
Qualification Problems
Real Analysis

1. Let (X, d) be a metric space. Suppose that K is a compact subset of X and F is a closed
subset of X. Assume K ∩ F = ∅. Show that there exists a δ > 0 such that

d(x, y) ≥ δ > 0, x ∈ K, y ∈ F.

Solution:
Solution One: For every x ∈ X define the distance from x to F by

d(x, F ) = inf{d(x, f) : f ∈ F}.

If d(x, F ) = 0, then for every ε > 0, there exists a yε ∈ F such that d(x, yε) < ε. This
implies that x is a limit point of F , and since F is closed, we must have x ∈ F . Thus,
d(x, F ) = 0 if and only if x ∈ F .

Now define the following function f : K → [0,∞) by f(x) = d(x, F ). It is easy to
show that f is continuous. Since K is compact, there exists a minimum value attained
at some value k ∈ K with f(k) = δ. Since K ∩F = ∅ and by above we must have δ > 0.
But, since δ is the minimum for all x ∈ K we have that

f(x) = d(x, F ) ≥ δ x ∈ K.

But, this also gives that

d(x, y) ≥ δ > 0 x ∈ K, y ∈ F.

Solution Two: Let B(z, r) denote the open ball with center z ∈ X and radius r > 0.
As F is closed and F ∩ K = ∅, for every x ∈ K there is a radius r(x) > 0 such that

F ∩ B(x, r(x)) = ∅. Consider now the cover of K given by
{
B(x, r(x)

2
) : x ∈ K

}
. As K

is compact, there are points x1, . . . xN such that B
(
xj,

r(xj)

2

)
j = 1, . . . N is a cover of

K.
Let δ = min

{
r(xj)

2
: j = 1, . . . N

}
. Then note that for each x ∈ K there exists a xj

such that d(x, xj) ≤ r(xj)

2
. And, for each y ∈ F we have that d(y, xj) > 2

r(xj)

2
. Now we

then have that d(x, y) ≥ δ for x ∈ K and y ∈ F . Indeed,

d(x, y) ≥ d(xj, y)− d(x, xj)

≥ 2
r(xj)

2
− r(xj)

2

≥ r(xj)

2
≥ δ > 0.

This then gives the result.



2. Given 2 ≤ p <∞, show that for real-valued functions f, g ∈ Lp(E;µ) we have

2

(∥∥∥∥f2
∥∥∥∥p
Lp(E;µ)

+
∥∥∥g

2

∥∥∥p
Lp(E;µ)

)
≤
∥∥∥∥f − g2

∥∥∥∥p
Lp(E;µ)

+

∥∥∥∥f + g

2

∥∥∥∥p
Lp(E;µ)

≤ 1

2

(
‖f‖pLp(E;µ) + ‖g‖pLp(E;µ)

)
.

Solution:
For the upper inequality, prove the following: Let 2 ≤ p <∞ and x ∈ [0, 1], then(

1− x
2

)p
+

(
1 + x

2

)p
≤ 1 + xp

2
.

This inequality implies that for a, b ∈ R that(
|a− b|

2

)p
+

(
|a+ b|

2

)p
≤ |a|

p + |b|p

2
.

This is obviously true when a = b = 0. If one of a, b ∈ R is non-zero, say a 6= 0, the
inequality becomes |a|p

2p−1 ≤ |a|p
2

, or 1 ≤ 2p−2, which is true since p ≥ 2. In general, set

x = |a|
|b| and rearrange.

Now let a = f(x), b = g(x), and then integrate over E with respect to the measure µ
to find: ∥∥∥∥f − g2

∥∥∥∥p
Lp(E;µ)

+

∥∥∥∥f + g

2

∥∥∥∥p
Lp(E;µ)

≤ 1

2
‖f‖pLp(E;µ) +

1

2
‖g‖pLp(E;µ) .

For the lower inequality, proceed essentially as above and prove the following: Let
2 ≤ p <∞ and x ∈ [0, 1], then

2(1 + xp) ≤ (1 + x)p + (1− x)p.

This inequality then implies that for a, b ∈ R that

21−p (|a|p + |b|p) ≤
(
|a− b|

2

)p
+

(
|a+ b|

2

)p
.

If a = b = 0 then this is an obvious inequality. If a 6= 0 then it reduces to 21−p |a|p ≤ 2 |a|
p

2p ,

which is obviously true. In the general case, let x = |a|
|b| and rearrange. Now let a = f(x),

b = g(x), and then integrate over E with respect to the measure µ to find:

21−p
(
‖f‖pLp(E;µ) + ‖g‖pLp(E;µ)

)
≤
∥∥∥∥f − g2

∥∥∥∥p
Lp(E;µ)

+

∥∥∥∥f + g

2

∥∥∥∥p
Lp(E;µ)

.

For the upper inequality in this problem, it is possible to give a proof of this using
convexity and the Parallelogram Identity.



3. Suppose that 0 < θ < 1, E ⊂ Rn and 0 < |E| < ∞. Prove that there is a cube Q such
that

θ |Q| < |E ∩Q| .

Solution: Fix 0 < θ < 1. Then there exists an open set G such that θ |G| < |E| and
G ⊃ E. Since G is open, it is possible to write G as a collection of non-overlapping cubes
Qj, i.e. G =

⋃
j Qj. We then have

θ
∑
j

|Qj| = θ |G|

Now observe that this gives θ
∑

j |Qj| <
∑

j |E ∩Qj|. If not, then we would have that

θ |G| = θ
∑
j

|Qj|

≥
∑
j

|E ∩Qj|

= |E| .

Here the first equality follows from the properties of the cube, the middle inequality is
our supposition, and the last equality follows since E =

⋃
j E ∩ Qj with the cubes Qj

disjoint and G =
⋃
j Qj ⊃ E. So we have that θ |G| ≥ |E|, which is in contradiction to

our choice of G from the beginning. So, we now have that

θ
∑
j

|Qj| <
∑
j

|E ∩Qj| .

Thus, there must exist at least on integer N such that θ |QN | < |E ∩QN |. Set Q = QN

for the desired result that
θ |Q| < |E ∩Q| .



4. Let {fn}, {gn}, f, g ∈ L1(E;µ). Suppose that fn → f and gn → g µ-almost everywhere
and that |fn| ≤ gn and

∫
E
gn(x) dµ(x)→

∫
E
g(x) dµ(x). Show that∫

E

fn(x) dµ(x)→
∫
E

f(x) dµ(x).

Solution: Since |fn| ≤ gn we have that gn ± fn is non-negative and measurable. Then
we have that∫

E

g(x) dµ(x) +

∫
E

f(x) dµ(x) =

∫
E

(g(x) + f(x)) dµ(x)

=

∫
E

lim
n→∞

(fn(x) + gn(x)) dµ(x)

≤ lim
n→∞

∫
E

(gn(x) + fn(x)) dµ(x)

=

∫
E

g(x) dµ(x) + lim
n→∞

∫
E

fn(x) dµ(x).

Here, the inequality follows from an application of Fatou’s Lemma. This computation
thus gives that ∫

E

f(x) dµ(x) ≤ lim
n→∞

∫
E

fn(x) dµ(x). (1)

Now, repeat the computation above, but this time with the function g − f to see,∫
E

g(x) dµ(x)−
∫
E

f(x) dµ(x) =

∫
E

(g(x)− f(x)) dµ(x)

=

∫
E

lim
n→∞

(gn(x)− fn(x)) dµ(x)

≤ lim
n→∞

∫
E

(gn(x)− fn(x)) dµ(x)

=

∫
E

g(x) dµ(x) + lim
n→∞

∫
E

(−fn(x)) dµ(x).

Rearrangement then gives that∫
E

f(x) dµ(x) ≥ − lim
n→∞

∫
E

(−fn(x)) dµ(x) = lim
n→∞

∫
E

fn(x) dµ(x). (2)

Combining (1) and (2) we see that∫
E

f(x) dµ(x) ≤ lim
n→∞

∫
E

fn(x) dµ(x) ≤ lim
n→∞

∫
E

fn(x) dµ(x) ≤
∫
E

f(x) dµ(x),

and so

lim
n→∞

∫
E

fn(x) dµ(x) =

∫
E

f(x) dµ(x).



5. A sequence of vectors {xn} in a Hilbert space is called a Riesz sequence if there exist
constants 0 < a ≤ A <∞ such that

a
∑
j

|aj|2 ≤

∥∥∥∥∥∑
j

ajxj

∥∥∥∥∥
2

H

≤ A
∑
j

|aj|2 (3)

for any collection of numbers {aj} ∈ `2. A Riesz sequence is called a Riesz basis if H =

span{xn}, i.e., the closed linear space of {xn} is the Hilbert space H. Show that {xn} is a
Riesz basis for a Hilbert space H if and only if xn = Ten where T : H → H is an isomorphism
and {en} is an orthonormal basis for H.

Solution:
First, suppose that xn = Ten where T is an isomorphism and {en} is an orthonormal
basis for H. Then note that

∑
j

ajxj =
∑
j

ajTej = T

(∑
j

ajej

)
.

Since T is an isomorphism we have that c ‖h‖H ≤ ‖Th‖H ≤ C ‖h‖H (here C = ‖T‖ and

c = ‖T−1‖−1
). Then consider the vector h =

∑
j ajej and note that

‖h‖2H =

〈∑
j

ajej,
∑
k

akek

〉
H

=
∑
j

|aj|2

and since T is an isomorphism we have

c2 ‖h‖2H ≤ ‖Th‖
2
H ≤ C2 ‖h‖2H .

But then using the definition of the isomorphism T and the specific choice of vector h
we have that

c2
∑
j

|aj|2 ≤

∥∥∥∥∥∑
j

ajxj

∥∥∥∥∥
2

H

≤ C2
∑
j

|aj|2 .

which is (3) with a = c2 and A = C2. It remains to show that span{xn} = H, but this
follows from (b) below, so we omit this computation.

Conversely, now suppose that {xn} is a Riesz basis for H. Define a linear operator
on finite sums of the {ej} in the following manner

T

(∑
j

ajej

)
:=
∑
j

ajxj.

It is easy to see that T is linear on finite sums. Let h be an arbitrary element of H, then
we have that

h =
∞∑
j=1

ajej and ‖h‖2H =
∞∑
j=1

|aj|2 .



We now show how to define the operator on any element h ∈ H. Consider hN =
∑N

j=1 ajej
and and hM written similarly with M > N . Then we have using the right inequality in
(3) that

‖ThM − ThN‖2H =

∥∥∥∥∥T
(

M∑
j=N+1

ajej

)∥∥∥∥∥
2

H

≤ A
M∑

j=N+1

|aj|2 → 0.

So for any h ∈ H we have the the resulting sequence {Thj} is Cauchy in H, and so we
then define

Th = T

(
∞∑
j=1

ajej

)
= lim

N→∞
ThN =

∞∑
j=1

ajxj.

It is immediate that T as defined in this way is linear on H. Now we show that T is a
bounded operator and invertible operator. For the vector hN =

∑N
j=1 ajej using (3) we

have that

a
N∑
j=1

|aj|2 ≤ ‖ThN‖2H ≤ A
N∑
j=1

|aj|2

which upon passing to the limit gives that

a ‖h‖2H ≤ ‖Th‖
2
H ≤ A ‖h‖2H .

This gives that T : H → H is bounded, with norm less than or equal to
√
A, and that

T−1 : Ran T → H is bounded with norm
√
a
−1

. Also note that T is injective since if
Th = 0 then by the left hand inequality above, we have that ‖h‖H = 0 and so h = 0.
It remains to show that Ran T = H. To accomplish this note that Ten = xn, and so
span{xn} ⊂ Ran T , and so H = span{xn} ⊂ Ran T . It remains to show that Ran T is
closed.

Suppose that yn ∈ Ran T and that yn → y. We can find elements {xn} ∈ H such
that Txn = yn, and {Txn} is Cauchy in H. By the left inequality in (3) we have that

a ‖xn − xm‖2H ≤ ‖Txn − Txm‖H → 0

so we have that {xn} is Cauchy in H, and must converge to an element x ∈ H. Since T
is continuous we have that Txn converges to Tx. But, this implies that yn → Tx, and
yn → y, or y = Tx ∈ Ran T . So Ran T is closed and thus T : H → H is and isomorphism.



6. Suppose that E ⊂ Rn with |E| <∞ and let f be a non-negative measurable function on
E. Prove that the following are equivalent:

(a) f ∈ Lp(E);

(b)
∑∞

k=−∞ 2kp
∣∣{x ∈ E : f(x) > 2k}

∣∣ <∞.

Solution: Let ω(λ) =
∣∣{x ∈ E : f(x) > 2k}

∣∣. Using the distribution function ω(λ) we
have that ∫

E

f(x)p dx = p

∫ ∞
0

λp−1ω(λ) dλ. (4)

Using this, the result will follow. So first suppose that (a) holds, then we know that the
left hand side of (4) is finite. We now proceed to decompose the domain of integration
on the right hand side.

p

∫ ∞
0

λp−1ω(λ) dλ = p
∞∑

k=−∞

∫ 2k+1

2k

λp−1ω(λ) dλ

≥ p
∞∑

k=−∞

ω(2k+1)

∫ 2k+1

2k

λp−1 dλ

=
∞∑

k=−∞

ω(2k+1)
(
2p(k+1) − 2kp

)
= (2p − 1)2−p

∞∑
k=−∞

2kpω(2k).

So we have that
∞∑

k=−∞

2kpω(2k) <∞

or (b) holds.
Conversely, if (b) holds, then we have that

∞∑
k=−∞

2kpω(2k) <∞.

We now show that this sum dominates the corresponding integrand. Consider the integral

p

∫ 2k+1

2k

λp−1ω(λ) dλ ≤ pω(2k)

∫ 2k+1

2k

λp−1 dλ = (2p − 1)2kpω(2k).

Summing this expression over k ∈ Z gives

p

∫ ∞
0

λp−1ω(λ) dλ ≤ (2p − 1)
∞∑

k=−∞

2kpω(2k).

So we have

p

∫ ∞
0

λp−1ω(λ) dλ <∞

this gives that f ∈ Lp(E).



7. We say that a function f : [a, b] → R is Lipschitz if there exists a constant K ≥ 0 such
that |f(x)− f(y)| ≤ K |x− y| for all x, y ∈ [a, b].

(a) Prove that f is Lipschitz if and only if f is absolutely continuous on [a, b] and f ′ ∈
L∞[a, b].

(b) Let Lip[a, b] denote the space of Lipschitz functions on [a, b]. Prove that Lip[a, b] is a
meager subset (also sometimes called a set of Baire first category) of C[a, b].

Solution:
Solution to part (a). ⇒. Suppose that f is Lipschitz. Fix ε > 0, and let δ = ε/K. Let
{[aj, bj]}j be any countable collection of nonoverlapping subintervals of [a, b] such that

m∑
j=1

(bj − aj) < δ.

Then
m∑
j=1

|f(bj)− f(aj)| ≤ K
m∑
j=1

(bj − aj) < Kδ = ε.

Hence f is absolutely continuous on [a, b]. As a consequence, f ′ exists a.e. and is inte-
grable. Further, for each x where the derivative exists,

|f ′(x)| = lim
h→0

∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ ≤ lim
h→0

∣∣∣∣K (x+ h− x)

h

∣∣∣∣ = K.

Hence |f ′| ≤ K a.e., so f ′ ∈ L∞[a, b].

⇐. Assume that f is absolutely continuous and there is a constant M such that
|f ′| ≤ M a.e. Absolutely continuous functions satisfy the Fundamental Theorem of
Calculus, so if a ≤ x < y ≤ b then

|f(x)− f(y)| =
∣∣∣∣∫ y

x

f ′(t) dt

∣∣∣∣ ≤ ∫ y

x

|f ′(t)| dt ≤
∫ y

x

M dt = M (y − x).

Hence f is Lipschitz.

Solution to part (b). Let Fn be the set of functions that are Lipschitz with Lipschitz
constant at most n:

Fn = {f ∈ C[a, b] : |f(x)− f(y)| ≤ n |x− y|, x, y ∈ [a, b]}.

Suppose that fk ∈ Fn and fk → f in C[a, b]. Since uniform convergence implies pointwise
convergence, we have

|f(x)− f(y)| = lim
k→∞
|fk(x)− fk(y)| ≤ n |x− y|.

Hence f ∈ Fn, so Fn is closed.
However, Fn has no interior. If f ∈ Fn and ε > 0 is given, we can create a function h

that equals f everywhere except on a small interval, and on that interval the graph
of h is a triangle of height ε

2
with the slope of at least one side greater than n. Then

‖f − h‖∞ < ε but h /∈ Fn.
Since Lip[a, b] = ∪Fn, it follows that Lip[a, b] is a meager subset of C[a, b].



8. Let X, Y be Banach spaces, and let A : X → Y be a bounded linear operator. Prove the
existence of the adjoint of A. That is, prove that there is a unique operator A∗ : Y ∗ → X∗

that satisfies
(A∗µ)(f) = µ(Af) for all f ∈ X, µ ∈ Y ∗,

and furthermore prove that A∗ is bounded, linear, and has operator norm ‖A∗‖ = ‖A‖ .

Solution: For this solution, we will write 〈f, µ〉 instead of µ(f) to denote the action of
a functional µ on a vector f. For simplicity, we shall assume that scalars in this problem
are real, but only minor changes are needed if we allow complex scalars.

Construction of A∗µ. With µ ∈ Y ∗ fixed, define A∗µ : X → R by

〈f, A∗µ〉 = 〈Af, µ〉, f ∈ X.

The operator A∗µ is a functional, and it is a linear function of f because A and µ are
both linear. Also,

|〈f, A∗µ〉| = |〈Af, µ〉| ≤ ‖Af‖ ‖µ‖ ≤ ‖A‖ ‖f‖ ‖µ‖ ,

so
‖A∗µ‖ = sup

‖f‖=1

|〈f, A∗µ〉| ≤ ‖A‖ ‖µ‖ .

Hence A∗µ is a bounded linear functional on X, and therefore A∗µ ∈ X∗.
Boundedness and Linearity of A∗. Given any µ ∈ Y ∗ we have defined a functional
A∗µ ∈ X∗. Now consider the mapping A∗ : Y ∗ → X∗ that takes µ to A∗µ. If µ, ν ∈ Y ∗
and a, b ∈ R, then A∗(aµ+ bν) is the functional defined by

〈f, A∗(aµ+ bν)〉 = 〈Af, aµ+ bν〉

= a 〈Af, µ〉+ b 〈Af, ν〉

= a 〈f, A∗µ〉+ b 〈f, A∗ν〉

= 〈f, aA∗µ+ bA∗ν〉.

Therefore A∗(aµ + bν) = aA∗µ + bA∗ν, so A∗ is a linear mapping. Further, we showed
above that ‖A∗µ‖ ≤ ‖A‖ ‖µ‖ , so A∗ is bounded and ‖A∗‖ ≤ ‖A‖ .
Norm of A∗. Choose any vector f ∈ X with ‖f‖ = 1. By Hahn–Banach,

‖Af‖ = sup
‖µ‖=1

|〈Af, µ〉|,

and this supremum is achieved, say by the unit functional µ. Therefore

‖Af‖ = |〈Af, µ〉|

= |〈f, A∗µ〉|

≤ ‖f‖ ‖A∗µ‖

≤ ‖f‖ ‖A∗‖ ‖µ‖

= ‖f‖ ‖A∗‖ .



Since this is true for every unit vector f ∈ X, we conclude that ‖A‖ ≤ ‖A∗‖ . Since
we proved above that ‖A∗‖ ≤ ‖A‖ , it follows that the operator norms of A and A∗ are
equal.

Uniqueness of the Adjoint. Suppose that B : Y ∗ → X∗ also satisfies

∀ f ∈ X, ∀µ ∈ Y ∗, 〈Af, µ〉 = 〈f,Bµ〉.

Note that we are not assuming that B is linear or bounded. With µ ∈ Y ∗ fixed, we have

〈f, A∗µ−Bµ〉 = 0, f ∈ X.

Hence A∗µ−Bµ is the zero operator. Thus A∗µ = Bµ for every µ ∈ Y ∗, so B = A∗.


