm{w}}{\rightarrow} y$. Then since $\delta_k \in \ell^{p'}$,

$$y(k) = \langle y, \delta_k \rangle = \lim_{n \to \infty} \langle x_n, \delta_k \rangle = \lim_{n \to \infty} x_n(k)$$

This is, x_n converges componentwise to y. All weakly convergent sequences are bounded, so we also have $\sup ||x_n||_p < \infty$.

 \Leftarrow . Suppose first that x_n converges componentwise to the zero vector, and that $K = \sup ||x_n||_p < \infty$. Choose $z \in \ell^{p'}$ and fix $\varepsilon > 0$. Since $p' < \infty$, there exists an N > 0 such that $||z - z_N||_{p'} < \varepsilon$, where $z_N = \sum_{k=1}^N z(k)\delta_k$. Then

$$\begin{split} \limsup_{n \to \infty} |\langle x_n, z \rangle| &\leq \limsup_{n \to \infty} \left(|\langle x_n, z - z_N \rangle| + |\langle x_n, z_N \rangle| \right) \\ &\leq \limsup_{n \to \infty} \|x_n\|_p \|z - z_N\|_{p'} + \limsup_{n \to \infty} |\langle x_n, z_N \rangle \\ &\leq K\varepsilon + \limsup_{n \to \infty} \sum_{k=1}^N |x_n(k) z(k)| \\ &\leq K\varepsilon + \sum_{k=1}^N \limsup_{n \to \infty} |x_n(k) z(k)| \\ &= K\varepsilon + 0. \end{split}$$

Since ε is arbitrary, we conclude that $\langle x_n, z \rangle \to 0$. Thus $x_n \stackrel{\text{w}}{\to} 0$. The general case follows by replacing x_n with $x_n - y$.

Case p = 1. If p = 1 then the " \Rightarrow " argument remains valid, i.e., if $x_n \xrightarrow{w} y$ in ℓ^1 then x_n converges componentwise to y and $\sup ||x_n|| < \infty$.

However, the converse fails. Set

$$x_n = \frac{1}{n} \sum_{k=1}^n \delta_k = \left(\frac{1}{n}, \dots, \frac{1}{n}, 0, 0, \dots\right).$$

Then $||x_n||_1 = 1$ for all n and x_n converges componentwise to 0. However, x_n does not converge weakly to 0, for if we take $z = (1, 1, 1, ...) \in \ell^{\infty}$ then $\langle x_n, z \rangle = 1 \not\to \langle 0, z \rangle$.

2. Suppose that f is a bounded measurable function on a measure space (X, μ) . Assume that there exist constants C and $0 < \alpha < 1$ such that

$$\mu\left(\left\{x \in X : |f(x)| > \lambda\right\}\right) \le \frac{C}{\lambda^{\alpha}}$$

for all $\lambda > 0$. Show that $f \in L^1(X; \mu)$.

Solution: For each $n \in \mathbb{N}$ set

$$X_n := \left\{ x \in X : \|f\|_{L^{\infty}} 2^{-n} \ge |f(x)| > \|f\|_{L^{\infty}} 2^{-n-1} \right\}.$$

Then $X = \bigcup_n X_n$ and the X_n are disjoint. Thus, we have that

$$\int_{X} |f(x)| \ d\mu(x) = \sum_{n=0}^{\infty} \int_{X_{n}} |f(x)| \ d\mu(x)$$

$$\leq \sum_{n=0}^{\infty} \|f\|_{L^{\infty}} 2^{-n} \mu(X_{n})$$

$$\leq C \|f\|_{L^{\infty}} \sum_{n=0}^{\infty} 2^{(n+1)\alpha} \|f\|_{L^{\infty}}^{-\alpha} 2^{-n}$$

$$= 2^{\alpha} C \|f\|_{L^{\infty}}^{1-\alpha} \sum_{n=0}^{\infty} 2^{(\alpha-1)n}$$

$$= C(\alpha) C \|f\|_{L^{\infty}}^{1-\alpha}.$$

In the above estimates, the first inequality follows since the absolute value of f is controlled on X_n , the second follows from the assumption about the measure of μ , and the last equality holds since $0 < \alpha < 1$ and so the series converges. 3. Let (X, μ) be a measure space with $\mu(X) < \infty$ and let $\{f_n\} \in L^1(X; \mu)$ converge to a measurable function f at almost every $x \in X$. Assume there exists a constant C and p > 1 such that

$$\sup_{n\geq 1} \int_X |f_n(x)|^p \, d\mu(x) \le C^p < \infty.$$

Prove

- (a) $f \in L^1(X; \mu);$
- (b) $||f_n f||_{L^1(\mu)} \to 0 \text{ as } n \to \infty.$

Solution: (a) By Hölder's Inequality we have that

$$\int_{X} |f_{n}(x)| \, d\mu(x) \le \left(\int_{X} |f_{n}(x)|^{p} \, d\mu(x)\right)^{\frac{1}{p}} \mu(X)^{\frac{1}{q}} \le C\mu(X)^{\frac{1}{q}} < \infty$$

since $\mu(X) < \infty$. Thus, we have that

$$\sup_{n\geq 1} \int_X |f_n(x)| \, d\mu(x) \leq C\mu(X)^{\frac{1}{q}} < \infty.$$

Now, apply Fatou's Theorem to see that

$$\int_{X} |f(x)| \ d\mu(x) = \int_{X} \liminf_{n \to \infty} |f_n(x)| \ d\mu(x)$$

$$\leq \liminf_{n \to \infty} \int_{X} |f_n(x)| \ d\mu(x)$$

$$\leq \sup_{n \ge 1} \int_{X} |f_n(x)| \ d\mu(x) < \infty.$$

So $f \in L^1(X; \mu)$ as claimed.

(b) By Egorov's Theorem, given $\epsilon > 0$ there exists a measurable set $E \subset X$ with $\mu(X \setminus E) < \frac{\epsilon}{4C\mu(X)^{1+\frac{1}{q}}}$ such that $f_k \to f$ uniformly on E. Since $f_n \to f$ uniformly on E there exists an integer N such that for all $n \ge N$ we have that

$$\int_{E} |f_n(x) - f(x)| \, d\mu(x) < \frac{\epsilon}{2}.$$

Then, for $n \ge N$ we have that

$$\begin{split} \int_{X} |f_{n}(x) - f(x)| \, d\mu(x) &= \int_{X \setminus E} |f_{n}(x) - f(x)| \, d\mu(x) + \int_{E} |f_{n}(x) - f(x)| \, d\mu(x) \\ &\leq 2C\mu(X)^{\frac{1}{q} + 1} \frac{\epsilon}{4C\mu(X)^{1 + \frac{1}{q}}} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

So we have that $||f_n - f||_{L^1(\mu)} \to 0$ as claimed.

4. Let X and Y be Banach spaces and let $T : X \to Y$ be bounded and linear. Show that there is a constant c > 0 such that $||Tx||_Y \ge c ||x||_X$ for all $x \in X$ if and only if ker $T = \{0\}$ and ran T is closed.

Solution: Suppose that $||Tx||_Y \ge c ||x||_X$ for all $x \in X$. If we have $x \in \ker T$ then

$$0 = \|Tx\|_Y \ge c \ \|x\|_X,$$

which gives x = 0, and so ker $T = \{0\}$. Suppose that $y \in \overline{\operatorname{ran} T}$, and let $y_n \in \operatorname{ran} T$ be such that $y_n \to y$. Since $y_n \in \operatorname{ran} T$, we have that $y_n = Tx_n$ for some $x_n \in X$. Note that $\{x_n\}$ is a Cauchy sequence since

$$||y_n - y_m||_Y = ||Tx_n - Tx_m||_Y \ge c ||x_n - x_m||_X.$$

Since X is complete, we have that $x_n \to x$ for some $x \in X$. As T is bounded, hence continuous, we have $Tx_n \to Tx$, and therefore Tx = y. Thus $\overline{\operatorname{ran} T} \subset \operatorname{ran} T$, so $\operatorname{ran} T$ is closed.

Now suppose that ker $T = \{0\}$ and ran T is closed. Note that since T is bounded and linear and ker $T = \{0\}$, we have that T is injective. Also, since $Z = \operatorname{ran} T$ is closed, T is a surjective map of X onto the Banach space Z. So, $T: X \to Z$ is bounded, linear, and bijective, and so by the Open Mapping Theorem (Bounded Inverse Theorem) we have that $T^{-1}: Z \to X$ is bounded. Therefore there is a c such that

$$||T^{-1}y||_X \le c ||y||_Y, \quad y \in Z = \operatorname{ran} T.$$

Applying this inequality to y = Tx, we get the desired result.

5. Let $\{h_n\}_{n\geq 1}$ be a sequence of vectors in a Hilbert space H with the property that $(h_n - h_m) \perp h_m$ whenever $n \geq m$. Then $\sum_n \frac{h_n}{\|h_n\|_H^2}$ converges in H if and only if $\sum_{n\geq 1} \frac{n}{\|h_n\|_H^2} < \infty$.

Solution: We have that $\langle h_n, h_m \rangle_H = ||h_m||^2$ for all $n \ge m$. Thus

$$\left|\sum_{k=m}^{n} \frac{h_{k}}{\|h_{k}\|_{H}^{2}}\right|_{H}^{2} = \sum_{k=m}^{n} \sum_{l=m}^{n} \frac{\|h_{\min\{k,l\}}\|_{H}^{2}}{\|h_{k}\|_{H}^{2} \|h_{l}\|_{H}^{2}} = \sum_{k=m}^{n} \frac{2k - 2m + 1}{\|h_{k}\|_{H}^{2}}$$
(1)

First, suppose that $\sum_{n\geq 1} \frac{n}{\|h_n\|_H^2} < \infty$. Then by (1) the partial sums of

$$\sum_{n} \frac{h_n}{\|h_n\|_H^2}$$

form a Cauchy sequence in H, and therefore must converge in H. Conversely, if $\sum_k \frac{h_k}{\|h_k\|_H^2}$ converges in H, then its partial sums are bounded in norm. Using (1) with m = 1 show that

$$\sum_{k=1}^{n} \frac{k}{\|h_k\|_H^2} \le \sum_{k=1}^{n} \frac{2k-1}{\|h_k\|_H^2} = \left\|\sum_{k=1}^{n} \frac{h_k}{\|h_k\|_H^2}\right\|_H^2 < \infty$$

so $\sum_{n\geq 1} \frac{n}{\|h_n\|_H^2} < \infty$ as claimed.

6. Let $|E|_e$ denote the exterior Lebesgue measure of a set $E \subset \mathbb{R}^n$, and let us define the inner Lebesgue measure of E to be

$$|E|_i = \sup\{|F|_e : F \text{ is closed and } F \subset E\}.$$

(a) Show that if $|E|_e < \infty$, then E is Lebesgue measurable if and only if $|E|_e = |E|_i$. (b) Is the statement true if $|E|_e = \infty$?

Solution: (a) Let |A| denote the Lebesgue measure of a measurable set A. If E is measurable then for every $\epsilon > 0$ there exists a closed set $F \subset E$ such that $|E \setminus F| < \epsilon$ and therefore $|E| = |E \setminus F| + |F| < \epsilon + |F|$, or equivalently $|F| > |E| - \epsilon$. Since $\epsilon > 0$ is arbitrary we see that $|E|_i \ge |E| = |E|_e$.

Conversely, if $|E|_i = |E|_e$ then there exist an F_{σ} -set F and a G_{δ} -set U, such that $F \subset E \subset U$ and $|F| = |E|_i = |E|_e = |U|$. Since $|E|_e < \infty$, we have

$$|U \setminus E|_e \le |U \setminus F|_e = |U| - |F| = 0,$$

hence E is measurable.

(b) The statement is not true in general if $|E|_e = \infty$. For instance, if N is a nonmeasurable subset of $[0, 1]^n$ and if we set $E = \mathbb{R}^n \setminus N$, then $|E|_i = |E|_e = \infty$, but E not measurable. 7. Let (X, \mathcal{M}, μ) be a measure space. A collection of functions $\{f_{\alpha}\}_{\alpha \in A} \subset L^{1}(\mu)$ is called uniformly integrable if for every $\epsilon > 0$ there exists $\delta > 0$ such that $|\int_{E} f_{\alpha} d\mu| < \epsilon$ for all $\alpha \in A$ whenever $\mu(E) < \delta$.

(a) Show that any finite subset of $L^1(\mu)$ is uniformly integrable.

(b) If $\{f_n\}$ is a sequence in $L^1(\mu)$ that converges in the L^1 metric to $f \in L^1(\mu)$, then $\{f_n\}$ is uniformly integrable.

Solution: Note that if $f \in L^1(\mu)$ and $d\nu = fd\mu$, then $\nu \ll \mu$, $d|\nu| = |f|d\mu$ and $|\nu|(X) = \int |f|d\mu < \infty$, i.e. ν is finite. Therefore, the condition $\nu \ll \mu$ can be rewritten in $\epsilon - \delta$ terms as follows: for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$\mu(E) < \delta \quad \text{implies} \quad |\nu(E)| = \left| \int_E f d\mu \right| < \epsilon.$$
(**)

Take arbitrary $\epsilon > 0$.

(a) For a finite set $\{f_{\alpha}\}_{\alpha \in A}$, we can pick $\delta_{\alpha} > 0$ for the function f_{α} such that (**) holds, and then take $\delta = \min\{\delta_{\alpha} : \alpha \in A\}$. (b) If $f_n \to f$ in L^1 , then for every $E \in \mathcal{M}$

$$\left| \int_{E} f_{n} d\mu - \int_{E} f d\mu \right| \leq ||f_{n} - f||_{1} < \frac{\epsilon}{2} \quad \text{for} \quad n \geq N_{\epsilon},$$

and therefore

$$\left|\int_{E} f_{n} d\mu\right| \leq \left|\int_{E} f d\mu\right| + \frac{\epsilon}{2} \quad \text{for} \quad n \geq N_{\epsilon}.$$

The proof now follows similarly to (a) by applying (**) with $\frac{\epsilon}{2}$ for the functions $\{f_1, f_2, \ldots, f_{N_{\epsilon}-1}, f\}$.

8. Let (X, \mathcal{M}, μ) be a measure space, and let f_n, f, g_n, g for $n \in \mathbb{N}$ be measurable complexvalued functions on X such that $f_n \to f$ in measure and $g_n \to g$ in measure.

- (a) Show that $f_n + g_n \to f + g$ in measure.
- (b) Show that $f_n g_n \to fg$ in measure if $\mu(X) < \infty$, but not necessarily if $\mu(X) = \infty$.

Solution: (a) By the triangle inequality $|(f_n(x) + g_n(x)) - (f(x) + g(x))| \le |f_n(x) - f(x)| + |g_n(x) - g(x)|$, we see that

$$E_n^{\alpha} := \{x : |(f_n(x) + g_n(x)) - (f(x) + g(x))| \ge \alpha\} \\ \subset \underbrace{\{x : |f_n(x) - f(x)| \ge \alpha/2\}}_{A_n^{\alpha}} \cup \underbrace{\{x : |g_n(x) - g(x)| \ge \alpha/2\}}_{B_n^{\alpha}}.$$

Thus

$$\mu(E_n^{\alpha}) \le \mu(A_n^{\alpha}) + \mu(B_n^{\alpha}),$$

and since $\mu(A_n^{\alpha}) \to 0$, $\mu(B_n^{\alpha}) \to 0$, as $n \to \infty$, we see that $\mu(E_n^{\alpha}) \to 0$.

(b) Let $\mu(X) < \infty$ and suppose that the statement is not true. Then, for some $\alpha, \epsilon > 0$ there exists a subsequence $\{f_{n_k}g_{n_k}\}$ of $\{f_ng_n\}$ such that

$$\mu(\{x: |f_{n_k}(x)g_{n_k}(x) - f(x)g(x)| \ge \alpha\}) \ge \epsilon, \quad \text{for all} \quad k \in \mathbb{N}.$$
 (2)

Since $f_{n_k} \to f$, $g_{n_k} \to g$ in measure, we can find subsequences $\{f_{n_{k_j}}\}$ and $\{g_{n_{k_j}}\}$ such that $f_{n_{k_j}} \to f$ a.e. and $g_{n_{k_j}} \to g$ a.e. Then, $f_{n_{k_j}}g_{n_{k_j}} \to fg$ a.e. and therefore, by Egoroff's theorem, $f_{n_{k_j}}g_{n_{k_j}} \to fg$ almost uniformly, which implies convergence in measure, contradicting (2).

As a simple counterexample when $\mu(X) = \infty$, consider \mathbb{R} with the Lebesgue measure. Then $f_n(x) = x + \frac{1}{n} \to f(x) = x$ in measure, but $f_n^2(x) \neq f^2(x)$ in measure.