ALGEBRA COMPREHENSIVE EXAM SPRING 2014

Choose any five problems. If you attempt more than five, indicate clearly which five are to be graded.
(1) Suppose G is a group with $|G|=60$ and $|Z(G)|$ is divisible by 4 . Show that G has a normal subgroup of order 5 .
Solution: By Sylow's theorem, G has at least one subgroup of order 5; fix one and call it H. The number n of such subgroups is congruent to 1 modulo 5 and divides $60 / 5=12$. Thus n is either 1 or 6 . Also, G acts transitively by conjugation on the subgroups of order 5 , and n is the index in G of the stabilizer of H. The stabilizer is the normalizer $N_{G}(H)$, so $n=\left[G: N_{G}(H)\right]$. We know $H \subset N_{G}(H)$ and $Z(G) \subset N_{G}(H)$, so 5 divides the order of $N_{G}(H)$ and 4 does too. This implies that the order of $N_{G}(H)$ is at least 20, so $n \leq 60 / 20=3$. Therefore $n=1$ and H is normal.
(2) Let $G L(n, \mathbb{Q})$ denote the group of invertible $n \times n$ matrices with entries in the rational numbers. Let p be a prime satisfying $p>n+1$. Show that if $A \in G L(n, \mathbb{Q})$ satisfies $A^{p}=I$ then $A=I$ (here I denotes the $n \times n$ identity matrix).
Solution: Since $A^{p}=I$, the minimal polynomial $m(x)$ of A divides $x^{p}-1$. Note that $m(x)$ has coefficients in \mathbb{Q} and that the factorization of $x^{p}-1$ into irreducible factors over \mathbb{Q} is

$$
x^{p}-1=(x-1)\left(x^{p-1}+x^{p-2}+\cdots+1\right) .
$$

Since $p-1>n$ and the degree of m is $\leq n$, the second factor above does not appear in $m(x)$. We conclude that $m(x)=(x-1)$. This implies that $A=I$.
(3) Find the degree of the splitting field of the polynomial $x^{6}-7$ over:
(a) \mathbb{Q}
(b) $\mathbb{Q}\left(\zeta_{3}\right)$ where ζ_{3} is a primitive 3rd root of unity.
(c) \mathbb{F}_{3} (the field with 3 elements).

Solution: Let L be the splitting field in question. For (a) and (b), let $\sqrt[6]{7}$ be the positive real 6 -th root of 7 , and let $\zeta_{3}=e^{2 \pi i / 3}$ be a primitive cube root of unity in \mathbb{C}. Then the roots of $x^{6}-7$ are the numbers $\pm \zeta_{3}^{i} \sqrt[6]{7}$ where $i=0,1,2$. The field they generate is also generated by ζ_{3} and $\sqrt[6]{7}$. Moreover, ζ_{3} generates an imaginary quadratic extension, and $\sqrt[6]{7}$ generates a real extension of degree 6. Thus together they generate an extension of \mathbb{Q} of degree 12 and an extension of $\mathbb{Q}\left(\zeta_{3}\right)$ of degree 6 . For part (c), note that in $\mathbb{F}_{3}[x]$ we have

$$
x^{6}-7=x^{6}-1=\left(x^{2}-1\right)^{3} .
$$

The roots of this polynomial (± 1) lie in \mathbb{F}_{3}, so the splitting field is \mathbb{F}_{3} itself.
(4) Let R be a principal ideal domain. Show that if $P \neq\langle 0\rangle$ is a prime ideal then P is maximal.

Solution: Suppose $P=(a)$ (the principal ideal generated by $a \in R$) and suppose $P \subset Q=$ (b) and $P \neq Q$. Since $P \subset Q$ we have $a=b c$ and since $P \neq Q, b \notin P$. By the definition of a prime ideal, we must have $c \in P$, say $c=a d$. But then $a=b c=b a d$ and $a \neq 0$ (since $P \neq 0$), which implies that b is a unit in R and $Q=R$. This shows that P is maximal.
(5) Let V be a finite dimensional vector space over a field \mathbf{F} and let $\langle\rangle:, V \times V \rightarrow \mathbf{F}$ be a bilinear form. Prove that
$\operatorname{dim}_{\mathbf{F}}\{v \in V \mid\langle v, w\rangle=0$ for all $w \in V\}=\operatorname{dim}_{\mathbf{F}}\{w \in V \mid\langle v, w\rangle=0$ for all $v \in V\}$.
Solution: Fix a basis of V and let A be the matrix of the bilinear form with respect to this basis. For all $v, w \in V$ we have $\langle v, w\rangle=v^{T} A w$. Then $\langle v, w\rangle=v^{T} A w=0$ for all $w \in V$ if and only if $v^{T} A=0$, i.e. v is in the left kernel of A. It follows that $\{v \in V \mid\langle v, w\rangle=$ 0 for all $w \in V\}$ is the left kernel of A and similarly $\{w \in V \mid\langle v, w\rangle=0$ for all $v \in V\}$ is the right kernel of A. Therefore they have equal dimensions as desired.
(6) Let $\varphi: R_{1} \rightarrow R_{2}$ be a homomorphism of commutative rings with identity. Suppose that for every prime ideal $I \subset R_{2}$, the induced homomorphism $R_{1} \rightarrow R_{2} / I$ is surjective. Is it necessarily true that φ is surjective?

Solution: Such a homomorphism φ does not have to be surjective. Let F be a field and let $F[x]$ be the ring of polynomials over F. Let $R_{1}=F, R_{2}=F[x] /\left(x^{2}\right)$ and $\varphi: R_{1} \rightarrow R_{2}$ be the inclusion map. Let $\bar{x} \in R_{2}$ be the image of x under the natural projection from $F[x]$. Observe that $\bar{x} \neq 0$ and since $\bar{x}^{2}=0$ in R_{2} it follows that $\bar{x} \in I$ for every prime ideal I of R_{2}. It follows that the induced homomorphism $R_{1} \rightarrow R_{2} / I$ is surjective for any prime ideal I. For a second example, take F a field, $R_{1}=F, R_{2}=F \oplus F$ and $\varphi: R_{1} \rightarrow R_{2}$ the diagonal inclusion.
(7) Let \mathbb{F}_{q} be the finite field of cardinality q. How many elements $x \in \mathbb{F}_{64}$ generate \mathbb{F}_{64} as an extension of \mathbb{F}_{2} ?
Solution: Recall that for any prime $p, \mathbb{F}_{p^{m}} \subseteq \mathbb{F}_{p^{n}}$ if and only if m divides n. Let $\alpha \in \mathbb{F}_{64}$ and suppose that $\mathbb{F}_{2}(\alpha) \neq \mathbb{F}_{64}$. Then $\mathbb{F}_{2}(\alpha)$ is a subfield of $\mathbb{F}_{64}=\mathbb{F}_{2^{6}}$ and we see that $\mathbb{F}(\alpha)$ is isomorphic to $\mathbb{F}_{2}, \mathbb{F}_{4}$ or \mathbb{F}_{8}. It follows that $\mathbb{F}(\alpha) \neq \mathbb{F}_{64}$ if and only if $\alpha \in \mathbb{F}_{2}, \alpha \in \mathbb{F}_{4}$, or $\alpha \in \mathbb{F}_{8}$. Taking into account that $\mathbb{F}_{2} \subset \mathbb{F}_{4}, \mathbb{F}_{2} \subset \mathbb{F}_{8}$, and $\mathbb{F}_{4} \cap \mathbb{F}_{8}=\mathbb{F}_{2}$, we see that there are 10 elements $\alpha \in \mathbb{F}_{64}$, such that $\mathbb{F}(\alpha) \neq \mathbb{F}_{64}$ and 54 elements $\alpha \in \mathbb{F}_{64}$, such that $\mathbb{F}(\alpha)=\mathbb{F}_{64}$.
(8) Let G be an abelian group with generators x, y, and z and relations

$$
3 x-2 y+5 z=6 x+2 y+4 z=-3 x+5 y-8 z=0 .
$$

Express G as a direct sum of cyclic groups and find the rank and the torsion subgroup of G.
Solution: Let H be the subgroup of \mathbb{Z}^{3} generated by $\left(\begin{array}{r}3 \\ -2 \\ 5\end{array}\right),\left(\begin{array}{l}6 \\ 2 \\ 4\end{array}\right)$ and $\left(\begin{array}{r}-3 \\ 5 \\ -8\end{array}\right)$. It follows that $G \cong \mathbb{Z}^{3} / H$. Consider the matrix

$$
\left(\begin{array}{rrr}
3 & 6 & -3 \\
-2 & 2 & 5 \\
5 & 4 & -8
\end{array}\right) .
$$

A sequence of elementary integer row and column operations (equivalently, changing basis in \mathbb{Z}^{3} and H) yields the matrix

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

It follows that $G \cong \mathbb{Z} / 9 \mathbb{Z} \oplus \mathbb{Z}$ and therefore the rank of G is 1 and its torsion subgroup is isomorphic to $\mathbb{Z} / 9 \mathbb{Z}$.

