
Spring 2012 Algebra Comprehensive Exam
Georgia Tech Mathematics

Problems: Choose 5 out of 7.

1. Recall that two n × n matrices A and A′ are similar if there exists an
invertible matrix B such that A′ = BAB−1. Similarity is an equivalence
relation. How many similarity classes of 3 × 3 complex matrices with
characteristic polynomial (x− 1)3 are there?

2. Define what it means for a finite group to be solvable, and prove from
first principles that the alternating group A4 is solvable.

3. Suppose that a group G with 125 elements acts on a set X with 7
elements. What are the possibilities for the number of fixed points of
the action (i.e., for the set {x ∈ X|gx = x ∀g ∈ G})?

4. Let R be a commutative ring with identity and let R× be the group of
invertible elements of R. Prove that R \R× is an ideal if and only if R
has a unique maximal ideal.

5. Prove from first principles that the polynomial 2x3+x+2 is irreducible
over Q[x].

6. Let L/K be a finite extension of fields and suppose a, b ∈ L are elements
such that [K(a) : K] = 3 and [K(b) : K] = 2. What are the possibilities
for [K(a + b) : K]? Prove that your answer is correct.

7. What is the cardinality of the splitting field of x3−1 over F11 (the field
of 11 elements)? Same question over F49.
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Solution

1. Recall that two n × n matrices A and A′ are similar if there exists an
invertible matrix B such that A′ = BAB−1. Similarity is an equivalence
relation. How many similarity classes of 3 × 3 complex matrices with
characteristic polynomial (x− 1)3 are there?

Two matrices are similar if and only if they have the same Jordan
canonical form. For 3× 3 matrices with characteristic polynomial (x−
1)3, the Jordan form must have 1’s on the diagonal. The following are
the possibilities:1 0 0

0 1 0
0 0 1

 ,

1 1 0
0 1 0
0 0 1

 ,

1 1 0
0 1 1
0 0 1

 .

2. Define what it means for a finite group to be solvable, and prove from
first principles that the alternating group A4 is solvable.

A finite group G is solvable if there is a chain of subgroups G = N0 ⊃
N1 ⊃ · · · ⊃ Nn = {1} such that for each i = 1, 2, . . . , n, Ni is normal
in Ni−1 and Ni−1/Ni is abelian.

Let A4 be the group of even permutations of the 4-element set {1, 2, 3, 4}.
Then A4 consists of the identity id, eight 3-cycles, and three permu-
tations that are products of two disjoint transpositions. Let N1 =
{id, (12)(34), (13)(24), (14)(23)}, which can be checked explicitly to be
an abelian subgroup of A4. It is normal because conjugation preserves
cycle types of permutations. The quotient A4/N1 has order 3, and
hence abelian.

3. Suppose that a group G with 125 elements acts on a set X with 7
elements. What are the possibilities for the number of fixed points of
the action (i.e., for the set {x ∈ X|gx = x ∀g ∈ G})?
For any element x ∈ X, the product of the size of the orbit of x and
the order of the stabilizer subgroup of x is equal to the order of the
group G, which is 125. In particular, the size of the orbit divides 125,
so each orbit contains either 1 or 5 elements. Then only possibilities
for the number of fixed points are 2 and 7.
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4. Let R be a commutative ring with identity and let R× be the group of
invertible elements of R. Prove that R \R× is an ideal if and only if R
has a unique maximal ideal.

Let I = R\R×. If I is an ideal in R, then it is the unique maximal ideal
because any proper ideal U of R must be contained in I. Otherwise U
would contain an invertible element and be equal to R.

For the converse, let J be the unique maximal ideal of R, and let
a ∈ R\J . If a were not a unit, then there is a maximal ideal contianing
a, which is not J , so we get a contradiction. Therefore R \ J = R×,
and we conclude that R \R× = J is an ideal.

5. Prove from first principles that the polynomial 2x3+x+2 is irreducible
over Q[x].

Let f = 2x3 + x+ 2. Suppose f is not irreducible, then it has a root in
Q because one of the factors must have degree 1. Let a

b
be a root of f ,

where a and b are relatively prime integers and b 6= 0. Then we have
2a3 = b2(−a − 2b). If b is divisible by an prime p, then p2|2a3, so p|a,
contradicting the assumption that a and b are relatively prime. Thus
b must be ±1, and f has an integer root a. However, a must divide 2
because a(−2a2 − 1) = 2, and we see that f has no such root.

6. Let L/K be a finite extension of fields and suppose a, b ∈ L are elements
such that [K(a) : K] = 3 and [K(b) : K] = 2. What are the possibilities
for [K(a + b) : K]? Prove that your answer is correct.

Since [K(a, b) : K] is equal to [K(a, b) : K(a)][K(a) : K] and [K(a, b) :
K(b)][K(b) : K], we have that [K(a, b) : K] is divisible by both 3 and 2.
Combining with [K(a, b) : K(a)] ≤ [K(b) : K], we get [K(a, b) : K] = 6.
From [K(a, b) : K] = [K(a, b) : K(a + b)][K(a + b) : K], it follows that
[K(a + b) : K] divides 6, so the possibilities are 1, 2, 3, and 6.

If [K(a + b) : K] is equal to 1 (resp. 2) then K(a, b) = (K(a + b))(b)
would have degree at most 2 (resp. 4) over K, so this is not possible.

As a vector space over K, K(a, b) has a basis {1, a, a2, b, ab, a2b}. Sup-
pose there are elements c0, c1, c2, c3 ∈ K such that c3(a + b)3 + c2(a +
b)2 + c2(a + b) + c0 = 0. Expending the expression in the basis above,
we see that c3 is the coefficient of a2b and must be 0. Hence a + b is
a root of a degree 2 polynomial over K, which is impossible as seen
above.
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Therefore the only possibility for [K(a + b) : K] is 6.

7. What is the cardinality of the splitting field of x3−1 over F11 (the field
of 11 elements)? Same question over F49.

Since 3 does not divide the order of the multiplicative group F×11, which
is 11− 1, no element of F11 other than 1 is root of x3− 1. Thus x3− 1
factors as (x−1)(x2+x+1), and x2+x+1 is irreducible. The splitting
field is F[x]/(x2 + x + 1), which has cardinality 112.

Since 3 divides 49 − 1, there are two distinct elements in F49 other
than 1 that satisfy x3 = 1. Or, direct computation shows that we have
x3− 1 = (x− 1)(x− 2)(x− 4), so the splitting field is F49 itself, which
has cardinality 49.
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