
Analysis Comprehensive Exam Questions
Spring 2014

NOTE: Throughout this exam, the Lebesgue exterior measure of a set E ⊆ R
d will denoted

by |E|e, and if E is measurable then its Lebesgue measure is denoted by |E|.

1. Let K be a compact subset in R
d, and let f(x) = dist(x,K). Let g(x) = max{1−f(x), 0}.

Prove that

lim
n→∞

∫

Rd

g(x)n dx = |K|.

Solution: Note that f(x) = 0 for all x ∈ K and f(x) > 0 for all x /∈ K. Let K1 be the
set of points that are a distance of at most 1 from the set K, i.e., K1 = {x : f(x) ≤ 1}.
Then we have K ⊆ K1 and

g(x) = (1 − f) χK1
.

Since g is identically zero outside the set K1, we have gn → 0 on R
d \ K1. On the set

K1 \ K we have that 0 ≤ 1 − f(x) < 1, so gn → 0 on this set. On the set K we have
gn = 1. Hence gn → χK . Finally, observe that gn ≤ χK1

∈ L1(Rd). So, by the Dominated
Convergence Theorem,

lim
n→∞

∫

Rd

g(x)n dx =

∫

Rd

lim
n→∞

g(x)n dx =

∫

Rd

χK(x) dx = |K|.



2. (a) Let A be any subset of R
d. Prove that there exists a measurable set H ⊇ A that

satisfies
|A ∩ E|e = |H ∩ E| for every measurable set E ⊆ R

d.

Solution: Case 1 : |A|e < ∞. For each n > 0, there exists an open set Un ⊇ A such
that |A|e ≤ |Un| < |A|e + 1

n
. Therefore H = ∩Un is a Gδ-set that contains A and satisfies

|A|e = |H|.
Now let E be any measurable subset of R

d. Applying the Carathéodory Criterion and
monotonicity, we see that

|H ∩ E| + |H\E| = |H| = |A|e = |A ∩ E|e + |A\E|e ≤ |H ∩ E| + |H\E|. (1)

Therefore equality holds in (1). However, monotonicity implies |A ∩ E|e ≤ |H ∩ E| and
|A\E|e ≤ |H\E|, so since all of the quantities involved are finite, the only way that
equation (1) can hold is if

|A ∩ E|e = |H ∩ E| and |A\E|e = |H\E|.

Case 2: Arbitrary sets. For each k ∈ N, set

Ak = A ∩ [−k, k]d.

Each set Ak has finite measure, and A = ∪Ak. By Case 1, for each k there is a Gδ-set
Hk ⊇ Ak such that

|Ak ∩ E|e = |Hk ∩ E| for every measurable E.

The sets

Gj =
∞
⋂

k=j

Hk, j ∈ N,

are nested, and their union

H =
∞
⋃

j=1

Gj

is measurable. If E is any measurable subset of R
d, then

|H ∩ E| =

∣

∣

∣

∣

∞
⋃

j=1

(Gj ∩ E)

∣

∣

∣

∣

= lim
j→∞

|Gj ∩ E| (continuity from below)

≤ lim sup
j→∞

|Hj ∩ E| (since Gj ⊆ Hj)

= lim sup
j→∞

|Aj ∩ E|e (by definition of Hj)

≤ |A ∩ E|e (since Aj ⊆ A)

≤ |H ∩ E| (since A ⊆ H).
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3. Let {fn} be a sequence in Lp (Ω) (1 ≤ p ≤ ∞) and assume that f ∈ Lp(Ω) is such that
‖fn − f‖p → 0. Show that there exists a subsequence {fnk

} and a function h ∈ Lp(Ω) such
that

(i) fnk
(x) → f (x) a.e. on Ω.

(ii) for every k we have |fnk
(x)| ≤ h(x) a.e. on Ω.

Solution: The conclusion is obvious when p = ∞. So we assume 1 ≤ p < ∞. Since {fn}
is a Cauchy sequence in Lp(Ω), we can extract a subsequence {fnk

} such that

∥

∥fnk+1
− fnk

∥

∥

p
≤ 1

2k
, ∀k ≥ 1.

To simplify notations, we denote fnk
by fk. Let

gn (x) =
n

∑

k=1

|fk+1 (x) − fk (x)| ,

and observe that ‖gn‖p ≤ 1. By the Monotone Convergence Theorem, gn (x) tends to a
finite limit g (x) a.e. on Ω, and g ∈ Lp(Ω). On the other hand, for any m ≥ n ≥ 2, we
have

|fm (x) − fn (x)| ≤ |fm (x) − fm−1 (x)| + · · · + |fn+1 (x) − fn (x)|
≤ g (x) − gn−1 (x) .

Thus, a.e. on Ω, {fn (x)} is Cauchy and therefore converges to a finite limit f ∗ (x) . We
have a.e. on Ω,

|f ∗ (x) − fn (x)| ≤ g (x) , for n ≥ 2.

In particular, f ∗ ∈ Lp(Ω). Since

|fn (x)| ≤ g (x) + |f ∗ (x)| = h (x) , with h ∈ Lp(Ω),

the Dominated Convergence Theorem implies that fk → f ∗ in Lp(Ω), and therefore
f ∗ = f a.e. This finishes the proof.
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4. Suppose that f ∈ L1(R) is such that f ′ ∈ L1(R) and f is absolutely continuous on every
finite interval [a, b]. Show that limx→∞ f(x) = 0.

Solution: Suppose that f(x) does not converge to zero as x → ∞. This does not say
that f must converge to some other value as x → ∞, but it does tell us that there exists
some ε > 0 such that:

∀R > 0, ∃x > R such that |f(x)| > 2ε. (2)

Since f ′ is integrable, there exists a δ > 0 such that for any measurable set A ⊆ R,

|A| < δ =⇒
∫

A

|f ′| < ε.

Fix any points x < y such that y − x < δ. Since f is absolutely continuous on [x, y],

|f(y) − f(x)| =

∣

∣

∣

∣

∫ y

x

f ′

∣

∣

∣

∣

≤
∫ y

x

|f ′| < ε.

(Note that this shows that f is uniformly continuous on R.)
By equation (2), there exists some point x1 > 1 such that |f(x1)| > 2ε. Hence if

x ∈ (x1 − δ, x1 + δ) then

2ε < |f(x1)| ≤ |f(x1) − f(x)| + |f(x)| < ε + |f(x)|.

Thus |f(x)| > ε on the interval (x1 − δ, x1 + δ).
Now we repeat this argument. There exists some x2 > x1 + δ such that |f(x2)| > 2ε.

As before we find that |f(x)| > ε on the interval (x2 − δ, x2 + δ). Continuing in this way,
f is bounded below by ε on infinitely many disjoint intervals of length 2δ, which implies
that f is not integrable.
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5. Let E be a measurable subset of R
d such that |E| < ∞, and let f be any nonnegative,

bounded function on E. Suppose that

sup

{
∫

E

φ : 0 ≤ φ ≤ f, φ simple

}

= inf

{
∫

E

ψ : f ≤ ψ, ψ simple

}

.

Prove that f is measurable.

Solution: Let

I = sup

{
∫

E

φ : 0 ≤ φ ≤ f, φ simple

}

= inf

{
∫

E

ψ : f ≤ ψ, ψ simple

}

.

Since f is bounded, there is a constant M such that f ≤ M. Therefore, if φ is a simple
function and φ ≤ f, then φ ≤ M. Consequently

∫

E

φ ≤
∫

E

M = M |E|,

and therefore I ≤ M |E| < ∞.
Now, by the definition of sup and inf, there exist simple functions

0 ≤ φn ≤ f ≤ ψn

such that

lim
n→∞

∫

E

φn = I = lim
n→∞

∫

E

ψn.

Set
φ = sup

n
φn and ψ = inf

n
ψn.

Then φ and ψ are each measurable and nonnegative, and for every n ∈ N we have

0 ≤ φn ≤ φ ≤ f ≤ ψ ≤ ψn.

Although we do not know whether f is measurable, both φ and ψ are measurable, so
∫

E

φn ≤
∫

E

φ ≤
∫

E

ψ ≤
∫

E

ψn

for every n ∈ N. Consequently,

I = lim
n→∞

∫

E

φn ≤
∫

E

φ ≤
∫

E

ψ ≤ lim
n→∞

∫

E

φn = I.

As φ is integrable, we have
∫

E

(ψ − φ) =

∫

E

ψ −
∫

E

φ = 0.

But ψ − φ is nonnegative, so this implies that ψ − φ = 0 a.e. Finally, φ ≤ f ≤ ψ, so we
conclude that φ = f = ψ a.e. Therefore f is measurable.
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6. Assume that {en} is an orthonormal basis for a Hilbert space H. Let {an} be a bounded
sequence in R, and set

un =
1

n

n
∑

i=1

aiei.

Show that:

(i) |un| → 0,

(ii)
√

nun ⇀ 0 weakly in H.

Solution: (i) Assume |an| ≤ M, ∀n. Then

∣

∣

√
n un

∣

∣

2
=

1

n

n
∑

i=1

|ai|2 ≤ M2.

Thus

|un| ≤
M√
n
→ 0 as n → ∞.

(ii) Take any fixed ej, then

|〈
√

nun, ej〉| =
1√
n
|aj| ≤

M√
n
→ 0 as n → ∞.

This extends to all vectors in H by a density argument.
To be more explicit, if y is any finite linear combination of the ej, then, by linearity,

〈
√

n un, y〉 → 0.

If z is an arbitrary element of H and we fix ε > 0, then there exists some y ∈ span{ej}
such that |y − z| < ε. There is some N > 0 such that for all n > N we have

|〈
√

n un, y〉| < ε.

Therefore, for all n > N,

|〈
√

nun, z〉| ≤ |〈
√

n un, z − y〉| + |〈
√

n un, y〉| ≤ |
√

nun| |z − y| + ε ≤ M ε + ε.

This shows that 〈√n un, z〉 → 0.
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7. Let ν be a bounded signed Borel measure on R, and assume f ∈ L1(R) (i.e., f is integrable
with respect to Lebesgue measure). Prove that

g(x) =

∫

∞

−∞

f(x − y) dν(y)

is defined at almost every x and

‖g‖1 ≤ ‖f‖1 |ν|(R),

where |ν| is the total variation of ν. Show further that if f is uniformly continuous on R,
then so is g.

Solution: Given x ∈ R,

∫∫

|f(x − y)| dx d|ν|(y) =

∫
(

∫

|f(x)| dx

)

d|ν|(y) = ‖f‖1

∫

d|ν(y)| = ‖f‖1 |ν|(R).

Therefore the integral defining g(x) exists a.e. Furthermore, Fubini’s Theorem implies
that g is Lebesgue measurable. Using Fubini’s Theorem again, we compute that

‖g‖1 =

∫
∣

∣

∣

∣

∫

f(x − y) dν(y)

∣

∣

∣

∣

dx ≤
∫∫

|f(x − y)| d|ν|(y) dx

≤
∫∫

|f(x − y)| dx d|ν|(y)

≤ ‖f‖1 |ν|(R).

Now suppose that f is uniformly continuous. Let Taf(x) = f(x + a), and let ‖ · ‖∞
denote the uniform norm. Then

|g(x + a) − g(x)| =

∣

∣

∣

∣

∫

(

f(x + a − y) − f(x − y)
)

dν(y)

∣

∣

∣

∣

≤
∫

|f(x + a − y) − f(x − y)| d|ν(y)|

≤
∫

‖Taf − f‖∞ d|ν|(y)

= ‖Taf − f‖∞ |ν|(R).

Therefore, since f is uniformly continuous,

‖Tag − g‖∞ ≤ ‖Taf − f‖∞ |ν|(R) → 0 as a → 0.

Hence g is uniformly continuous.
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8. Prove that

V f(x) =

∫ x

0

f(y) dy

is a continuous, injective mapping of Lp[0, 1] into itself for each 1 ≤ p ≤ ∞.

Solution: The mapping V is linear, and we will prove that it maps Lp[0, 1] boundedly
into itself for 1 < p < ∞ (the cases p = 1 and p = ∞ are similar). Fix f ∈ Lp[0, 1], and
note that f is integrable since [0, 1] has finite measure. Letting p′ denote the dual index
to p, we compute that

‖V f‖p
p =

∫

1

0

|V f(x)|p dx =

∫

1

0

∣

∣

∣

∣

∫ x

0

f(y) dy

∣

∣

∣

∣

p

dx

≤
∫

1

0

(
∫ x

0

|f(y)|p dy

)(
∫ x

0

1p′ dy

)p/p′

dx

≤
∫

1

0

(
∫

1

0

|f(y)|p dy

)

· 1 dx

=

(
∫

1

0

|f(y)|p dy

)

= ‖f‖p
p.

Therefore V is bounded (and hence continuous).
Suppose that V f = 0 a.e. Since V f is continuous, this implies that V f is identically

zero. However, V f is absolutely continuous, so the Fundamental Theorem of Calculus
implies that

f = (V f)′ = 0 a.e.

Therefore V is injective.
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