Analysis Comprehensive Exam Questions
Spring 2014

NOTE: Throughout this exam, the Lebesgue exterior measure of a set £ C R? will denoted
by |E|, and if E is measurable then its Lebesgue measure is denoted by |E].

1. Let K be a compact subset in R, and let f(z) = dist(z, K). Let g(z) = max{1— f(x),0}.
Prove that

lim g(z)"dx = |K|.

n—0o0 Jpd

Solution: Note that f(z) =0 for all x € K and f(x) > 0 for all z ¢ K. Let K; be the
set of points that are a distance of at most 1 from the set K, i.e., K1 = {z: f(x) < 1}.
Then we have K C K; and
g(x) = (1 = ) Xk,

Since g is identically zero outside the set K, we have ¢" — 0 on R?\ K;. On the set
K, \ K we have that 0 < 1 — f(z) < 1, so ¢" — 0 on this set. On the set K we have
g" = 1. Hence g" — X. Finally, observe that ¢" < Xg, € L*(R%). So, by the Dominated
Convergence Theorem,

lim g(x)" dx :/ lim g(z)" dx = / Xk (z)dx = |K|.
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2.

(a) Let A be any subset of RY. Prove that there exists a measurable set H O A that

satisfies

|ANE|.=|HNE| for every measurable set £ C R%

Solution: Case 1: |A|. < oo. For each n > 0, there exists an open set U, 2 A such
that [Al. < |Uy| < |Ale + +. Therefore H = NU, is a Gs-set that contains A and satisfies
|Ale = [H].

Now let E be any measurable subset of R?. Applying the Carathéodory Criterion and
monotonicity, we see that

[HNE|+[H\E| = |H| = |Ale = [AN El. + |[A\E|. < [H N E|+ [H\E]. (1)

Therefore equality holds in (1). However, monotonicity implies |[AN E|. < |H N E| and
|A\E|. < |H\E|, so since all of the quantities involved are finite, the only way that
equation (1) can hold is if

ANE|l,=|HNE| and  |A\E|, = |[H\E|.

Case 2: Arbitrary sets. For each k € N, set
A= AN [k, k%

Each set Ay has finite measure, and A = UA,. By Case 1, for each k there is a Gs-set
H;, O A; such that

|Ax N El. = |HyNE| for every measurable E.
The sets ~
Gi=()Hr, JEN,
k=j

are nested, and their union

H=|]JG;
j=1
is measurable. If E is any measurable subset of R¢, then
|[HNE|= U (G; N E)' = lim |G; N E] (continuity from below)
j—00
j=1

<limsup |H; N E| (since G; C Hj)
j—00

= limsup |4, N E|. (by definition of H;)
Jj—00

<|ANE|. (since A; C A)

< |HNE| (since A C H).
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3. Let {f.} be a sequence in L? (2) (1 <p < oo) and assume that f € LP(Q) is such that
| fn — fll, — 0. Show that there exists a subsequence {f,, } and a function h € LP(2) such
that

(1) fu,(x) = f(x) a.e. on €.
(ii) for every k we have |f,, (z)| < h(x) a.e. on €.

Solution: The conclusion is obvious when p = co. So we assume 1 < p < oo. Since {f,}
is a Cauchy sequence in LP(§2), we can extract a subsequence {f,, } such that

1
ankJrl - fnka < %7 vk > 1.

To simplify notations, we denote f,,, by fi. Let

00 @) = 3" fs (@) = fi @)

and observe that ||g,|l, < 1. By the Monotone Convergence Theorem, g, (z) tends to a
finite limit g (z) a.e. on 2, and g € LP(Q2). On the other hand, for any m > n > 2, we
have
[fm (@) = fo (@) < [fin () = (@) + o+ 4 |farr (2) = fu (2)]
< g (.T) — Gn-1 (ZE) :

Thus, a.e. on Q, {f, (z)} is Cauchy and therefore converges to a finite limit f* (x). We
have a.e. on €,

lf*(x) — fu(2)| < g(x), for n > 2.
In particular, f* € LP(Q). Since
[fn (@) < g(x)+|f" ()] = h(z), with h € LP(Q),

the Dominated Convergence Theorem implies that f, — f* in LP(2), and therefore
f* = f a.e. This finishes the proof.
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4. Suppose that f € L'(R) is such that f € L'(R) and f is absolutely continuous on every
finite interval [a, b]. Show that lim, . f(z) = 0.

Solution: Suppose that f(x) does not converge to zero as x — oo. This does not say
that f must converge to some other value as r — oo, but it does tell us that there exists
some € > 0 such that:

VR >0, 3Jx> Rsuchthat |f(x)] > 2e. (2)

Since f’ is integrable, there exists a ¢ > 0 such that for any measurable set A C R,
Al <d = /|f’]<a.
A

Fix any points < y such that y — x < 4. Since f is absolutely continuous on [z, y],

/:f’ S/:If’]<s.

(Note that this shows that f is uniformly continuous on R.)
By equation (2), there exists some point z; > 1 such that |f(z1)| > 2e. Hence if
x € (xy — d, 21+ 6) then

2e < [f(wa)] < [f(21) = f(@)[ + [f(2)] <&+ [f(2)].

Thus |f(z)| > € on the interval (z; — J,z1 + 9).

Now we repeat this argument. There exists some xo > x; + ¢ such that |f(z2)| > 2e.
As before we find that | f(z)| > € on the interval (z3 — 0, 22 + §). Continuing in this way,
f is bounded below by ¢ on infinitely many disjoint intervals of length 24, which implies
that f is not integrable.

[f(y) = f(2)| =
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5. Let E be a measurable subset of R? such that |E| < oo, and let f be any nonnegative,
bounded function on E. Suppose that

Sup{/E¢ 0< o< f, ¢simple} :inf{/Ew Cf <, wsimple}.

Prove that f is measurable.

Solution: Let
]:sup{/¢ 0< o < f, gbsimple}:inf{/w s f <, @/Jsimple}.
E E

Since f is bounded, there is a constant M such that f < M. Therefore, if ¢ is a simple
function and ¢ < f, then ¢ < M. Consequently

[o< [m=nm,
E E
and therefore I < M |E| < oc.

Now, by the definition of sup and inf, there exist simple functions

0< o, <f <Y,
such that
lim [ ¢,=1= lim [ ,.
Set

¢ = sup ¢, and Y = inf,.
Then ¢ and 1) are each measurable and nonnegative, and for every n € N we have

0<¢n<O< f <Y<

Although we do not know whether f is measurable, both ¢ and ) are measurable, so

[z [o<[v<[u

for every n € N. Consequently,

n—oo n—oo

Jw=a=[v-[o=0

But ¢ — ¢ is nonnegative, so this implies that ¥ — ¢ = 0 a.e. Finally, ¢ < f <, so we
conclude that ¢ = f = 1 a.e. Therefore f is measurable.

I = lim gbn /gb< ¥ < lim ngn—[

As ¢ is integrable, we have
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6. Assume that {e,} is an orthonormal basis for a Hilbert space H. Let {a,} be a bounded
sequence in R, and set
1 n
Up = — a;€;.

Show that:
(i) |un| =0,
(ii) v/nu, — 0 weakly in H.

Solution: (i) Assume |a,| < M, ¥n. Then

Waw? =25 o < M2,
=1

n <

Thus

M
|up| < —= — 0 as n — oo.

vn

(ii) Take any fixed e;, then

— 0 asn — oo.

[V, ) =

1
:%‘CLJ‘S\/—

This extends to all vectors in H by a density argument.
To be more explicit, if y is any finite linear combination of the e;, then, by linearity,

(V1 iy, y) — 0.

If z is an arbitrary element of H and we fix ¢ > 0, then there exists some y € span{e,}
such that |y — z| < e. There is some N > 0 such that for all n > N we have

[(Vnun, y)| <e.

Therefore, for all n > N,

(Wt 2 < /At 2 = )]+ (VR 0 )] < [Vt |2 — 4] +2 < Me+2.

This shows that (y/nu,,z) — 0.
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7. Let v be a bounded signed Borel measure on R, and assume f € L'(R) (i.e., f is integrable
with respect to Lebesgue measure). Prove that

= /_Z flz—y)dv(y)

gl < [LF 112 [ (R),

where |v| is the total variation of v. Show further that if f is uniformly continuous on R,
then so is g.

is defined at almost every z and

Solution: Given z € R,

J[ st =wiasario) = [( [1r@1ds)avio) =1ss [ av) =1 i

Therefore the integral defining g(z) exists a.e. Furthermore, Fubini’s Theorem implies
that g is Lebesgue measurable. Using Fubini’s Theorem again, we compute that

lolh = | ] [ 1=

iz < / @ — )] div|(y) d

< [[ 1= pldzdpie

< [Iflh [[(R).

Now suppose that f is uniformly continuous. Let T,f(z) = f(z + a), and let || - ||
denote the uniform norm. Then

s/\f<x+a—y>—f<x—y>rd\v<y>r

< [ 18 = Flw i)
= Taf = fllss IVI(R).
Therefore, since f is uniformly continuous,
1Tag = 9lloo < I Taf = flloo [VI(R) — 0 as a — 0.

Hence ¢ is uniformly continuous.
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8. Prove that -
Vi@ = [ sy

is a continuous, injective mapping of LP[0, 1] into itself for each 1 < p < 0.

Solution: The mapping V is linear, and we will prove that it maps L?[0, 1] boundedly
into itself for 1 < p < oo (the cases p = 1 and p = oo are similar). Fix f € LP[0, 1], and
note that f is integrable since [0, 1] has finite measure. Letting p’ denote the dual index

to p, we compute that
| sway
0

Wil = [ wiepar= [
([ ([
< [([ o) e
= ([ 1rwra)

= [IF1I5-

Therefore V' is bounded (and hence continuous).

Suppose that V f = 0 a.e. Since V f is continuous, this implies that V f is identically
zero. However, V f is absolutely continuous, so the Fundamental Theorem of Calculus
implies that

p
dz

f=Wf)=0ae.

Therefore V' is injective.
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