
Analysis Comprehensive Exam Questions
Spring 2013

1. Given 1 < p < ∞ and xn, y ∈ ℓp, show that xn
w
→ y in ℓp (weak convergence) if and only if

xn(k) → y(k) for each k and sup ‖xn‖p < ∞. Does either implication remain valid if p = 1?

Solution: Fix 1 < p < ∞ and xn, y ∈ ℓp. Let {δn}n∈N denote the sequence of standard
basis vectors.

⇒. Suppose that xn
w
→ y. Then since δk ∈ ℓp

′

,

y(k) = 〈y, δk〉 = lim
n→∞

〈xn, δk〉 = lim
n→∞

xn(k).

This is, xn converges componentwise to y. All weakly convergent sequences are bounded,
so we also have sup ‖xn‖p < ∞.

⇐. Suppose first that xn converges componentwise to the zero vector, and that
K = sup ‖xn‖p < ∞. Choose z ∈ ℓp

′

and fix ε > 0. Since p′ < ∞, there exists an N > 0

such that ‖z − zN‖p′ < ε, where zN =
∑N

k=1 z(k)δk. Then

lim sup
n→∞

|〈xn, z〉| ≤ lim sup
n→∞

(
|〈xn, z − zN〉|+ |〈xn, zN〉|

)

≤ lim sup
n→∞

‖xn‖p ‖z − zN‖p′ + lim sup
n→∞

|〈xn, zN〉|

≤ Kε + lim sup
n→∞

N∑

k=1

|xn(k) z(k)|

≤ Kε +

N∑

k=1

lim sup
n→∞

|xn(k) z(k)|

= Kε+ 0.

Since ε is arbitrary, we conclude that 〈xn, z〉 → 0. Thus xn
w
→ 0. The general case follows

by replacing xn with xn − y.

Case p = 1. If p = 1 then the “⇒” argument remains valid, i.e., if xn
w
→ y in ℓ1 then

xn converges componentwise to y and sup ‖xn‖ < ∞.
However, the converse fails. Set

xn =
1

n

n∑

k=1

δk =
(1

n
, . . . ,

1

n
, 0, 0, . . .

)

.

Then ‖xn‖1 = 1 for all n and xn converges componentwise to 0. However, xn does not
converge weakly to 0, for if we take z = (1, 1, 1, . . . ) ∈ ℓ∞ then 〈xn, z〉 = 1 6→ 〈0, z〉.



2. Suppose that f is a bounded measurable function on a measure space (X, µ). Assume
that there exist constants C and 0 < α < 1 such that

µ ({x ∈ X : |f(x)| > λ}) ≤
C

λα

for all λ > 0. Show that f ∈ L1(X ;µ).

Solution: For each n ∈ N set

Xn :=
{
x ∈ X : ‖f‖L∞ 2−n ≥ |f(x)| > ‖f‖L∞ 2−n−1

}
.

Then X = ∪nXn and the Xn are disjoint. Thus, we have that

∫

X

|f(x)| dµ(x) =

∞∑

n=0

∫

Xn

|f(x)| dµ(x)

≤
∞∑

n=0

‖f‖L∞ 2−nµ (Xn)

≤ C ‖f‖L∞

∞∑

n=0

2(n+1)α ‖f‖−α
L∞ 2−n

= 2αC ‖f‖1−α
L∞

∞∑

n=0

2(α−1)n

= C(α)C ‖f‖1−α
L∞ .

In the above estimates, the first inequality follows since the absolute value of f is con-
trolled on Xn, the second follows from the assumption about the measure of µ, and the
last equality holds since 0 < α < 1 and so the series converges.
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3. Let (X, µ) be a measure space with µ(X) < ∞ and let {fn} ∈ L1(X ;µ) converge to a
measurable function f at almost every x ∈ X . Assume there exists a constant C and p > 1
such that

sup
n≥1

∫

X

|fn(x)|
p dµ(x) ≤ Cp < ∞.

Prove

(a) f ∈ L1(X ;µ);

(b) ‖fn − f‖L1(µ) → 0 as n → ∞.

Solution: (a) By Hölder’s Inequality we have that

∫

X

|fn(x)| dµ(x) ≤

(∫

X

|fn(x)|
p dµ(x)

) 1

p

µ(X)
1

q ≤ Cµ(X)
1

q < ∞

since µ(X) < ∞. Thus, we have that

sup
n≥1

∫

X

|fn(x)| dµ(x) ≤ Cµ(X)
1

q < ∞.

Now, apply Fatou’s Theorem to see that
∫

X

|f(x)| dµ(x) =

∫

X

lim inf
n→∞

|fn(x)| dµ(x)

≤ lim inf
n→∞

∫

X

|fn(x)| dµ(x)

≤ sup
n≥1

∫

X

|fn(x)| dµ(x) < ∞.

So f ∈ L1(X ;µ) as claimed.

(b) By Egorov’s Theorem, given ǫ > 0 there exists a measurable set E ⊂ X with
µ(X \ E) < ǫ

4Cµ(X)
1+ 1

q
such that fk → f uniformly on E. Since fn → f uniformly on E

there exists an integer N such that for all n ≥ N we have that
∫

E

|fn(x)− f(x)| dµ(x) <
ǫ

2
.

Then, for n ≥ N we have that
∫

X

|fn(x)− f(x)| dµ(x) =

∫

X\E

|fn(x)− f(x)| dµ(x) +

∫

E

|fn(x)− f(x)| dµ(x)

≤ 2Cµ(X)
1

q
+1 ǫ

4Cµ(X)1+
1

q

+
ǫ

2
= ǫ.

So we have that ‖fn − f‖L1(µ) → 0 as claimed.
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4. Let X and Y be Banach spaces and let T : X → Y be bounded and linear. Show that
there is a constant c > 0 such that ‖Tx‖Y ≥ c ‖x‖X for all x ∈ X if and only if ker T = {0}
and ranT is closed.

Solution: Suppose that ‖Tx‖Y ≥ c ‖x‖X for all x ∈ X. If we have x ∈ ker T then

0 = ‖Tx‖Y ≥ c ‖x‖X ,

which gives x = 0, and so ker T = {0}. Suppose that y ∈ ranT , and let yn ∈ ranT be
such that yn → y. Since yn ∈ ranT, we have that yn = Txn for some xn ∈ X. Note that
{xn} is a Cauchy sequence since

‖yn − ym‖Y = ‖Txn − Txm‖Y ≥ c ‖xn − xm‖X .

Since X is complete, we have that xn → x for some x ∈ X. As T is bounded, hence
continuous, we have Txn → Tx, and therefore Tx = y. Thus ranT ⊂ ranT, so ranT is
closed.

Now suppose that ker T = {0} and ranT is closed. Note that since T is bounded and
linear and ker T = {0}, we have that T is injective. Also, since Z = ranT is closed, T is
a surjective map of X onto the Banach space Z. So, T : X → Z is bounded, linear, and
bijective, and so by the Open Mapping Theorem (Bounded Inverse Theorem) we have
that T−1 : Z → X is bounded. Therefore there is a c such that

∥
∥T−1y

∥
∥
X
≤ c ‖y‖Y , y ∈ Z = ranT.

Applying this inequality to y = Tx, we get the desired result.
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5. Let {hn}n≥1 be a sequence of vectors in a Hilbert space H with the property that
(hn−hm) ⊥ hm whenever n ≥ m. Then

∑

n
hn

‖hn‖
2
H

converges in H if and only if
∑

n≥1
n

‖hn‖
2
H

<
∞.

Solution: We have that 〈hn, hm〉H = ‖hm‖
2 for all n ≥ m. Thus

∥
∥
∥
∥
∥

n∑

k=m

hk

‖hk‖
2
H

∥
∥
∥
∥
∥

2

H

=
n∑

k=m

n∑

l=m

∥
∥hmin{k,l}

∥
∥2

H

‖hk‖
2
H ‖hl‖

2
H

=
n∑

k=m

2k − 2m+ 1

‖hk‖
2
H

(1)

First, suppose that
∑

n≥1
n

‖hn‖
2
H

< ∞. Then by (1) the partial sums of

∑

n

hn

‖hn‖
2
H

form a Cauchy sequence in H , and therefore must converge in H . Conversely, if
∑

k
hk

‖hk‖
2
H

converges in H , then its partial sums are bounded in norm. Using (1) with m = 1 show
that

n∑

k=1

k

‖hk‖
2
H

≤
n∑

k=1

2k − 1

‖hk‖
2
H

=

∥
∥
∥
∥
∥

n∑

k=1

hk

‖hk‖
2
H

∥
∥
∥
∥
∥

2

H

< ∞

so
∑

n≥1
n

‖hn‖
2
H

< ∞ as claimed.
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6. Let |E|e denote the exterior Lebesgue measure of a set E ⊂ R
n, and let us define the

inner Lebesgue measure of E to be

|E|i = sup{|F |e : F is closed and F ⊂ E}.

(a) Show that if |E|e < ∞ , then E is Lebesgue measurable if and only if |E|e = |E|i.
(b) Is the statement true if |E|e = ∞?

Solution: (a) Let |A| denote the Lebesgue measure of a measurable set A. If E is mea-
surable then for every ǫ > 0 there exists a closed set F ⊂ E such that |E \ F | < ǫ and
therefore |E| = |E \ F | + |F | < ǫ + |F |, or equivalently |F | > |E| − ǫ. Since ǫ > 0 is
arbitrary we see that |E|i ≥ |E| = |E|e.

Conversely, if |E|i = |E|e then there exist an Fσ-set F and a Gδ-set U , such that
F ⊂ E ⊂ U and |F | = |E|i = |E|e = |U |. Since |E|e < ∞, we have

|U \ E|e ≤ |U \ F |e = |U | − |F | = 0,

hence E is measurable.

(b) The statement is not true in general if |E|e = ∞. For instance, if N is a non-
measurable subset of [0, 1]n and if we set E = R

n \N , then |E|i = |E|e = ∞, but E not
measurable.
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7. Let (X,M, µ) be a measure space. A collection of functions {fα}α∈A ⊂ L1(µ) is called
uniformly integrable if for every ǫ > 0 there exists δ > 0 such that |

∫

E
fαdµ| < ǫ for all

α ∈ A whenever µ(E) < δ.
(a) Show that any finite subset of L1(µ) is uniformly integrable.
(b) If {fn} is a sequence in L1(µ) that converges in the L1 metric to f ∈ L1(µ), then {fn}
is uniformly integrable.

Solution: Note that if f ∈ L1(µ) and dν = fdµ, then ν ≪ µ, d|ν| = |f |dµ and
|ν|(X) =

∫
|f |dµ < ∞, i.e. ν is finite. Therefore, the condition ν ≪ µ can be rewritten

in ǫ− δ terms as follows: for every ǫ > 0 there exists δ > 0 such that

µ(E) < δ implies |ν(E)| =

∣
∣
∣
∣

∫

E

fdµ

∣
∣
∣
∣
< ǫ. (∗∗)

Take arbitrary ǫ > 0.
(a) For a finite set {fα}α∈A, we can pick δα > 0 for the function fα such that (∗∗) holds,
and then take δ = min{δα : α ∈ A}.
(b) If fn → f in L1, then for every E ∈ M

∣
∣
∣
∣

∫

E

fndµ−

∫

E

fdµ

∣
∣
∣
∣
≤ ||fn − f ||1 <

ǫ

2
for n ≥ Nǫ,

and therefore ∣
∣
∣
∣

∫

E

fndµ

∣
∣
∣
∣
≤

∣
∣
∣
∣

∫

E

fdµ

∣
∣
∣
∣
+

ǫ

2
for n ≥ Nǫ.

The proof now follows similarly to (a) by applying (∗∗) with ǫ
2
for the functions

{f1, f2 . . . , fNǫ−1, f}.
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8. Let (X,M, µ) be a measure space, and let fn, f, gn, g for n ∈ N be measurable complex-
valued functions on X such that fn → f in measure and gn → g in measure.
(a) Show that fn + gn → f + g in measure.
(b) Show that fngn → fg in measure if µ(X) < ∞, but not necessarily if µ(X) = ∞.

Solution: (a) By the triangle inequality |(fn(x) + gn(x)) − (f(x) + g(x))| ≤ |fn(x) −
f(x)|+ |gn(x)− g(x)|, we see that

Eα
n : = {x : |(fn(x) + gn(x))− (f(x) + g(x))| ≥ α}

⊂ {x : |fn(x)− f(x)| ≥ α/2}
︸ ︷︷ ︸

Aα
n

∪{x : |gn(x)− g(x)| ≥ α/2}
︸ ︷︷ ︸

Bα
n

.

Thus
µ(Eα

n ) ≤ µ(Aα
n) + µ(Bα

n),

and since µ(Aα
n) → 0, µ(Bα

n) → 0, as n → ∞, we see that µ(Eα
n ) → 0.

(b) Let µ(X) < ∞ and suppose that the statement is not true. Then, for some
α, ǫ > 0 there exists a subsequence {fnk

gnk
} of {fngn} such that

µ({x : |fnk
(x)gnk

(x)− f(x)g(x)| ≥ α}) ≥ ǫ, for all k ∈ N. (2)

Since fnk
→ f , gnk

→ g in measure, we can find subsequences {fnkj
} and {gnkj

} such

that fnkj
→ f a.e. and gnkj

→ g a.e. Then, fnkj
gnkj

→ fg a.e. and therefore, by Ego-

roff’s theorem, fnkj
gnkj

→ fg almost uniformly, which implies convergence in measure,

contradicting (2).

As a simple counterexample when µ(X) = ∞, consider R with the Lebesgue measure.
Then fn(x) = x+ 1

n
→ f(x) = x in measure, but f 2

n(x) 6→ f 2(x) in measure.
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